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ABSTRACT: The old coordinate driving procedure to find transition structures
Ž .in chemical systems is revisited. The well-known gradient criterion, =E x s 0,

Ž .which defines the stationary points of the potential energy surface PES , is
reduced by one equation corresponding to one search direction. In this manner,
abstract curves can be defined connecting stationary points of the PES. Starting
at a given minimum, one follows a well-selected coordinate to reach the saddle
of interest. Usually, but not necessarily, this coordinate will be related to the

Ž .reaction progress. The method, called reduced gradient following RGF , locally
has an explicit analytical definition. We present a predictor]corrector method
for tracing such curves. RGF uses the gradient and the Hessian matrix or
updates of the latter at every curve point. For the purpose of testing a whole
surface, the six-dimensional PES of formaldehyde, H CO, was explored by RGF2

Ž .using the restricted Hartree]Fock RHF method and the STO-3G basis set.
Forty-nine minima and saddle points of different indices were found. At least
seven stationary points representing bonded structures were detected in addition
to those located using another search algorithm on the same level of theory.
Further examples are the localization of the saddle for the HCN | CNH

Ž .isomerization used for steplength tests and for the ring closure of azidoazo-
methine to 1H-tetrazole. The results show that following the reduced gradient
may represent a serious alternative to other methods used to locate saddle
points in quantum chemistry. Q 1998 John Wiley & Sons, Inc. J Comput
Chem 19: 1087]1100, 1998
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Introduction

he concept of the potential energy surfaceT Ž .PES forms the basis upon which most reac-
tion theories are defined.1, 2 Chemical reactions are

Ž .governed by the PES of the molecule s involved.
The chemically most important features of the PES

Ž .are the reactant and product minimum Min , and
Ž .a saddle point SP lying somewhere between the

minima. This SP of index 1 forms the transition
structure of conventional transition state theory.3

Ž .All so-called stationary points StP of the PES are
characterized by the condition:

Ž . Ž .=E x s 0, 1

Ž . Ž .where E x is the function of the PES, and =E x is
its gradient vector in the configuration space, RN,
defined by the coordinates x of the molecule where

Ž .N s 3n n s number of atoms if Cartesian coor-
dinates are used, or N s 3n y 6 for internal
coordinates.

If a saddle point of index 1 is known, the steep-
est descent paths4 in both directions of the eigen-
vector along the decay direction may be defined.
The eigenvector is associated with the negative

Žeigenvalue of the Hessian matrix the second
.derivatives of the PES . The combination of these

descents from the SP to the two minima is fre-
quently termed the reaction path.1, 2, 4 ] 6 However,
saddles are considerably more difficult to locate
than the reactant or product minimum, and algo-
rithms to locate the SP are still the subject of

Žintensive theoretical effort see ref. 7, among oth-
.ers . This is because of the different character of

the Hessian of these two kinds of extrema, SP and
minima, of the PES. At a minimum, all eigenval-
ues are positive. At a SP of index 1 there is one
negative eigenvalue. The resulting mixture of
eigenvalues causes a divergence of steepest de-
scent lines in the neighborhood of a SP. Different
algorithms to locate saddles are proposed and used
in standard quantum chemistry program packages
Ž 8.cf. GAMESS-UK .

In this study, we use a simple idea, which
transforms the old ‘‘distinguished coordinate

9, 10 Ž .method’’ into a new mathematical form. Eq. 1
is valid at extrema of the PES. But single compo-
nents of the gradient can also vanish in the neigh-
borhood of an extremum, as well as in other re-
gions of the PES. We will use this property. A
curve of points x is followed which fulfills the

N y 1 equations:

Ž . E x
Ž .s 0, i s 1, . . . , ku, . . . , N 2i x

omitting the k th equation.10 This gives the
Ž .N y 1 -dimensional zero vector of the ‘‘reduced
gradient’’; the method is subsequently called re-

Ž .duced gradient following RGF . The idea of the
method may be explained using the surface shown

FIGURE 1. Two-dimensional model potential surface
( ) 3 3E x, y = x + y y 6 xy with the two bold-faced RGF

( )curves E = 0 dashed and E = 0. These curvesx y
connect the minimum of the surface with the saddle
point. Their intersection locates the two stationary points
of the surface.

VOL. 19, NO. 91088



SEARCH FOR SADDLE POINTS

in Figure 1, and:

Ž . 3 3 Ž .E x , y s x q y y 6 xy 3

where x s x and y s x . It has the two station-1 2
Ž . Ž .ary points, Min s 2, 2 , and SP s 0, 0 . The RGF

equations become:

Ž . 2 Ž .E x , y s 3 x y 6 y s 0 or 4x

Ž . 2E x , y s 3 y y 6 x s 0y

1 2 'with the two curves y s x or y s " 2 x . These2

are included in Figure 1 together with some tan-
gents at the equipotential lines. The reduced gradi-

Ž .ent curve E x, y s 0 intersects the equipotentialx
lines in those points where their tangent shows in
x direction. Thus, the gradient points in the y

Ž .direction. It is represented by =E s 0, E . It is ay
simple but—as we show—effective procedure to
follow this curve to determine stationary points.
Unlike the usual steepest descent path from a
saddle, the reduced gradient search locally has an
explicit analytical definition. By the choice of k in

Ž .eqs. 2 we obtain, in the general case, N different
RGF curves passing each stationary point. The
existence of these curves follows mathematically if
some weak conditions of continuity and differen-
tiability of the PES are fulfilled. We note that these
curves are no minimum energy reaction paths.
They are defined by the shape of the PES in the
given coordinate system, and by the character of
the gradient vector between the extrema. But, these
curves may follow a reaction valley in favorable
cases, at least qualitatively.

The article is organized as follows: In the next
section, we illustrate the idea with RGF curves on
two-dimensional test surfaces. The outline of the
algorithm is then formulated for the general N-di-
mensional case, which has been incorporated in
our version of the GAMESS-UK program.8 To
demonstrate the method, we examine the HCN |
CNH isomerization. Our results for the PES of this
system are presented to show the steplength effec-
tiveness of the RGF. Second, we report the results
of the application of the algorithm to the complete
six-dimensional PES of formaldehyde, H CO, with2
the STO-3G basis set. The results are compared
with those obtained by Bondensgard and Jensen11˚
using another concept. A very different application
is the calculation of the saddle point for the iso-
merization between azidoazomethine and 1H-
tetrazole, represented by the SP search using RGF
on a 15-dimensional PES. Finally, the relation be-
tween RGF and the distinguished coordinate

Ž .method coordinate driving procedure is dis-
cussed in more detail.

Discussion of Two-Dimensional
Test Surfaces

Ž . Ž .With x s x, y , the system of eqs. 2 becomes
a single equation:

Ž . Ž .E x , y s 0 for k s 2 or 5x

Ž .E x , y s 0 for k s 1y

The corresponding RGF curves to find stationary
points are calculated by the program Mathe-
matica.12 For the illustration of RGF curve proper-
ties, we examine:

B 13Ž .The Minyaev]Quapp MQ surface for SP
of index 2 of the PES;

B 14Ž .the Muller]Brown MB surface ;¨
B 15Ž .the Gonzales]Schlegel GS surface for

Ž .turning points TP of RGF curves;
B 16Ž .the Eckhardt EC surface ;
B 17Ž .the Neria]Fischer]Karplus NFK surface

Ž .for bifurcation points BP of the RGF and
Ž .their relation to valley-ridge inflection VRI

points of the PES.

MINYAEV]QUAPP SURFACE

The surface13:

Ž . Ž . Ž Ž ..E x , y s cos 2 x q 0.57 cos 2 x y y

Ž . Ž .q cos 2 y 6

Ž .is given in Figure 2. The points p , 2p in the
Ž .upper right corner, and 0, p in the lower left

corner are saddle points of index 2. In this exam-
ple, on the one hand, the RGF curves connect SPs
of index 1 with a minimum and, on the other

Ž .hand, with a saddle of index 2 a maximum . This
behavior may be summarized by the following
rule: RGF curves connect StP of even index with StP
of odd index, if no BP is transversed.

¨MULLER]BROWN SURFACE—TURNING
POINTS

The PES forms a standard example in theoreti-
14 Žcal chemistry. With A s y200.0, y100.0,

. Ž . Žy170.0, 15.0 , a s y1.0, y1.0, y6.5, 0.7 , b s 0.0,

. Ž . 00.0, 11.0, 0.6 , c s y10.0, y10.0, y6.5, 0.7 , x s
Ž . 0 Ž .1.0, 0.0, y0.5, y1.0 , and y s 0.0, 0.5, 1.5, 1.0 ,
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FIGURE 2. Two-dimensional model potential surface
MQ13 that also has saddle points of index 2. They are
connected by a reduced gradient curve with saddle

( )points of index 1 RGF curves E = 0 are dashed .x

the surface is:

4
20Ž . Ž .E x , y s A exp a x y xÝ i i i

is1

20 0 0Ž .Ž . Ž .qb x y x y y y q c y y yi i i i i

Ž .7

which is displayed in Figure 3. It has a saddle
Ž .point at y0.822, 0.624 , which is not reached by

other search strategies if starting at the left mini-
Ž .mum y0.558, 1.442 and using only local informa-

18 w Ž .xtion. With the reduced gradient search eqs. 5 ,
we find the desired behavior of the two RGF
curves: both these curves connect the three min-
ima and two saddles of the PES where they cross.
However, the curves do not directly connect the
StP by ascending, or by descending the valleys
from the starting extrema. They go somewhere

Ž .along the PES, and show turning points TP with
respect to the search direction chosen. The TPs
reflect the RGF curve back to the valley.

GONZALES]SCHLEGEL SURFACE

The surface15:

Ž . w y Ž .xE x , y s arccot ye cot xr2 y pr4
2Ž . Ž .y 2 exp y0.5 y y sin x 8

FIGURE 3. The Muller ]Brown model potential14 with¨
( ) ( )solutions E = 0 dashed and E = 0 bold . Theyx y

connect the three minima with the two saddle points. TP
marks one of the turning points of the RGF curve E = 0.y

does not have extrema in the region shown in
Figure 4, but it has a complex valley structure.19a

Ž .Starting at point 4.75, y1 , the RGF curve E s 0,y
‘‘uphill,’’ nearly perfectly follows the main valley

Ž .axis arriving at point y1.3, y1 on the other side

FIGURE 4. Two-dimensional model potential surface
GS15 showing that RGFs do not necessarily search for

( )the next SP: for E = 0 dashed , the curve leaves thex
( )main valley due to a turning point TP .
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of the panel. We may reverse the search direction
Ž .and go back ‘‘downhill’’ from y1.3, y1 along the

same pathway. However, if we start at a point
Ž .nearby, at y1.3, y1.3 , and search for the other

Ž .RGF curve E s 0 dashed , we trace along a curvex
near the valley axis, going downhill quite similarly

Ž .to the former pathway as far as the point f 1, 0.5 .
The curve then leaves the main valley due to a TP
and subsequently follows a ridge up to another SP.

ECKHARDT SURFACE—VALLEY-RIDGE
INFLECTION POINTS

The test surface16 is given in Figure 5. The
formula is:

22Ž . Ž .E x , y s exp yx y y q 1Ž .
22 Ž .q exp yx y y y 1Ž .

Ž Ž 2 2 . . 2 Ž .q 4 exp y3 x q y r2 q y r2 9

Here, in contrast to the Muller]Brown example,¨
Ž .the solutions of eqs. 5 follow the valleys or ridges

Ž .defined by eq. 9 . This example is interesting
because it shows another possibility of the RGF

FIGURE 5. Two-dimensional model potential surface
16 ( ) ( ) ( )EC with minimum Min , maximum Max , saddles SP

( )of the surface, and two bifurcation points BP on the
bold RGF curve E = 0. The BPs are valley-ridgey
inflection points of the surface. The roundabout path
from SP to BP to SP to BP , and back to SP1 1 2 2 1
connects only the SPs, but does not cross a minimum or
a maximum.

w Ž .xcurve defined by the nonlinear equation eq. 2 : It
can cross a BP between the extrema. If there are
such points, a particular property of RGF becomes

Ž .evident. The RGF curve for E s 0 bold along they
symmetry axis from the minimum to the maxi-
mum does not cross an SP of index 1, but directly

Žleads to a saddle of index 2. If the PES shows
symmetry, and if a search direction of RGF reflects
this symmetry, then the RGF search holds this

.symmetry. A second curve for E s 0 starting iny
SP goes to SP without touching the minimum or1 2
the maximum. The BP only emerges if two RGF
curves of the same search direction meet, here for
E s 0. Following the symmetry axis from they
minimum to the maximum, a qualitative change of
the curvature of equipotential lines orthogonal to
this axis occurs at the BP. Convexity changes to
concavity. We derive the hypothesis that the point
of change describes the so-called valley-ridge in-

Ž .flection VRI point of the surface. In this manner,
at least for the symmetric case, RGF is able to
locate VRI points. For a discussion of VRI and its
chemical importance see refs 18]20.

NERIA]FISCHER]KARPLUS SURFACE

In Figure 6 the function17:

22 2Ž . Ž .E x , y s 0.06 x q y q xy
2 2Ž .y 9 exp y x y 3 y yŽ .
2 2Ž . Ž .y 9 exp y x q 3 y y 10Ž .

is displayed. It has no symmetry plane, but rather
C symmetry. In this particular case, we use an-2
other ansatz of the reduced gradient idea: We do
not set one component part of the gradient to zero;
that is, we do not assign the search direction to
one of the coordinates, k s 1 or 2. In contrast, a
curve for a general search direction q; that is, with

Ž .5 Ž .=E x q is traced. If q s q , q , the orthogonalx y
H Ž .vector to q will be q s q , yq , and the gradi-y x

Ž .ent =E x will also be orthogonal to this vector. We
use the slightly more complicated scalar product
equation:

Ž . H Ž .=E x q s E q y E q s 0 11x y y x

Ž .as a modified RGF instead of eqs. 2 . Modified
RGF solutions of the NFK surface are included in
Figure 6. The search directions are the vectors
Ž . Ž ." q , q s " 0.47924, 0.52076 starting at thex y

minima. Only in this special case do we obtain a
Ž .solution going through the BPs at 1.55, 1.95 and
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FIGURE 6. Two-dimensional model potential surface
17 ( )NFK with bifurcation points BP on a modified reduced

gradient curve. The roundabout path from the two minima
over the two bifurcation points does not touch a saddle
point. A modification of the method, using combined
search directions, is used. The BP of this RGF is a
valley-ridge inflection point of the surface.

Ž .y1.55, y1.95 and connecting two minima with-
out intersecting the SP. The other search direction
Ž .dashed , q s 0.48 and q s y0.52, leads to thex y

Ž .SP 0, 0 if we start in the left minimum. Note that
the intersection of the two RGF curves at the BP is
not orthogonal. This bifurcation happens in a non-

Žsymmetrical surface region. Such a skew bifurca-
tion is also possible for other curves; e.g., compare

w x 21.with gradient extremals GE . In the NFK sur-
face, again, the bifurcation point, indicated by the

Ž .RGF curves, is a valley-ridge inflection point VRI
of the surface. The ridge leading from the SP to the
BP changes at the BP into a valley going further
uphill. Taking the opposite view, the downhill
valley path from the upper right corner of the
panel is tripled at the BP into two valleys leading
to the two minima, and the ridge in between. This
threefold branching pattern of curves is a so-called
pitchfork bifurcation. Because the surface is un-
symmetrical, the pitchfork is unsymmetrical as
well.

Ž .This surface Fig. 6 shows additionally the gen-
eral advantages of the RGF method. We may
choose any search direction q leaving the minima˜
inside the range of the curvilinear rhomboid con-
necting the two minima and the two bifurcation

points. Such a search direction, q, will then suc-˜
Ž .cessfully find the SP at 0, 0 . This is shown for the

dashed RGF pathway with q s 0.48 and q sx y
y0.52 starting in the left minimum. The paths
obtained in this way by a different search direction
q inside the rhomboid do not pass the BP, but they˜
may go through a TP. With respect to the general
case to find an initial guess to reach an SP or a
VRI, it cannot be expected to find exactly that
direction q which generates the RGF curve with
the branching point along the ridge of the PES. It
thus remains a difficult task to find an unsymmet-

Ž .ric BP i.e., VRI point even by the use of this
Ž 18, 21, 22approach. The theory of gradient extremals

allows that ridge to be determined. However, in
.this example, the GEs do not have a BP at all.

Algorithm

PREDICTOR STEP

Ž .We assume a curve of points, x t , fulfilling the
N y 1 equations:

Ž Ž .. E x t
Ž .s 0, i s 1, . . . , ku, . . . , N 12i x

Ž Ž .. E x t
however, / 0 outside stationary pointsk x

The parameter t varies in a certain interval. The
starting point is any stationary point. To predict
the corresponding next point, we calculate the
tangent to the curve.23 It is given by:

N 2 lŽ Ž .. Ž . Ž .d  E x t  E x dx t
s 0 s ,Ýi i ldt dt x  x  xls1

i s 1, . . . , ku, . . . , N , or
ˆ X Ž .Hx s 0 13

It is a homogeneous system of N y 1 linear equa-
tions for the direction cosine of the N components,
dx lrdt, of the tangent, xX. The coefficients are en-

ˆ 2 i lŽ .tries of the Hessian matrix, H s  E x r x  x ,
where the i s k th row is omitted. We may use an

1 Ž .update procedure for the Hessian see below . If
internal coordinates are used, in particular curvi-
linear coordinates, the corresponding formulas of
the metric tensor have to be included.1, 2, 5, 24 The
algorithm uses QR decomposition of the matrix of

Ž . 23 Žsystem 13 to obtain the solution. Q is an or-
.thogonal matrix, R is an upper triangular matrix.

VOL. 19, NO. 91092



SEARCH FOR SADDLE POINTS

The predictor step is:

StL
X Ž .x s x q x 14XmH1 m m5 5x m

where m indicates the number of calculated points,
and the steplength, StL, is used as a parameter in
the algorithm. For example, we take StL s 0.1 units

˚Ž .of the corresponding coordinate A, rad in the
case of the four-atom H CO, and we use from 0.22
up to 0.6 units for tetrazole with seven atoms. The
test case HCN is given with 0.1]0.9 rad StL.

Curves having the same property as the solu-
Ž .tions of eq. 13 , thus showing in every point a

fixed gradient direction of the PES, are also ob-
tained by Branin’s differential equation.25 The re-
sults reached by the RGF algorithm depend on the
selected direction, the so-called distinguished co-
ordinate, as well as on the set of internal coordi-
nates defined by the Z matrix. Care must be exer-
cised in this choice, as well as in the starting
direction of the search. It is quite normal for RGF

Žthat turning points may occur if the type D sur-
10 .face of Williams and Maggiora is met . Using

w Ž .xthe tangent search eq. 13 , the algorithm goes
through a TP without problems, because we do
not minimize orthogonal to the distinguished coor-
dinate. In contrast to the older method, we solve

Ž .the well-posed system of eqs. 13 . If at any point
Ž .arrived at by RGF, eq. 12 is fulfilled to a given

tolerance, the next predictor step is executed, oth-
erwise the algorithm skips to the corrector, as
shown in Figure 7. If the SCF part of the calcula-
tion does not converge, and if the stability and
continuity of the wave functions are lost, the search
for the next point is stopped.

CORRECTOR STEP

A Newton]Raphson-like method is used to
Ž .solve the reduced system of eqs. 12 . The step-

length of this method is given intrinsically, and it
is used until convergence. However, in addition,
we impose an upper limit on the steplength, be-
cause, if a bifurcation point is touched, the pure
Newton corrector produces steps that are too large.

ŽThe tolerance of the corrector is 0.1 = predictor
.StL .

STOPPING CRITERION

At every point along the pathway of the search
we determine the steplength of a hypothetical
Newton step to the ‘‘next’’ stationary point. If this

FIGURE 7. Schematic flowchart of the reduced gradient
( )following RGF algorithm.

Žvalue falls below a specified tolerance, say 0.5 q
. Ž .e = predictor StL , the algorithm still carries out

this step in the endgame, and then stops.
There are options to avoid unnecessary calcula-

tions. We next describe two different strategies.

DYNAMICAL STEPLENGTH

Usually, the corrector is used very sparsely by
the algorithm. If the predictor agrees ‘‘exactly’’

Ž .with the curve direction with a tolerance of 58 ,
26'we increase StL of the predictor by the factor 2 .

'The StL is decreased by 1r 2 if a corrector step is
called.

UPDATE OF HESSIAN MATRIX

We found that the algorithm is very stable
against update procedures of the Hessian matrix.

Ž .The reduced gradient criterion of eqs. 12 needs
only the gradient, and thus it can be used exactly.
Of course, if we connect StPs of a different index
by RGF, an update must be taken allowing such
changes of the index of the Hessian. This is guar-
anteed by the update of Davidon27 and Fletcher
and Powell,28 the so-called DFP update.1 In the
examples, we need one calculation of the exact
Hessian at the starting point of the path, and a
second one at the end in order to proof the index
of the StP reached. If a BP is met along the path,
we recommend a further exact calculation of the
Hessian because the corrector step may diverge.
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Examples from Chemistry

HCN | CNH ISOMERIZATION

We present this unimolecular reaction29 as a
first test using a real chemical system. In this case,
the distinguished reaction coordinate is the bend-
ing coordinate. It roughly describes the minimum
energy path along a deep valley of the PES. The
arclength of that valley is approximately 3 rad
between the HCN minimum and SP, and 4 rad

Ž .between HNC and SP. A fixed StL in eq. 14 was
examined between 0.1 and 0.9 rad. The number of

Ž .predictor steps P is given in Table I using the
RHFr6-311GUU basis set within the GAMESS-UK
package.8 In all cases, the corrector was not re-
quired, because of the simplicity of the pathway.
The points of the RGF curve lead from the HCN
minimum over the well-known SP to the HNC
minimum or vice versa. The number of steps
needed by RGF is obviously the minimal number
to measure the arclength of the pathway. Using

Ž .the DFP update under the same fixed StLs, we
obtain similar results where a moderate number of
corrector steps is additionally called. If no turning

TABLE I.
RGF Test Along the Bending Coordinate for

aHCN | CNH Isomerization.

Pathway
Pathway to SP from HNC to SPStart in HCN:

Hessian Exact Update Exact Update
b b b bsteplength P P / C P P / C

0.1 rad 33 32 / 1 41 36 / 3
0.2 rad 16 16 / 2 21 18 / 3
0.3 rad 11 11 / 2 14 12 / 3
0.4 rad 8 8 / 1 11 11 / 3
0.5 rad 6 6 / 1 8 7 / 8
0.6 rad 5 5 / y 6 6 / 2
0.7 rad 5 5 / 1 5 5 / 2
0.8 rad 4 5 / 3 5 5 / 2
0.9 rad 4 5 / 2 5 5 / 2

c ˚ ˚( ) ( ) ( ) ( )StP E a.u. r A r A /HCN deg.HC CN

HCN y92.83259 1.14425 1.05198 180.000
SP y92.73475 1.18466 1.16957 74.042
HNC y92.82146 1.16586 2.14615 0.000

aP is the number of predictor points, C those of the cor-
rector.
bIncluding the start point with exact Hessian.
cRHF / 6-311GUU .

or bifurcation point is met, as in this case, the
computational cost of the method decreases with
increasing steplength of the predictor.

The calculation of the pathway between SP and
HNC with the dynamical steplength option of the

˚predictor, beginning with 0.1 A StL, needs 10
predictor points and 1 corrector. By using both of
the options, update q dynamical step length, we
can calculate the pathway by 17 predictor steps
and 8 correctors.

FULL SIX-DIMENSIONAL PES
OF FORMALDEHYDE

We have mapped out the RGF curves using the
RHFrSTO-3G potential energy surface of H CO.2
The GAMESS-UK program was used.8 There are
five previously specified structures corresponding
to minima: formaldehyde; cis- and trans-hydroxy-
carbene; H q CO as dissociation products20b, 30 ] 32 ;2
and the COH isomer.11 They are in agreement2
with chemical intuition. However, our calculations
on H CO aim at a first analysis of the power of the2
search algorithm. The RHFrSTO-3G level of the-
ory was chosen for comparison with ref. 11 and
cannot chemically describe certain dissociation
processes.

We start at the global minimum, M , of H CO1 2
as well as at the other minima with a systematic
search along all mass-weighted curvilinear internal
coordinates of the six-dimensional PES with a pos-
itive or negative initial steplength. For computa-
tional control, the directions which do not belong
to the totally symmetric representation of the point
group are also followed in both initial directions.
Several different schemes of Z matrices are used,
which are listed in Table II; see also Figure 8 for
the definition of the coordinates. We define a total
of 12 RGF curves that are followed from each
stationary point. If a new stationary point is de-

TABLE II.
Different Z Matrices Used in H CO Calculation.a2

No. r r r a a u1 2 3 1 2

1 r r r /H CO /H CO /H COHCO CH CH 1 2 2 11 2

2 r r r /H OC /H OC /H OCHCO OH OH 1 2 2 11 2

3 r r r /H CO /H OC /H OCHCO CH OH 1 2 2 11 2

4 r r r /OH C /H H C /H H COH O H C H H 1 2 1 2 11 1 1 2

5 r r r /H H C /OH H /OH H CH C H H H O 2 1 1 2 1 21 1 2 1

6 r r r /H CH /OCH /OCH HCH CH CO 2 1 2 2 11 2

7 r r r /H OH /COH /COH HOH OH OC 2 1 2 2 11 2

aCompare with Figure 8.
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FIGURE 8. Illustration of a Z matrix defining the internal
coordinates in the calculations of H CO.2

tected, it is recalculated by a Newton]Raphson fit
with a smaller tolerance, and it is used as a new
starting point. This systematic search locates a
total of 7 minima, 13 SPs of index 1, 20 SPs of
index 2, and 9 SPs of index 3. The results are given
in Table III. The stationary points are differentiated
by their index, and are numbered by a subscript i
in order of the energy: we use M for minima, Fi i
for first index saddle points, S for the secondi
index, and T for the third index saddles. Higheri
index saddles are not detected. We located all of
the stationary points found by Bondensgard and˚

Jensen.11 Those detected in addition to these are
marked by an asterisk. About 14 of the stationary
points are loosely bound complexes of the van der
Waals type. About seven of the new structures are
more strongly bonded. New stationary points are
recalculated at the MP2r6-31qGUU level to check
for chemical relevance. Some of them are put to
the proof, as will be discussed in what follows.
Figure 9 gives an overview of some stationary
points and the way to reach them by RGF. The
coordinate used for the successful RGF search is
also indicated.

The information contained in the rich pattern of
StP on the PES of formaldehyde can now be sur-
veyed. The transition structures corresponding to

Ž .formaldehyde dissociation into H q CO M and2 2
Ž .the trans-hydroxycarbene case M have been well3

studied previously.20b, 30 ] 32 The nonsymmetric
saddle F , to dissociation into H q CO, is reached4 2
starting in M with direction aq, and the dissocia-1 1
tion from F to M is obtained with an increasing4 2

Ž .r . The formaldehyde M isomerization to trans-1 1
Ž .hydroxycarbene M takes place via the nonsym-3

metric saddle F . The usual minimum energy path2
of this isomerization takes place via unequal

TABLE III.
( ) (Stationary Points StP of the PES of Formaldehyde Using the RHF ///// STO-3G Level New Structures Marked

)with Asterisk .

Energy r r r a a u1 2 3 1 2
a b ˚ ˚ ˚( ) ( ) ( ) ( ) ( ) ( ) ( )StP Z mat. a.u. Symm. A A A deg. deg. deg.

M 1 y112.3544 C 1.21672 1.10139 1.10139 122.738 122.738 180.01 2v
cM } y112.3429 } 1.14547 0.71215 } } } }2

M 3 y112.2784 C 1.33127 1.12941 0.99058 100.825 108.136 180.03 s
M 3 y112.2691 C 1.32641 1.13139 0.99388 106.101 114.211 0.04 s
M 2 y112.0780 C 1.71987 0.98660 0.98660 119.640 119.640 131.4545 s

UM 5 y112.0610 C 2.16510 1.51985 0.99075 140.168 39.797 180.06 s
UM 3 y112.0338 C 2.82299 1.12307 2.14433 57.942 21.009 180.07 2v

F 3 y112.2321 C 1.40187 1.14078 0.99319 103.129 103.502 89.1971 1
F 3 y112.1648 C 1.33300 1.12257 1.30256 107.851 55.950 111.9622 1
F 6 y112.1470 C 1.05340 1.92162 1.30595 152.412 29.248 180.03 s
F 1 y112.1291 C 1.20045 1.11706 1.48908 155.073 106.339 0.04 s
F 1 y112.1021 C 1.27767 1.48378 1.45857 90.902 50.381 0.05 s
F 2 y112.0775 C 1.67836 0.98585 0.98583 126.862 126.862 180.0346 2v

UF 5 y112.0581 C 2.77934 1.50582 0.98850 74.283 40.388 180.07 2v
UF 3 y112.0575 C 2.93626 2.48670 0.98896 18.756 116.857 82.9788 1

F 3 y112.0466 C 1.73316 1.39764 0.99045 38.280 102.573 100.6749 s
UF 2 y111.9727 C 1.35832 1.04344 1.33792 111.854 120.450 70.68510 1

F 2 y111.9323 C 1.34529 1.20744 1.43876 65.309 114.775 0.011 s
UF 3 y111.9081 C 1.20371 1.80221 1.51869 56.567 82.024 180.012 2v
UF 3 y111.8698 C 3.32963 2.40530 1.55819 26.559 70.008 0.013 s

( )Continued
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TABLE III.
( )Continued

Energy r r r a a u1 2 3 1 2
a b ˚ ˚ ˚( ) ( ) ( ) ( ) ( ) ( ) ( )StP Z mat. a.u. Symm. A A A deg. deg. deg.

S 7 y112.1990 C 0.95617 1.92005 1.29571 145.951 35.616 180.01 s
S 3 y112.1497 C 1.29971 1.11537 1.20053 116.882 57.239 179.9952 s
S 6 y112.0722 C 1.16106 1.25123 1.32900 65.156 78.695 242.2543 1
S 1 y112.0702 C 1.31305 1.24781 1.19933 93.668 89.624 60.7414 1

US 3 y112.0574 C 2.95089 2.59530 0.98885 19.187 160.056 0.05 s
US 3 y112.0571 C 3.07838 2.87698 0.98885 18.722 69.046 250.0956 s

S 1 y112.0341 C 1.40844 1.07178 1.24713 165.634 50.691 0.07 s
S 3 y112.0302 C 2.06846 1.11678 1.33352 72.820 31.950 180.08 s
S 3 y112.0219 C 1.53672 1.52786 0.99284 39.264 143.858 180.09 s
S 3 y112.0204 C 1.80830 1.30049 0.99856 38.674 135.520 0.010 s
S 3 y112.0155 C 1.91911 1.26391 0.98630 34.627 79.529 180.011 s

US 3 y111.9710 C 1.38911 2.17343 1.16417 28.679 116.377 66.66312 s
S 3 y111.9676 C 1.86102 1.27492 1.18833 39.213 42.709 180.013 2v

US 3 y111.9569 C 2.79129 1.83811 0.93538 0.0 180.0 180.014 `v
S 2 y111.9549 C 1.25320 0.97751 1.52200 167.549 127.831 180.015 s
S 2 y111.9301 C 1.38218 1.13564 1.37162 69.991 120.612 19.95516 1

US 1 y111.9247 C 1.31861 1.97155 2.08076 26.789 51.174 84.63217 1
US 3 y111.9242 C 1.30354 2.27990 1.02314 49.102 113.909 106.46018 1
US 1 y111.9005 C 1.24442 1.65359 1.65359 61.602 61.602 157.12519 s
US 6 y111.8028 C 1.04821 2.24551 1.29467 179.145 0.314 180.12920 `v

T 3 y112.0122 C 1.77007 1.09488 1.64942 65.438 37.137 180.01 2v
T 3 y112.0067 C 1.62111 1.29211 0.97555 44.034 171.845 0.02 s
T 3 y111.9690 C 1.85668 1.99313 0.94603 28.165 83.960 180.03 2v

UT 3 y111.9498 C 2.46485 1.77115 0.93716 17.837 143.745 180.04 s
T 2 y111.9264 C 1.47993 1.09729 1.28650 78.609 132.810 0.05 s

UT 1 y111.8595 C 1.17135 2.08534 2.08534 59.685 59.685 107.7716 s
TU 1 y111.8584 C 1.29155 1.37052 2.26331 52.204 53.193 77.3127 1

UT 3 y111.8524 C 1.16570 2.60910 1.80592 36.259 121.297 180.08 2v
U dT 4 y111.8144 C 1.00681 2.74973 1.61534 178.6 0.5 179.99 `v

aM: minimum; F: first index SP; S: second index SP; T: third index SP.
bSee Table II.
cH ,CO: dissociated structure, r = r , r = r .2 1 CO 2 HH
dGeometry not fully optimized because the linear geometry angle was an out of range error.

stretching of the CH bonds. We could trace the
path from M to F by RGF starting in the direc-1 2

tion u . But, M as starting point only gives the3

planar second index saddle S , not F . However,2 2

many different RGF curves connect S and F .2 2
ŽNote that the two structures or three when con-

.sidering the optical isomer of F collapse to one2

SP of index 1 at the MP2 level, as also indicated in
ref. 20b.

Ž .Additionally, we found a linear saddle C`v

HCOH, represented by S , and a further COH20 2

structure in S of nonplanar C symmetry. A12 s

structure approaching linearity was also found for
Ž .CH—HO, given as point T SP of index 3 , where9

the fourth eigenvalue is also near zero. The dis-

˚tance between the two H atoms is 1.62 A. The
linear structure could not be calculated exactly
using the GAMESS program.

A dissociation intermediate is the C mini-2 v
Ž .mum CH ??? O M with the C—O distance of2 7

˚2.82 A. At the very simple level of theory used, the
Ž .fragment methylene CH does not come out in2

the proper equilibrium form, which is a f 1358
31 Žbending angle. With the MP2 recalculation, the

M structure disappears, and the dissociation to7
CH q O does not have a van der Waals interme-2

.diate.
If the hydrogens change to the oxygen moiety of

the molecule, we find some structures along the
pathway to H dy??? COHdq that are not described

VOL. 19, NO. 91096



SEARCH FOR SADDLE POINTS

FIGURE 9. The RGF connections between the stationary points of the PES of H CO described by arrows. M are the2 i
minima, F are first index SPs, and S are saddles of second index; ‘‘a’’ means angle a, ‘‘+’’ means increase of thei i
corresponding coordinate, ‘‘y’’ means decrease. The RHF or MP2 calculation does not appropriately describe the
dissociation channel in the upper part of the figure, so we indicate it by H CO ª Hd y ??? HCOd +. There are many more2
RGF curves as shown in the scheme.

appropriately by a single reference RHF or MP2
wave function. We find F , two SPs of index 2,10
S , S , and T , all of C symmetry. There is a17 18 7 1

Ž .planar C ??? H O minimum M with a C—H van2 6
˚der Waals distance of 2.17 A. M is also a mini-6

mum at the MP2 level. Further saddles are calcu-
lated: one of C symmetry at F and one of C2 v 7 1
symmetry at F , a planar one at S , a nonplanar C8 5 s
species at S , a linear one at S , and also one SP of6 14
planar structure T and one of C symmetry at T .4 2 v 8
Finally, we obtain a set of structures leading to the

dy dq Ždecay into H ??? CO ??? H generated by using
.RHF : the SP of C symmetry F , a planar one at2 v 12

S , and again an SP of C symmetry at T with19 s 6
index 3. A SP of planar structure is the decay
product H ??? C ??? O as F .2 13

In the direction of decreasing bond lengths, there
are usually many pathways leading to ‘‘clumped’’
atoms, which often diverge into high energy re-
gions of the PES, or the SCF calculation diverges.

Such structures are of no use from the point of
view of chemistry.

We can draw some general conclusions from the
PES analysis of H CO: The RGF pathway is—by2

Ždefinition—in general different from the IRC in-
. 4trinsic reaction coordinate path, as well as from

Ž . 22the GE gradient extremal path. For example, an
IRC goes down from state F to M . However, we2 3
could not find an adequate RGF curve along this
line using the pure coordinate directions. We found
F by some RGF curves starting in other StPs.2
However, RGF curves frequently give results simi-
lar to those of an IRC, or an ‘‘inverse IRC’’ search
algorithm,33 but with better computational effi-
ciency than the latter. In contrast, the direct search
strategy for an SP of index 1 with GE path follow-
ing is hindered by the emergence of turning
points.1, 11, 18, 19c, 21, 22, 33, 34 Therefore, in general,
there is no GE connecting a minimum with a first
index SP, even if both are connected by means of
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an IRC. GE pathways do not usually return to the
SP search direction after passing a turning point.
For RGF paths, the situation is much better. In
most cases we even reach the next stationary point
after passing a turning point. Handling of RGF
pathways with bifurcation points has not been
studied specifically in this chemical example. If a
BP is crossed, either the algorithm does not react
or it skips along a large Newton step of the correc-
tor. If SCF convergence can be reached, the next
accidentally found RGF curve behind the BP is
followed.

AZIDOTETRAZOLE ISOMERIZATION

The unimolecular rearrangement between azi-
doazomethine and 1H-tetrazole35 has been studied
by RGF using the 4-31G basis set. The stationary
points are reoptimized with SCFr6-31qGU fol-
lowed by a frequency analysis. The geometries of
the stationary points are given in Table IV. Figure
10 shows the structures of the two minima and the
SP in between. The ring opening of the 1H-tetra-
zole may be simulated by increasing the distance
between the atoms N and N . The corresponding5 2
RGF pathway is obtained by 14 predictor points

˚ Ž .with StL s 0.3 A using eq. 14 , and by 7 predictor
˚points with StL s 0.6 A. No corrector step is called!

A similar result is obtained using the DFP update
of the Hessian: we need 12 and 8 predictor points,
respectively, and do not need the corrector.

TABLE IV.
Geometriesb of Azidoazomethine and 1H-Tetrazole,
and Intervening Saddle Point.

Azidoazo-
Ua6-31+G methine Saddle point 1H-tetrazole

( )E a.u. y256.73032 y256.55163 y256.75408
r 1.25105 1.27016 1.33020CN2

r 1.39599 1.38677 1.28925CN3

r 1.25555 1.32967 1.34141N N3 4

r 3.26697 2.03734 1.32606N N2 5

r 1.07852 1.06778 1.06776CH6

r 1.00203 0.99394 0.99409CH7

/N CN 124.149 117.999 108.1783 2
/N N C 112.292 104.583 105.7564 3
/N N C 75.400 95.826 108.0125 2
/H CN 126.025 127.837 125.0236 2
/H N C 111.636 124.231 131.2267 2

ar in angstroms, angles in degrees.
bAll geometries have C symmetry.s

FIGURE 10. Minimum azidoazomethine, the transition
structure, and minimum 1H-tetrazole at the RHF / 6-31 +
GU level.

In a second search for an out-of-plane SP, we
use the out-of-plane distortion coordinate of N5
against the N as search direction. However, this2
approach finally leads back to the same planar SP
given in Table IV. It demonstrates that there is a
wide range of directions leading to the same SP.
Of course, this RGF curve implies the passing
through a turning point similar to the situation
found in Figure 3. The steplength used in this test
is 0.2 rad. Also, the reverse direction, starting at
the SP and returning the out-of-plane search path,
the RGF finds the pathway to tetrazole with StL s

˚0.3 A.
With respect to azidoazomethine, the distance

between the N and N atoms decreases to close5 2
the chain, and gives 1H-tetrazole. This search di-
rection also leads to the given SP. The tested pre-

˚dictor steplengths are 0.3 and 0.6 A. The algorithm
needs 25 and 12 predictor points, respectively, up
to the SP. Hence, 2r0 corrector steps are called,
respectively. Using the DFP update we need 27r14
predictor steps up to the SP, and 1r0 corrector
steps are called. The exact Hessian must be calcu-
lated at the stationary points only.

Discussion

The present investigation shows that a system-
Ž .atic reduced gradient following RGF allows for

location of the stationary points of a PES. How-
ever, the method is not able to predict reliably
which type of stationary point will be found. Usu-
ally, the RGF curves connect stationary points dif-
fering in their index by 1, as in Figure 2; however,
this is only the rule if no BP is crossed. If an RGF
curve bifurcates, the BP is a valley-ridge inflection
point. The identification of a BP by rank deficit of
the RGF matrix is straightforward in the case of
symmetry of the PES, that is, if the distinguished
coordinate follows the symmetry of the PES. Be-
cause the RGF method does not use the strategy of
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most of the other methods, namely to follow the
minimum energy path, it forms a serious alter-
nate method for the SP search. GE calculations
still need derivatives of the Hessian. Hence, our
results—for instance, on H CO—are obtained with2
much less computational effort for the curve search.
Because the H CO rearrangements represents a2
six-dimensional problem, any global view on the
PES is lost, and it seems impossible to be fully
sure that the transition structures located are the
only StPs. Although it is not practical to compute
and fit a global PES for any but the smallest
systems, it seems more possible to calculate a large
number of one-dimensional RGF curves providing
a dense network of curves that crosses the station-
ary points of the PES.

The similarity of the proposed algorithm with
Žthe old coordinate driving procedure the distin-

. 9, 10guished coordinate method is evident. Here,
one coordinate is fixed, and all others are opti-
mized with respect to the energy—similar to our

Ž .corrector step. We recall that eqs. 12 were already
formulated by Williams and Maggiora,10 but this
explicit formula was not used in the sense of the

Ž .tangent eq. 13 . This is the reason why the distin-
guished coordinate method was not able to handle
turning point problems.10, 36 Muller 29a provided an¨
illustration of his model surface14 corresponding to
that used in Figure 3 of this study. The pioneers of
the distinguished coordinate method could not
know that the discontinuities often observed in
their pathways were connected with TP of the RGF
curve. Let us take the two-dimensional case shown
in Figure 3: The accentuated TP is the point of the
RGF curve E s 0 with the highest energy be-y
tween the left minimum and the left SP. If we stop
the minimization by the distinguished coordinate
method at the TP, change the minimization of the
energy into a maximization, and reverse the search
direction, then we can reach the next SP. However,
the path now runs downward near a ridge of the
PES. This sequence of steps is, in general, executed
by the RGF with the simple tangent predictor of

Ž .eq. 13 . It also illustrates the restricted possibilities
of true reaction path following using the conven-
tional distinguished coordinate method. By omit-
ting the restriction to follow a RP we are able to
find SPs on the side wall of the main valley. This
case represents the general structural pattern on
complex PES, cf. the left SP in Figure 3.

In summary, the predictor step of our method
uses the tangent direction to the RGF curve,23

rather than a step along the distinguished coordi-
nate itself. The proposed method has less to correct

than the distinguished coordinate method. Thus,
RGF avoid the ‘‘very rapid change of the opti-
mized variable,’’ which was one of the drawbacks
of the old ansatz.37 RGF is not generally a method
of following a reaction path; in fact, it even gains
its power from the partial renunciation of this aim.
But, the selection of one coordinate to follow the
main stream of the reaction at the beginning of the
search demands chemists intuition to reach a SP.
This ensures favorable handling of the method.
The mathematical line of reasoning, however, is
based on the geometrical concept of RGF curves

Ž .connecting in an abstract way the different sta-
tionary points, as well as valley-ridge inflection
points. We have displayed a number of reduced
gradient paths using two-dimensional test surfaces
to show the properties of such curves. Finally, the
stationary points of the H CO potential energy2
surface were determined with the RHF method
using the STO-3G basis for comparison with previ-
ous results.11 Another example demonstrating the
efficiency of the method for a high-dimensional
chemical system is the RHFr4-31G computation of
the SP of the isomerization path from azidoazome-
thine to 1H-tetrazole.35
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