Improved RGF Method to Find Saddle Points
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Abstract: The predictor-corrector method for following a reduced gradient (RGF) to determine saddle points [Quapp,
W. et al., J] Comput Chem 1998, 19, 1087] is further accelerated by a modification allowing an implied corrector step
per predictor but almost without additional costs. The stability and robustness of the RGF method are improved, and the
new version in addition reduces the number of gradient and Hessian calculations.
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Introduction

In 1998, the old distinguished coordinate method' was reactivated
by the so-called “reduced gradient following” (RGF)*** using
another mathematical point of view. Equivalent curves are ob-
tained also by the continuous Newton method (the Branin trajec-
tories).*>® The RGF has been proved to be an effective tool in
determining saddle points (SP)’~'* on a potential energy surface
(PES). Branin’s method is additionally well adapted to exactly
calculate symmetric valley-ridge-inflection (VRI) points that are
bifurcation points of RGF curves.*'>'* As a rule, VRI points
indicate the branching of reaction paths.

The idea of RGF is to define (as simply as possible) a curve that
connects the minimum with the corresponding SP of interest, or
with the VRI point, respectively, and to numerically follow this
curve by predictor and corrector steps.'” Starting at a minimum,
every SP connected with the region of attraction of that minimum
will be found. Kliesch'® uses a similar concept, but does not
consider the most adequate and simple definition of the curve to
follow, compare eq. (1) in ref. 16. A modification of RGF to follow
not only an arbitrary defined curve, but really the valley floor line,
was termed the “tangent search concept” (TASC).'”~'° TASC
allows the calculation of the gradient extremal (GE) along the
valley floor by second order methods only working in a very strict
analogy to the RGF method. (A GE is defined by Hg = Ag with the
Hessian matrix, H, with the gradient, g, and A is the eigenvalue of
the Hessian.) For TASC the improvements shown here are valid as
well.

The basic strategy of any path following is the continuation of
a curvilinear curve by a predictor step along the tangent, and the
subsequent correction of the error of that linear step by a corrector
step (by a Newton-Raphson-like method). The corrector step is
orthogonal to the tangent and brings the predicted point back to the
solution curve.'®> Here we propose the linear combination of the

predictor and the corrector step at the current point in one step,®
forming a new kind of predictor step.

Our methods are programmed in FORTRAN as independent
modular codes. The programs can be obtained on request or
downloaded  (http://www.mathematik.uni-leipzig.de/MI/quapp).
Any comments are welcome.

Algorithm

E(x) is the function of the PES, g(x) is its gradient vector in the
configuration space, and R" is defined by the coordinates x of the
molecule. As usual, n = 3N — 6 forms the number of independent
internal coordinates, the dimension of the problem. x and g are
vectors of this dimension n. RGF finds a curve where the selected
gradient direction is fixed at every curve point, X = X(#):

g(x(0)/|lgx@)| =r (1)

where ¢ is the curve parameter, and r is the unit vector of the fixed
search direction.®> The search direction usually corresponds with
the start direction of a chemical reaction, or it may point into the
direction of the SP, or it may be a coarse estimation of those
directions. We recall that RGF curves generally are not minimum
energy pathways.>® The RGF curve eq. (1) may be near a valley
floor line or not. Nevertheless, these curves may follow a reaction
path in favorable cases, at least qualitatively. The possibility of the
calculation of the minimum energy path then depends on a clever
definition of the search direction.?!
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To realize the requirement eq. (1), the RGF algorithm? uses a
projection of the gradient of the PES to fulfill the equations:

P.g(x(1) =0 @

where the projector P,. is formed by (n — 1) rows of unit vectors
being orthogonal to the direction r: it holds P,r = 0. Then P.g
generally gives that part of g that is orthogonal to r. If that part is
zero then the reduced gradient eq. (2) is the (n — 1)-zero vector.
The projector, P, is a constant matrix of dimension (n — 1) X n,
thus of rank (n — 1): that one which enforces the gradient to point
at every curve point, X(¢), into the same direction r; or, in math-
ematical terms, g(x) is an element of the linear span of r. The
tangent to curve eq. (2), x'(¢), is obtained by a solution of the
following system of equations:

d d
¢ o) =P, " _p o =0 ©

where H is the Hessian of the PES. The simplicity of the RGF
method is based on the constance of the P, matrix. The predictor
step is done along the tangent t = x’(#)/||x'(¢)|, and, orthogonal to
this direction, Newton-Raphson-like steps of the corrector for a
point near to curve eq. (2) are calculated. Using TASC, only the
projector matrix is changed into P, after the predictor steps.'”~"°
Note that in refs. 8 and 10 other predictor strategies are proposed,
while in ref. 13 two alternate corrector schemes are applied.

The corrector method by Newton-Raphson-like steps'® starts
with the (n — 1) X n matrix equation, for ¢ (see the dashed step
X, — X5 in Fig. 1):

PrH(XZ)c = _Prg(XZ) (4)

However, to make the solution unique, the system is augmented to
a full n X n system by adding an equation with the scalar product

t(xz)T =0 (5)

enforcing that the corrector step is orthogonal to the tangent of an
RGF curve at x,. Diener and Schaback proposed® avoiding the
conventional predictor step, pt with step length p, and instead
determining a combined step T starting with t at x, by solving eq.
(5) not orthogonal to t but skewed with the scalar product:

t(x)'r=p Q]

where p is the step length of the former predictor step. This results
in a new Newton-Raphson-like step by solution of the augmented
linear system of equations:

PrH(X])T = _Prg(xl)
t(x)'r=p N
(see the steps depicted by full polygonal lines in Fig. 1). The step

vector Tis a combined predictor-corrector step with the component
step length p in the direction of t, which should give a point x,, near
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Figure 1. Model potential surface®® of eq. (10) with the boldfaced
RGF curve E, = 0. Dashed lines show the former RGF version of
predictor (pt) and corrector steps (¢) from point X, to X, and to x5 and
so on. The polygonal approximation given by solid lines is the im-
proved RGF method with implied corrector proposed here.

X5, being consequently near the searched curve (RGF or TASC)
fulfilling also

IP.g(x,)| <e ®)

with the threshold e. In general, only if eq. (8) is unsatisfied do we
need to take further corrector steps as defined by egs. (4) and (5);
but generally, the use of steps T avoids these separate corrector
steps c¢. It holds especially for a large scaling of e. The former
proposal in the original RGF was to set € =~ (0.01 70 0.1) X p.
Now, & may be as large as p or larger. For the original RGF, the
inclusion of the corrector via € of eq. (8) is not avoided because the
predictor alone goes wrong, if it is not corrected from time to time.

The proposed use of an implied corrector step in every predic-
tor is a kind of automatic improvement of the predictor direction.
If this direction is defined by a fixed search direction for the
gradient as in the RGF method, the method works well. In the case
of the TASC the search direction itself is changed along the course
of the calculation.'” The search direction for TASC is the tangent
t of the momentary RGF curve. The two processes (the calculation
of T with eq. (7) and the change of search direction in TASC) can
add and may lead to an overshooting of the resulting predictor step.
We found an easy and global solution to suppress this effect: we do
not use the full corrector part of step 7 of eq. (7) but only a certain
ratio of corrector to predictor. Most experiments show that ratio
1/2 is a good setting. In the case of the very notorious example of
the Rosenbrock surface, see below, we used the ratio 1/3:

1
TASC_p_step = 3 @2pt+1) (©))
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A scheme is given in the appendix showing the algorithms for
RGF and TASC.

Possibility of Hessian Update

Beginning with the first version of RGF,? the Davidon-Fletcher-
Powell (DFP) update of the Hessian matrix was included. The
update also works in the case when the index of the Hessian at the
minimum changes into the SP index.??* Of course, this is the
condition for an update to serve for a search of pathways from
minimum to SP. In the new version of RGF/TASC we include the
possibility of using Bofill’s update,?® which is well accepted in this
field of computations.

Examples

Test Surface 1

The first example is the 2D polynomial PES of Lami and Villani**
describing the ion O,Hx :

E(x,y) = vx + gx* + rx* + sx* + (a + bx + cx?)y?

+ (d + ex + )y (10)

with the constants v = 0.0066, ¢ = 0.0661, r = —0.052, s =
0.0345, a = 0.0096, b = —0.1899, ¢ = 0.0825,d = 0.1213,
e = —0.0366, and f = —0.0237. This simple test PES gives the
possibility of an accurate, in-depth analysis of the proposed
method. Figure 1 shows the region around the minimum (—0.047,
0.0) and the action of the RGF method. The start x,, is near the
minimum at the RGF curve £, = 0. RGF makes a first step along
the fixed search direction (0, 1). The dashed curve is the original
RGF with predictor step length p = 0.15 and with the maximal
aberration in eq. (8) of less than ¢ = 0.008. At x,, the e-condition
is still fulfilled and the method makes a further predictor step.
However, at x,, the e-criterion is not fulfilled, and RGF makes the
corrector step leading to x5. The new RGF with implied corrector
(depicted by full polygonal lines) starts at x,, with the same step,
because this point belongs to the RGF curve. At x,, the hypothet-
ical corrector step from x, to the RGF curve E, = 0 (the gradient
component £, is the search direction) is added to the predictor step
pt = (X, — X,) to give the new predictor T = (x, — X,). The new
RGF smoothly attends the true RGF curve: the series of the new
RGF points goes very near the true RGF curve E, = 0 up to the
SP (1.361, 1.318), but also the original RGF does not need a
further corrector step, in this case of a quite straight valley up to
the SP.

If the predictor-corrector threshold is extended, for example
nearly doubled to & = 0.015 using further p = 0.15, then the
former original RGF needs again one corrector step, but the new
RGF strategy does not need a separate corrector step.

Figure 2 shows the analogous work of the original, first version
of the TASC method as well as the TASC method with the implied
corrector. The parameters are somewhat larger than in Figure 1:
p = 0.2, ¢ = 0.02. Note that TASC automatically follows the

Figure 2. Model potential surface® of eq. (10) where the boldfaced
curves are the gradient extremals. The original (dashed) TASC version
of the usual predictor + corrector strategy is shown to approximate the
valley floor gradient extremal, and the new TASC version (solid lines)
of combined predictor and corrector steps 7 [eqs. (7) and (9)] is shown
to solve the same task.

valley floor line, the GE, already in its original definition.'” This is
due to the artifice to change the projector matrix into P, along the
pathway, step by step. Also, if the valley floor is strongly curvi-
linear, steps T are successful, as well as in the RGF case (see the
steps pt or 7 from point x,, correspondingly). In Figure 2, TASC
ends at the SP on top of the valley floor line by a full-dimensional
Newton-Raphsen step. Here, the internal step length search of
TASC' does not enforce a shortening of the maximal step length
because the valley floor line near the SP is quite straight.

If the corrector threshold is reduced, for example to ¢ = 0.01,
using further p = 0.2, then the original TASC needs two more
corrector steps to reach the SP, but also the new TASC strategy
needs two corrector steps.

The PES of HCP

Points of the PES of HCP are calculated by the restricted Hartree-
Fock method with the 6-31G* basis set using the GAMESS_UK
program.?* The starting point is the global minimum at the linear
HCP geometry, and the search direction of RGF is the pure
bending direction of the H atom. The pathway along this valley is
not very ambitious. The test calculations for the comparison of the
two different RGF versions are done with five different predictor
step lengths, p, and also five different thresholds, &, for the
predictor/corrector decision. The results are given in Table 1. For
higher values of p or &, the original RGF method often runs into
a problem: RGF stops before the SP, anywhere near the valley
pathway. We use for the stopping criterion the smallness of a
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Table 1. RGF Tests for the Saddle Point Search
(for the CPH Linear Structure) on the PES of HCP.

p = 0.08" RGF w.i.C.° Old RGF
Threshold P C P C
0.008 122 0 122 5
0.016 122 0 122 3
0.024 122 0 122 2
0.032 122 0 122 2
0.040 122 0 122 3
p = 0.16 RGF w.i.C. Old RGF
Threshold P C P C
0.008 61 0 61 5
0.016 61 0 61 2
0.024 61 0 61 2
0.032 61 0 61 1
0.040 61 0 61 1
p = 0.24 RGF w.i.C. Old RGF
Threshold P C P C
0.008 41 0 41 4
0.016 41 0 41 2
0.024 41 0 — —
0.032 41 0 41 2
0.040 41 0 41 3
p =032 RGF w.i.C.° Old RGF
Threshold P C P C
0.008 31 1 31 5
0.016 31 0 — —°
0.024 31 0 31 1
0.032 31 0 31 0
0.040 31 0 31 0
p = 0.40 RGF w.i.C. Old RGF
Threshold P C P C
0.008 25 2 25 7
0.016 25 0 — —°
0.024 25 0 — —
0.032 25 0 — —
0.040 25 0 — —°

p: predictor step length, P: # predictor steps, C: # corrector steps.
"RGF w.i.C.: with implied Corrector.
°RGF stops anywhere on the valley pathway before the SP.

Newton step to the next stationary point, in comparison to the
predictor step length (here 0.6 X p), to avoid the fact that the
method jumps over the stationary point. The steps of the original

RGF not so near its “true” RGF curve seem to include a more
accidental calculation of a corresponding Newton step to a hypo-
thetical next stationary point. A reason for that behavior may be
the flatness of some regions of the pathway to the SP of the PES
of HCP.

The test shows the expected result that the new version with the
implied corrector step gives the better results, throughout, in every
case of the predictor step length.

PES of H,CO

Points of the PES of H,CO are calculated by the method RHF/
STO-3G using the GAMESS_UK program.>* The starting point is
again the global minimum M1 (see ref. 2 Table 3), and the search
direction is the symmetric diminution of the two symmetric angles
of the H atoms. This direction leads into a region where the PES
is geometrically difficult. The test calculations of RGF are done
with five different predictor step lengths, p, and also five different
thresholds, &, for the predictor/corrector decision. The results are
given in Table 2. The pathway we searched for is an RGF curve to
the saddle point T1 of index 3. The pathway was found to be quite
unstable in our previous tests of the first version of RGF. The curve
has to cross two bifurcation points as well as one turning point, and
along the way the modifications of the coordinates rcg and reyy, =
rcp, often change their direction. Figure 3 shows the calculated
pathway in a 3D system of symmetry coordinates. The curvatures
orthogonal to the pathway also change greatly. The RGF with
implied corrector finds the pathway in all tested cases, and the
method also correctly reports the crossing of the two bifurcation
points as well as the turning point. Table 2 shows again that a
sufficiently large threshold, €, enables us to totally avoid separate
corrector steps. The original RGF only finds the point T1 in
accidental cases, but in these cases the bifurcation points are
ordinarily reported.

To compare the VRI points of Figure 3 with the those of
Figures 5 and 6 of ref. 14 we have a = 180° — 23, and r, in au
corresponds to R in A, where r, in au corresponds to r5in A. The
fixed planes of Figures 5 and 6 of ref. 14 are between r; = 2.30
au and r; = 2.76 au. The calculated RGF path of Figure 3
traverses this region. The first bullet of a VRI point of Figure 3 is
lying at a plane analogous to the plane in Figure 5 of ref. 14, but
the r, level, 2.315, is about that of Figure 5. This VRI point is at
R = 1.11 A and B = 52.5°, obviously at a VRI,-manifold there.
The second VRI point bullet of Figure 3 is at the plane r; = 2.315
au, thus at a plane nearer to Figure 6 of ref. 14. The VRI point is
at R = 1.09 A and B = 48.0° at the corresponding VRI,-manifold
there. Note that the quantum mechanical levels are different in this
article and in ref. 14.

Isomerization of Butane, C H,,

Points of the PES of C,H,, are calculated by the method RHF/6-
31G* using the GAMESS_UK program.?* The starting point is the
global minimum m, (see ref. 16 Fig. 2), and the search direction
is the turning of one half of the molecule around the central bond.
The test calculation of RGF is done with our predictor step lengths
for medium molecules, p = 0.5 au, chosen intuitively and proven
by experience,2 and the usual RGF threshold, € = 0.005, for the
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predictor/corrector decision. RGF results in the isomerization path-
way to the saddle point s, and explores the pathway by 15 steps
(14 predictor steps and one corrector), as well as exploring the
downward pathway to the second minimum m, by 12 steps. (In
comparison to ref. 16 where between 60 and 100 steps are needed
to go uphill, or 111 steps to go back downhill to m, and 51 steps
Threshold p C P C down to m,.) The difference in energy between the m; and the
saddle point s, is 0.005 8 H, and the difference in energy between

Table 2. RGF Tests for the Saddle Point Search®
(for the Point T1) on the PES of H,CO.

p = 0.08° RGF w.i.C* Old RGF

0.015 66 0 _ _ the staggered antiminimum m, and the gauche m, is 0.001 5 H or
0.030 66 0 — — 0.94 kcal/mol.
0.045 66 0 — —
0.060 66 0 — — : ; :
Ring Opening of Sym-Tetrazine
0.075 66 0 — — & op g of Sy
Points of the PES of H,C,N, are calculated by the 3-21G basis
p =016 RGE wiC. Old RGF using the GAMESS_UK program.>* The starting point is the
e _ _ global minimum (cf. ref. 25 Scheme 10 for a more adapted initial
Threshold P C P C point), and the natural search direction is the stretching of three
“opposite” bonds of the ring. If the internal coordinates start with
0.015 33 0 — — the ring distances, the search vector is r = 1/V3{1,0,1,0, 1,0
0.030 33 0 33 5 and 12 X 0}. The test calculation of RGF is done with the
0.045 33 0 - - predictor step lengths? for medium molecules, p = 0.5 au, and the
gggg ;g 8 - o threshold, ¢ = 0.01, for the predictor/corrector decision. RGF
' o o results in the pathway to the saddle point of the concerted unimo-
) lecular triple dissociation and explores the pathway by 11 steps (10
p =024 RGF w.iC. Old RGF predictors and one corrector). (The comparison with ref. 25 shows
Threshold P C P C
0.015 23 4 — —
0.030 23 0 — —
0.045 23 0 — —
0.060 23 0 — —
0.075 23 0 — —
p = 0.32 RGF w.i.C. Old RGF
Threshold P C P C
0.015 17 5 17 6
0.030 17 0 — —
0.045 17 0 — —
0.060 17 0 — —
0.075 17 0 — —
p = 0.40 RGF w.i.C. Old RGF
Threshold P C P C
0.015 14 4 14 7 ‘;
0.030 14 1 — — |
0.045 14 0 — — |
0.060 14 0 — — {
0.075 14 0 — —

Figure 3. RGF curve of the symmetric lowering of the two H angles
of H,CO. Coordinates are given in atomic units. The pathway leads
from the global minimum M1 to the SP of index 3 T1 and passes two
valley-ridge inflection points depicted by bullets. The ab initio method
is RHF with basis STO-3G. The coordinates are the symmetry coor-
dinates: distances r| = rcg and r, = rey, = rey, and the angle o =
X H1CO = % H2CO. Three projections of the pathway into sectional
planes are also shown.

Ml reo = 1224, rey, = rem, = 1.10 A, apen, = aocn, = 122.7°, and
0 = 180°% Tl: reg = 177 A, rey, = ren, = 1.09 A, agen, = @ocn, =
65.6°, and 6 = 180°.

®p: predictor step length. P: # predictor steps, C: # corrector steps.
‘RGF w.i.C.: with implied Corrector.
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Figure 4. Rosenbrock surface®’ of eq. (11) where the boldfaced
curves are the gradient extremals. The original TASC version (dashed
lines) of the usual predictor + corrector strategy is shown to approx-
imate the valley floor gradient extremal, as well as the improved TASC
version (solid lines) of the implied 1/3-corrector step 7 [see text, egs.
(7) and (9)]. The valley uphill is perfectly traced.

14 steps that are needed to find the SP, or compare ref. 26 which
uses 30 steps.)

Test Surface 2

The second example is the 2D polynomial surface of the Rosen-
brock function®’ (see Fig. 4):

E(x,y) =100(y —x)*+ (x — 1)? (11)

The level lines are drawn at {0.25, 0.5, 0.75, 1, 2, 3, 4, 5, 10, 20,
30, 40, 50, 60, 70, 80, 90, 100, 200, 300}. The solution of E, =
0 (RGF curve) would be a good minimum path trajectory that
follows the parabola y = x> around the “corner” at the y-axis.
However, the parabola is not exactly the minimum pathway. The
GE to the smallest eigenvalue follows the streambed of the surface
very well, and TASC follows the GE. (The GEs are drawn in
boldface.) The global minimum is E(1, 1) = 0, and the highest
equilevel line in Figure 4 is level 300, but the value of E at point
(—1, 1) near the minimum pathway is only 4. The polygonal
pathways of the two different TASC methods are shown. Both of
them successfully progress along the shallow valley uphill, by-
passing the corner. The original TASC method is depicted by a
dashed line, where the new one with implied corrector eq. (9) is
shown with a solid line. Using the fixed predictor step length p =
0.25 and the very large threshold 12.5, both methods need 13
predictor steps, where the correctors need five steps for the original
method, and two steps for the new one.

Test Surface 2 with n = 4

This example is the Rosenbrock function for dimension, n = 4.
We test TASC with the higher dimensional, extended Rosenbrock
function in a version where all dimensions are coupled:

n—1

E(x) = 2, (100(x;.,

i=1

— )+ (= 1)) 12)

As in the 2D case, the minimum is the point x,, = (1, 1, 1, 1).
An approximation of the minimum pathway is the “super-parab-

2,

ola™:

x=r"" i=1,...,4, t€[-1,1]

with parameter 7. However, the “true” minimum energy path is
again the GE. It leads from the global minimum with start direction
(—0.12, —0.23, —0.44, —0.86) to the saddle point at xg, =
(—0.656, 0.443, 0.204, 0.042) along the eigenvector to the
smallest eigenvalue. Table 3 gives the results of tests using the
original and the new TASC method starting at the global mini-
mum. We used two versions of the predictor step length: p = 0.1,
and p = 0.25, and the predictor/corrector threshold, &, varies over
five powers of ten, from 0.0005 to 100. Using the small values, we
can be sure to explore the GE very exactly. For higher values we
follow the valley more or less along the outer side of the arc, going
across the cirque. Because the Rosenbrock function has such a
deep valley, it seems to nearly be independent of the chosen
threshold to follow the valley successfully: the new TASC with the
implied corrector (9) in every case finds the SP. If the method is
not enforced to calculate the valley ground exactly, then TASC can
go uphill to the SP without any explicit corrector step. The former
TASC method works well for the threshold up to € = 10.0 in the
small step length case (p = 0.1), and to € = 0.05 in the larger step
length case (p = 0.25). However, it needs a higher number of
separate corrector steps, as expected. Behind the given values of &,
the method also follows uphill the deep Rosenbrock valley; how-
ever, the very shallow SP is failed and passed by without notice.
The reason is again the stopping criterion: we use as the stopping
criterion the smallness of a Newton step to the next stationary
point, in comparison to the predictor step length. However, this
notorious function is so flat along the valley ground that the
stopping criterion has to be chosen two orders smaller than the
predictor step length. (It is crit_stop = 0.025. Usually, we recom-
mend that crit_stop should be larger than 0.5 X p.) The larger
deviation of a predictor step of the original TASC from the “true”
GE curve leads to the bypassing of the SP. For the largest tested
& = 100 in the step length case p = 0.25, the original TASC
method finally goes totally wrong.

For the case of the 4D Rosenbrock function we give results of
tests of Bofills update®® in Table 3. It seems that the updated
Hessian also gives pretty good information for this notoriously
complicated function.
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Table 3. TASC Tests for Saddle Point Search® on the 4D Rosenbrock Model Surface.?”

893

p = 0.1 T wiC® T wiC + U° Old TASC OdT+ U
Threshold P C P C P C P C
0.0005 32 39 30 105 30 59 27 104
0.005 32 31 30 83 30 45 28 83
0.05 32 24 29 62 30 31 27 64
0.5 32 6 30 33 31 30 29 40
1.0 32 1 26 22 31 24 27 33
5.0 32 0 33 17 31 7 32 23
10.0 32 0 — — 33 4 — —
50.0 32 0 — — (34 0)¢ — —
p = 025 T wiC TwiC +U Old TASC OdT+ U
Threshold P C P C P C P C
0.0005 14 22 11 57 13 31 9 66
0.005 14 19 11 50 13 27 — —
0.05 14 14 14 43 13 23 — —
0.5 14 10 16 48 (14 16)¢ — —
1.0 14 7 16 39 (14 13)¢ 10 35
5.0 14 1 — — (14 1) — —
10.0 14 0 — — (14 7)¢ — —
50.0 14 0 — — (15 2)¢ — —
100.0 14 0 — — TASC fails — —
“Minimum at {1, 1, 1, 1}, saddle point at { —0.66, 0.44, 0.20, 0.04}. p: predictor step length, P: # predictor steps, C:
# corrector steps.
T wiC: with 1/3 implied corrector, see text.
©+U: the Hessian is updated by Bofills update.?
9TASC follows the valley pathway up to the SP but fails to locate the SP.
Discussion Appendix: Scheme of the Algorithms

RGF**/TASC'” methods are effective tools to locate SPs of a PES,
and additionally, TASC detects the valley floor line of a chemical
reaction. The original RGF/TASC methods follow a curvilinear lead-
ing line by tangential steps, but those steps deviate more or less from
their leading curve and corrector steps have to be done to satisfy the
threshold (8). Of course, the ratio of predictor and corrector steps
depends on the curvilinearity of the leading line and on the parameters
of the method: the predictor step length, p, and the corrector/predictor
threshold, e. The predictor strategy proposed here follows the leading
curve more smoothly and often reduces the total number of steps
required. In favorable cases it is possible to explore the pathway from
minimum to SP without any additional corrector step! This allows us
to choose a large threshold, &, for the corrector step decision, and, in

RGF—Reduced Gradient Following

1. Initialization, preparation, and execution of first step along
given direction.
Calculate constant projector P, and set k: = 0.

2. Set k: = k + 1.
Transform internal to Cartesian coordinates.
Calculate gradient and Hessian matrix or update of the Hessian.
Mass weighting.
Calculate metric tensor g and coordinate transformation B.
Transform gradient and Hessian into internal coordinates: g,

.. s . and H,.
addition, 1e.a ds to fmore stability when following the path. It C.OStS Calculate unit vector of the new tangent by decomposition of
nearly nothing to additionally solve the system (7) at every predictor PHL = 0
it T .

step, in comparison to a new calculation of gradient and Hessian of
the PES for a separate corrector step, c.

3. Test of tolerance.
If [P.g,| < & go to step 4 to predictor.
Or else do corrector step ¢ orthogonally to tangent

Acknowledgments P.Hic = —Pg
tic=0
We are very grateful to Prof. D. Heidrich for critically reading the
manuscript and also to the referees for suggestions. Execution: x,,, =: X, + ¢ and go to step 5.



894 Hirsch and Quapp « Vol. 23, No. 9 « Journal of Computational Chemistry

4. Predictor step.

Original RGF RGF with implied corrector
Solve with t,:  PH,7, = —P,g,
i =p
Execution: Execution:
Xeo = Xt pl X = Xt

5. Store actual values.
Repeat steps 2 to 4 until STOP criterion is satisfied: Newton-
Raphson step < 0.6 p.

TASC—TAngent Search Concept

1. Initialization, k: = 0, preparation, and execution of first step
along given direction by start projector P, with t, =: r or
lowest eigenvector.

2. Setk =:k + 1.

Transform internal to Cartesian coordinates.
Calculate energy, gradient, and Hessian matrix or update of the
Hessian.
Mass weighting.
Calculate metric tensor g and coordinate transformation B.
Transform gradient and Hessian into internal coordinates: g,
and H,.
Vibrational analysis.
Calculate unit vector of the new tangent by decomposition of
PH,t = 0.
3. Test of tolerance.
If [P.g,| < & go to step 4 to predictor.
Or else do corrector step ¢ orthogonally to tangent
P.Hic = —P.g
tic =0

Execution: x,, ,
4. Predictor step.

=:x, + ¢ and go to step 5.

Original TASC ~ TASC with implied corrector
Solve with t;: P.H,7, = —P.g,
tin=p
Execution: Execution:
1
Xep1 = X T pte x = 0x, + g(’Tk + 2pt,)

Set r =: t, and calculate next projector P, = P,,.
5. Store actual values.

Repeat steps 2 to 4 until STOP criterion is satisfied: Newton-
Raphson step < 0.6 p.
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