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Reaction pathways and convexity of the potential energy
surface: application of Newton trajectories
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The reaction path is an important concept of theoretical chemistry. We employ the
definitions of the intrinsic reaction coordinate (IRC), the gradient extremal (GE), and
the Newton trajectory (NT). The usual imagination in chemistry is that a minimum
energy path is in a convex region of the potential energy surface. We describe different
schemes of convexity to handle the situation. It comes out that NTs are the best an-
satz for the problem: NTs, which monotonically increase (or monotonically decrease),
are automatically strictly pseudo-convex throughout, and they go throughout along a
valley between minimum and saddle point.
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1. Introduction

The concept of the minimum energy path (MEP) or reaction path (RP) of
an adiabatic potential energy surface (PES) is the usual approach to the theo-
retical kinetics of larger chemical systems [1,2]. It is roughly defined as a line in
coordinate space, which connects two minima by passing the saddle point (SP),
the transition structure of a PES. The energy of the SP is assumed to be the
highest value tracing along the RP. It is the minimal energy a reaction needs to
take place.

Reaction theories are based either implicitly (transition state theory), or
explicitly (variational transition state theory) on the knowledge of the RP [2].
These theories require local information about the PES along the RP only. They
circumvent the dimension problem for medium-sized or large molecules: it is
impossible to fully calculate their PES.
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The starting point is a geometrically defined pathway which may serve as
an RP. Geometrically defined means that only properties of the PES are taken
into account, and that no dynamic behavior of the molecule is taken into con-
sideration. Any parameterization s of the RP x(s) = (x1(s), . . . , xn(s))T is called
reaction coordinate. How an RP ascends to the SP is an uncertainty of the RP
definition. We use here the IRC [3] and the distinguished or driven coordinate
method [4,5] in the modern form of RGF [6,7], also called Newton trajectory
(NT). We insist that the search for an appropriate MEP is not necessarily equiv-
alent to the finding of the steepest descent (SD) pathway from the SP. It is not
obvious that the SD is the best choice to describe kinetics – in general.

Usually, in one’s imagination the MEP is situated in a valley of the PES.
The different forms of an RP should connect minimum and SP of index one
going through a valley. However, it contradicts the examples where the IRC does
not fulfill the property: it is known that the IRC can go over a ridge of the
PES, cf.[8]. NTs can also go over a ridge of the PES, then they have a turning
point (TP) [4,9,10]. Consequently, the classification of IRC and NTs belonging
to MEPs or not, is of interest.

In this paper we show that the IRC is an MEP if it does not cross the
pseudo-convexity boundary of the PES, which is defined by a simple formula
[11]. For NTs, the TP-case divides them into those which can serve as loose RPs,
and others: if the NT does not contain a TP at the pathway from minimum up
to the SP of index one, it can be used as an RP model [12]. Additionally, we
show that NTs have a nice property: if they monotonically increase from mini-
mum to SP then they automatically take a course throughout in a valley [11]. To
our knowledge, NTs are the sole curves with this property.

The paper is organized as follows. Sections 2–4 repeat known properties
of PESs and their inflection points, of steepest descent on the PES, and of
projections. With Section 5 the main part begins giving some properties of
Newton trajectories known up to date. Section 6 starts with the definition
of the pseudo-convexity of a PES and the relation of NTs to that important
property. It finishes with three theorems, being the main content of this paper,
to NTs and valley structures of the PES. In Section 7 we discuss the results and
give some conclusions. An appendix contains the used formulas of the model
PESs.

2. Potential energy surface

The adiabatic PES of the molecular system of observation is the basis of
our treatment. Using the Born–Oppenheimer approximation, we assume that the
movement of the electrons and of the atom kernels are decoupled. The PES
is the sum of the Coulomb-repulsion of the atom kernels and the Schröding-
er equation of the electrons H� = E� [13,14]. The explicite calculation of the
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energy E is not of interest, here. We assume the PES is given by a scalar function
of the coordinates of the molecule.

Definition 1. Let K be an open subset of R
n. The function E ∈ Cl(K,R), l � 2 is

an n−dimensional PES. K is the configuration space of the PES. The derivative
G: K → R

n with

G(x) = dE(x) =
(

∂E

∂x1
(x), . . . ,

∂E

∂xn

(x)

)T

is the gradient and the matrix H(x) ∈ R
n×n with

H(x) = d2
E(x)

(
∂2E

∂xi∂xj

(x)

)n

i,j,=1

is the Hessian with x = (x1, . . . , xn) ∈ K. The set Eα = {x ∈ K|E(x) = α} is
named equipotential surface.

The configuration space of a molecule is restricted. We assume at least a 2-
fold differentiability of the PES for practical reasons – for the use of the diverse
applications. The Hessian is symmetric and has the partition into eigenvalues
and eigenvectors:

H = U�UT , (1)

with U = (u1, . . . , un) and � = Diag(λ1, . . . , λn), with Hui = λiui, i = 1, . . . , n.

Definition 2. A point x ∈ K is nondegenerate if det H(x) �= 0. In the contrary
case it is degenerate. The index of a nondegenerate point x ∈ K is the number of
negative eigenvalues of H(x). We write ind(x), as well as ind2(x) := ind(x)mod2.

The value ind2(x) is equivalent to the sign of the determinant of the
Hessian:

det H(x) > 0 ⇔ ind2(x) = 0 and detH(x) < 0 ⇔ ind2(x) = 1. (2)

Definition 3. A point x0 ∈ K with G(x 0) = 0 is named stationary point (StP).
Ess K is the set of all stationary points in K. A nondegenerate stationary point,
x0, is:

• minimum, if ind(x 0) = 0, or

• maximum, if ind(x 0) = n, or

• saddle point of index i, if ind(x 0) = i, 0 < i < n.
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Figure 1. Dense subset of a function space.

We assume that no stationary point is degenerate, i.e. that for all x ∈ K it
holds the regularity condition

‖G(x)‖ + |detH(x)| > 0. (3)

This convention will frequently occur in the sequel.
The subset F of functions in C2(Rn, R) fulfilling the condition is open and

dense in the strong Ck-topology [15]. Dense means that for every function f ∈
C2(Rn, R) there is a series of functions fn from F with limn→∞ fn = f . Fig-
ure 1 illustrates an example for C2(R, R). For function f (x) = 1

3x
3 the point

x = 0 is a StP with f ′|x=0 = 0, as well as it is degenerate because f ′′|x=0 = 0.
For functions fn(x) = 1

3x
3 − 1

n
x the StPs x = ±√

1/n are nondegenerate with
f ′′

n|x= ±√
1/n = ±2

√
1/n. It is limn→∞ fn = f . Nondegenerate stationary points

are isolated [16].

2.1. Valley-ridge-inflection points

A special subset of degenerate points can be interpreted to be the branching
points of RPs, see figures 2 and 3.

Definition 4. A valley-ridge-inflection point (VRI) is located where the gradient is
orthogonal to a zero eigenvector of the Hessian [17]. The subset of such points
is Ext (K).

The gradient does not lie in the kernel of the Hessian, and an augmented
Hessian with gradient does not lift the defect of the rank:

Ext(K) = {x ∈ K|rank[H(x), G(x)] < n}. (4)
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Figure 2. Symmetric valley-ridge-inflection point.

The bracket means matrix augmentation: [H(x), G(x)] ∈ R
n×(n+1). Note that

not all VRI points are symmetric, see figure 3.

Definition 5. Points with det H(x) = 0 and rank[H(x), G(x)] = n are inflection
points.

VRI points and inflection points are degenerate points of the PES. They are
independent on any curve definition.
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Figure 3. Un-symmetric valley-ridge-inflection point.

3. Steepest descent-IRC

The steepest descent (SD) from the SP in mass-weighted Cartesian coordi-
nates is a simple definition of an RP, which is well-known as the intrinsic reac-
tion coordinate (IRC) [3]. Using the arc-length s for the curve parameter, an SD
curve x(s) is defined by the system of vector equations in n dimensions

dx(s)

ds
= − G(x(s))

‖G(x(s))‖ = −w(s), x(0) = x0, (5)
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where G(x) is the gradient vector of the PES and w(s) depicts the gradient direc-
tion with unit length. Starting at any x0 with G(x0) �= 0, the solution of the
differential equation leads monotonically decreasing to a minimum (or another
deeper lying StP). The stationary points are the fixed points of the method.
There the gradient is zero. In every non stationary point x ∈ K\Ess(K) the tan-
gent of equation (5) is defined and there cannot be a branching [18].

The IRC is frequently used as a synonym for the MEP of the PES. But it
has a serious imperfection: in one’s imagination equation (5) permits to ascend
from the minimum to the SP by changing −w(s) by w(s), however, it is impos-
sible for practical use due to the funnel character of SD near the minimum [19]
leading to the instability of an equation (5) “uphill” [9,20]. The IRC equation
(5) explicitely needs the knowledge of the SP for the calculation of the steepest
descent to the minimum.

SD curves can go down over a ridge, see figure 4. They do not always mir-
ror the structure of valleys or ridges. The first derivatives of the PES are not
sufficient to characterize the curvature of valleys, or ridges. In the un-symmet-
ric case of the lower part of figure 4, a small variation of x0 with G(x0) �= 0 for
the SD in the upper valley (x ≈ 0, y ≈ −1.5) would not lead to the left side val-
ley. Note that on a ridge the SD does not go along a minimum. However, it goes
down along a maximum seen across the pathway: this contradicts the traditional
definition of a minimum energy path [3].

We will extend the discussion. With Fukui [3] we start the IRC at an SP
of index 1 in the direction of the decay vector, the eigenvector of the Hessian
to the negative eigenvalue. We cannot locally prove that a point belongs to
the IRC without passing the IRC from the beginning. If we follow Fukui,
we can use the definition “Minimum Energy Path” if the tangential plane to
the equipotential surface has an extremum on the IRC, namely a minimum
[3].

The gradient is orthogonal to the equipotential surface EE(x) in every point
x ∈ K. At every point x exists a tangential plane TXE to equipotential surface
EE(x). All eigenvalues of the Hessian are positive in a neighborhood of the mini-
mum. There the potential energy itself has a minimum on every tangential plane
TxE at x, where TxE touches EE(x). At every point in the neighborhood of x
the equipotential surface EE(x) lies below the tangential plane, because the equi-
potential surface is convex. Through every point goes a gradient descent. Thus,
near the minimum every gradient descent is an MEP.

However, that does not hold for all points of the configuration space. If not
all eigenvalues of the Hessian are positive, it need not be true. In figure 5 the 2D
equipotential surface of a 3D PES is schematically shown. (The 3D PES is not
illustrable! Examples of such 2D equipotential surfaces are explicitely shown in
figure 4 of ref.[7].) The part in front of the picture is the region where all eigen-
values are still positive. It is assumed that at the point, where the gradient arrow
is depicted, one eigenvalue of the Hessian becomes zero. There the equipotential
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Figure 4. SDs near VRI points. The SDs start in regions with negative y values.

surface loses the convexity property if one goes along the IRC. The IRC itself
loses the MEP property.

Going further, it is assumed throughout that one eigenvalue of the Hessian,
being more or less orthogonal to IRC, is negative. In figure 6 the 2D equipoten-
tial surface of a 3D PES is schematically shown, in such a case. Now, the equi-
potential surface does not have a maximum at the crossing of the IRC and the
tangential plane, but an SP. The IRC is not an MEP.

The number of eigenvalues being positive, negative or zero is equal to the
number of coefficients of the quadratic form (1) uHu being positive, negative or
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Figure 5. End of the MEP: tangential plane and 2D equipotential surface at a point where the
equipotential surface crosses the convexity border.

zero. If the IRC leaves the valley region, one of the coefficients becomes zero, see
figure 5, but the other coefficients stay positive. In figures 5 and 6 the arrows
mark the corresponding subspaces. We conclude: an MEP can exist with the
minimum property assumed by Fukui. Beginning at the SP of index 1, where all
(n − 1) eigenvalues orthogonal to the decay vector are positive, the IRC has the
MEP property. However, the IRC can lose this property, cf [8].

Equipotential
 surface

Tangential plane

Gradient

E(x0)

E(x)>E(x0)

E(x)<E(x0)

positivenegative

Figure 6. MEP? No, the tangential plane of a 2D equipotential surface (of a non shown 3D PES)
is not minimum on the IRC.
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4. Projection operator

It is Sn−1 = {x ∈ R
n|‖x‖ = 1} the unit sphere in R

n. Elements from S1- the
unit circle – are given as angles with point (1, 0) ∈ S1 to be 0◦.

We choose a column vector r ∈ Sn−1 for the projection. It is a unit vector.
Additionally, we use the transposed vector rT being a row vector. The dimension
of r is (n × 1) where that of rT is (1 × n). We form the dyadic product

Dr = r · rT (6)

which is an (n × n) matrix. Dr projects with r:

Dr r = (r · rT ) · r = r (rT · r) = r, (7)

where we use the unit length of r in the scalar product. The projector which pro-
jects orthogonally to r is

Pr = I − Dr . (8)

I is the unit matrix. Application of Pr to a vector, α r, parallel to r gives

Pr (αr) = α(I · r − r(rT · r)) = α(r − r) = 0. (9)

Vectors being orthogonal to r are unchanged by Pr .

5. RGF, Newton trajectories

It was proposed to choose a driving coordinate along the valley of the
minimum, to go a step in this direction, and to perform an energy optimiza-
tion of the residual coordinates [4]. Recently, the method was transformed into a
new mathematical form to RGF [6,7,21]. The concept is that a selected gradient
direction is fixed along the curve x(s)

G(x(s))/‖G(x(s))‖ = r, (10)

where r is the unit vector of the search direction. The search direction may cor-
respond to an assumed start direction of a chemical reaction. Or, it may be
the direction between the two minima of reactant and product, or the direction
between the reactant and the assumed SP. Since r is chosen to connect two spec-
ified minima the algorithm “knows” where it tries to go [5]. The property (10) is
realizable by a projection of the gradient employing Pr of (8). We pose

Pr G(x(s)) = 0. (11)

P r is a constant matrix of rank n−1. It is Ker(Pr ) = lin{r} and Im(Pr ) =
lin{r}⊥. Pr projects a vector v in direction of lin{r} and on lin{r}⊥.
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Definition 6. The map R: R
n ×Sn−1 → R

n−1, R(x, r) = PrG(x) will be called the
reduced gradient, and r ∈ Sn−1 will be called search direction. The equation

R(x, r) = 0 (12)

is for any fixed r ∈ Sn−1 the reduced gradient equation to the search direction r.

Based on the explicit definition, the predictor–corrector method of the
reduced gradient following (RGF) [7] traces a curve [11] along its tangential vec-
tor by the derivative to obtain the tangent x′

0 = d
ds

[PrG(x(s))] = Pr

dG(x(s))

ds
= PrH(x(s))x′(s). (13)

The RGF is a simple but effective procedure in order to determine all types
of StPs [6].In the general good-natured case, each RGF curve passes each StP. A
whole family of RGF curves connects the extrema if we vary the search direction
r [9], see figure 7.

Definition 7. Be r ∈ Sn−1. We will name NT in K to the direction r the set:

Tr (K) := {x ∈ K|G(x) = r‖G(x)‖}. (14)

It is clear that Tr is the set of solutions of equation (12). Or, in other words, it
fulfills equation (10): the gradient points into the same direction. For every non
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Figure 7. A family of Newton trajectories on Müller–Brown (MB) PES [10].
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stationary point x ∈ K \Ess(K) the NT is given by the direction of the gradient.
It means:

Proposition 1. [15] It holds

1. x ∈ Ess(K) ⇔ for all r ∈ Sn−1: x ∈ Tr (K) ⇔ for r, s ∈ Sn−1, r �= s:
x ∈ Tr and x ∈ Ts ,

2. x ∈ K \ Ess(K) ⇒ x ∈ TG(x)/‖G(x)‖,

3. Ess (K) �= ∅ ⇒ Tr (K) �= ∅, for all r ∈ Sn−1.

On K \ Ess(K) a differentiable map r
¯
: R

n −→ Sn−1, r
¯
(x) := G(x)/‖G(x)‖ exists,

with R(x, r
¯
(x)) = 0. The map is also named trajectory map [15].

Proposition 2. [15] Be x̄ ∈ K\Ess(K). Then is x̄ ∈ Ext(K) ⇔ rank dr
¯
(x̄) < n−1 ⇔

dim Ker dr
¯

> 1. The kernel of dr
¯
(x̄) is spanned by the tangent to the NT Tr

¯
(x̄)

at x̄.

Figure 8 shows an NT for the PES of molecule HCN. The search direction
is the angle coordinate of HCN. The curve in (x, y)-plane in figure 8 depicts the
location of the H atom, the z-axis is the CN-distance of the configuration. The
minimum HCN is at (x, y) ≈ (−1, 0), and the minimum HNC is at (x, y) ≈ (2, 0)

[in Ångström].

5.1. Branches and components of Newton trajectories

NTs are smooth, parameterizable curves in non stationary points, where the
rank of the matrix ∂xR(x, r) = PrH(x) is n − 1 (i.e. maximal) [22]. It follows
from the implicit function theorem. The condition is fulfilled if the rank of the
augmented Hessian [H, G] is maximal.

Definition 8. The set Ext(K) of equation (4) is the set of extraneous singularities.
All points in K, which are neither in Ess(K) nor in Ext(K), are named regular.
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Figure 8. A Newton trajectory on the HF 6-31G∗-PES of HCN.
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The characterization of a nondegenerate point uses properties of the PES;
but the characterization of a regular point uses properties of Newton trajec-
tories. An inflection point (definition 5) is degenerate, however, in the general
case, it is a regular point of the corresponding NT. If one takes off the sin-
gular points of an NT, one will get a set of smooth, parameterizable pieces of
curves, see figure 9. Any such piece of a curve will be named a branch. The end
points of open branches are the points of the boundary of K or singular points.
The NT of figure 9 is partitioned into three components: I and II are compact
sets in the interior of K, but III is open in K. Component I contains two StPs,
II does not contain any StP. Component III contains three StPs and one VRI
point.

Proposition 3. [23] Every compact component of an NT, being disjunct to the
boundary of K, contains an even number or no stationary points.

Caution: The word “compact” in the hypothesis is crucial! Figure 10 shows the
four NTs which cross the VRI points of the MB potential; the VRIs themselves
are given in Table 1. The figure top right contains a compact component of an
NT with two StPs, and the figure bottom right shows a compact component of
an NT with four StPs.

5.2. Branin’s method

The reduced gradient approach shows an analogy to the mathematical the-
ory of Branin [24], the global Newton method [15]. It utilizes the adjoint matrix
A of the Hessian matrix H . This is defined as ((−1)i+jmi j )

T where mi j is the

I

II

III

Figure 9. A Newton trajectory, its branches and components.
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Figure 10. Singular NTs of the MB PES[10] which cross the VRIs. Corresponding search directions
are 66.805o, 61.96o, 30.39o, 37.67o (from left above to right below).

minor of H obtained by deletion of the ith row and the j th column from H ,
and taking the determinant. The adjoint matrix satisfies the relation

H A = det(H) I, (15)

where det(H ) is the determinant of H , and I is the unit matrix. The adjoint
matrix A is used to define an autonomous system of differential equations for
the curve x(s), where s is a curve parameter

dx(s)

ds
= + A(x(s)) G(x(s)). (16)

Table 1
VRI points on MB-PES, and search direction

of NTs.

point direction x y

VRI1 66.805o −0.75002 0.22586
VRI2 61.96o −0.98072 −0.04753
VRI3 30.39o 0.37250 1.26315
VRI4 37.67o 0.54859 0.45930
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Proposition 4. Solutions of the Branin equation (16) are branches of Newton tra-
jectories.

Proof. The phase portraits of solutions of the Newton method

ẋ = −H(x)−1G(x) (17)

and of equation (16) are equal, up to orientation [23]. Thus we can use equa-
tion (17) for the proof. Equation (12) is fulfilled for all x with ‖G(x)‖r = G(x),
i.e. for all points where the gradient is a pointer into direction r. Along a trajec-
tory of (17) holds

d
dt

G(x(t)) = H(x)ẋ = −G(x(t)).

The differential equation has the solution

G(x(t)) = G(x(0))e−t .

It means that along a trajectory of equation (17), and equal to it along a
trajectory of equation (16), the gradient has the direction G(x0). Consequently,
NTs are the same curves like RGF curves using the same gradient [7]. Because
solutions of a differential equation are named trajectories, a solution of equa-
tion (16) will be called Newton trajectory (NT).

5.3. Stationary point: attractor or repeller?

In which direction the tangent of the Branin equation is directed in the
neighborhood of an StP? We develop the gradient on the right hand side of
equation (16) in a series at x0 with G(x0) = 0:

A(x)G(x) ≈ A(x0)H(x0)(x − x0) = det H(x0)(x − x0) . (18)

If ind2H(x0) = 1, thus if x0 is StP of odd index, then it holds in a neighborhood
of x0:

ẋ ≈ −| det H(x0)|(x − x0).

It means the tangent ẋ points to the stationary point; the point is an attractor.
The “+” option in equation (16) is adapted for the search of StPs being attrac-
tors.

If ind2H(x0) = 0, thus if x0 is StP of even index, then it holds in a neigh-
borhood of x0:

ẋ ≈ | det H(x0)|(x − x0).

It means the tangent ẋ points away; the point is a repeller. To search such an
StP the “+” sign option of equation (16) has to be turned into a “−” option.
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5.4. Turning point

Figure 11 compares the distinguished coordinate method (bottom) with an
NT (top). If one starts at the global minimum A along the x direction, and
minimizes orthogonally to x axis, then one follows the NT to 0◦ up to its first
TP. There the distinguished coordinate method (bottom) leaps, but the NT (top)
continues without any further ceremony. The x axis is the search direction, r =
(1, 0). We can follow the tangent without problems. The second panel is a copy

-1 0 1

0

1

2

Start

Leap-frog

Distinguished coordinate

Turning point

Turning point

Figure 11. NT (top) and distinguished coordinate method [25], see text.
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of figure 6 of ref. [25] (with permission). The pieces of the curves found there are
from one and the same NT, see the part above.

Let x̄ ∈ Tr be a regular point of an NT and x(t) is a parameterization of Tr

in the neighborhood of x̄. x̄ = x(0) is the local maximum of the trajectory Tr if
E(x̄) > E(x(t)), ∀t ∈ (−ε, ε) and t �= 0, i.e. x(t) �= x̄. The tangent τ to x(t) is at
x̄ tangential to the equipotential surface EE(x̄) at x̄ and orthogonal to G(x̄), and
thus, the tangent τ is orthogonal to the search direction r. For a local extremum
holds that from τ(t)T r > 0 (or < 0) for t ∈ (−ε, 0) follows: τ(t)T r < 0 (or > 0)

for t ∈ (0, ε).

Definition 9. A point is a TP of an NT (equation (16)) if the tangent ẋ(t) is
orthogonal to the search direction r which is parallel to G(x(t)).

For the NT of figure 11, Tr , it is τ(t) = (0, −1) the tangent at the TPs.

6. Pseudo-convexity index

It is useful to have a criterion being simple and easy to calculate, if we fol-
low curves through regions of valleys, or over ridges, on a way from minimum
upon saddle. Such a criterion is the index of pseudo-convexity. It is defined by
the well known Rayleigh quotient [26]. Usually, the quotient is employed for an
eigenvalue approximation of a matrix M: �(v) = vT Mv/vT v. We use it with the
adjoint matrix.

Definition 10. The pseudo-convexity index (pcx index) is the function

ξ: K \ Ess(K) −→ R, ξ(x) = G(x)T A(x)G(x)

G(x)T G(x)
. (19)

Figures 12 and 13 show examples for the pcx index over NTs. The NT unfolds
on the x axis. The numbers are counted path-points. Places with “non contin-
uous” behavior of the pcx index at StPs result from the singularity of the pcx
index at StPs. Figure 12 shows some scalar values over the NT belonging to
search direction 37.67o on the MB potential (see figure 10, the part bottom
right). The NT leads through two minima, through two SPs, and through one
VRI point. The message is: at TPs and VRIs the pcx index ξ(x(t)) is zero. Fig-
ure 13 shows some scalar values on the HF 6-31G∗-PES of HCN taken over the
NT of Fig. 8. (Energy + 92.8) [in Hartree]: thin line; norm of gradient: dashed
line; 0.03 × pcx index: bold line. The path leads from HCN minimum over the
transition structure to the HNC minimum. Neither a turning nor a bifurcation
point emerge there. Thus, the pcx index is always positive.

At stationary points the pcx index is not defined. If C: R −→ R
n is a smooth

curve and if C(0) = x0 is a stationary point then the limit ξ0 := limt→0 ξ(C(t)) lies
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Figure 12. pcx index (bold), 2×‖G(x(t))‖ (thin), 10×E(x(t)) (bold dashes), and 0.3×‖(AG)(x(t))‖
(thin dash-points) over an NT on MB.

between the maximal and minimal eigenvalue of A(x0). Thus, for every minimum
of the PES there is ξ0 > 0, and for every maximum there is ξ0 < 0, if ind2(x0) =
0, correspondingly ξ0 > 0, if ind2(x0) = 1. Stationary points of index 1, . . . , n−1
lie in the closure of the set


(K) := {x ∈ K \ Ess(K) | ξ(x) = 0} . (20)

There the sign of the limit ξ0 depends on the direction of the incoming curve.

0 10 20 30 40 50 60

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

C
N    HH   C N

H

N

C

Figure 13. pcx index (bold) over an NT as isomerization path on PES of HCN.
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Table 2
Relation between index, eigenvalue λ,

and pcx index ξ

ind2(x) λ ξ

0 + +
0 − −
1 + −
1 − +

Definition 11. The set 
 will be called boundary of pseudo-convexity.

Figure 14 shows the pseudo-convexity boundary 
 on the MB potential. At the
StPs of index one the boundary 
 forms an “X” which was proposed for a lead-
ing line to find such SPs [1,27].

Proposition 5. On a gradient extremal (GE) [28,29] the relations of table 2 hold
for the signs of the eigenvalue λ belonging to the gradient, for the index of the
curve point x, and for the pcx index ξ .

Proof. On a GE the gradient is eigenvector of H [29], but also of A: AG = µG

[7,30]. It follows from equation (19) that ξ = µ is the corresponding eigenvalue.

-1 0 1

0

1

2

Figure 14. Pseudo-convexity boundary 
 on MB potential.
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But it holds for eigenvalues λi and µi of H , corresponding A: det H = λiµi [7,
30]. Thus it holds on a GE that det H = λξ .

Consequently, the pcx index is positive in the neighborhood of an SP of
index one in direction of the negative eigenvalue, but the pcx index is negative
in direction of the positive eigenvalues.

Conclusion 6. A gradient extremal crosses the boundary of pseudo-convexity 


in a VRI point.

Proof. On a GE holds HG = λ1G, AG = µ1G, µ1G
T G = 0 and thus µ1 =

λ2, . . . , λn = 0. It means that at least one eigenvalue of the λ2, . . . , λn is zero
belonging to an eigenvector being orthogonal to the gradient.

It was proposed to calculate VRI points [8] using conclusion 6. The pcx
index is, without the factor 1/‖G(x)‖2, the scalar product between the gradient
in x and the tangent to the NT through x. The tangent is given by the Branin
equation (16).

Proposition 7. The pseudo-convexity index ξ is zero at turning points and extra-
neous singularities of solutions of the Branin equation (16).

In other words: the set 
 is the set of all prospective TPs of NTs. (Of course,
not every NT has a TP).

Proof. There are two cases to treat because the pcx index is not defined in
StPs.

1. A(x)G(x) = 0. It means the gradient is eigenvector to eigenvalue zero
of the adjoint Hessian. It follows from µi = λ1 · · · λi−1 · λi+1 · · · λn = 0
that one of the eigenvalues of the Hessian orthogonal to the gradient is
also zero, and thus, the rank of the augmented Hessian [H(x), G(x)] is
not maximal. Consequently, x is an extraneous singularity of the Branin
method, a VRI point.

2. G(x) is orthogonal to A(x)G(x). We see from equation (16) that at x the
gradient is orthogonal to the tangent to the NT. It means that x is a TP
of the NT.

Now we need some definitions which connect the pcx index and convexity prop-
erties of the PES. They are prerequisites of further treatments.

Definition 12. [31] A set K ⊂ R
n is named convex, if for all x, y ∈ K with x �= y

the convex combination is lying in K: λx + (1 − λ)y ∈ K for λ ∈ (0, 1).
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Let K be convex, E: K → R. The set Lα = {x ∈ K | E(x) � α} is named lower
level set, cf. [32]. Let λ ∈ (0, 1). A function E is named

• convex (cx) if E(λx + (1 − λ)y) � λE(x) + (1 − λ)E(y),

• strictly convex (s.cx) if E(λx + (1 − λ)y) < λE(x) + (1 − λ)E(y),

• quasi-convex (qcx) if Lα is convex for all α,

• strictly quasi-convex (s.qcx) if x �= y:
E(λx + (1 − λ)y) < max{E(x), E(y)},

• semistrictly quasi-convex (ss.qcx) if E(x) �= E(y):
E(λx + (1 − λ)y) < max{E(x), E(y)},

• pseudo-convex (pcx) if E ∈ C1(K, R) and (x − y)T ∇E(y) � 0
�⇒ E(x) � E(y),

• strictly pseudo-convex (s.pcx) if E ∈ C1(K, R) and (x − y)T ∇E(y) > 0
�⇒ E(x) > E(y).

Proposition 8. [31] The following relations hold for differentiable functions:
s.cx �⇒ s.pcx �⇒ s.qcx

⇓ ⇓ ⇓
cx �⇒ pcx �⇒ ss.qcx �⇒ qcx

Definition 13. Two manifolds, M1 and M2, are transversal in a common point
x, if the tangential spaces of the manifolds in x span the whole R

n, i.e., R
n =

TxM1 + TxM2.
M1 and M2 are named transversal, if they are transversal in every common point.

The definition 13 is illustrated in figure 15 in the 2D case. Let M be a compact,
connected 1-codimensional differentiable manifold in R

n, i.e., dim M = n − 1.
Then R

n \ M consists of two open components, one of which is bounded. It is
the interior of M. We use for M an equipotential surface.

Definition 14. M is named global boundary to vector field NG of the tangents of
Branin equation 16, if NG is transversal to M.

M2 M1
M1M2

M1M2

Figure 15. Transversal (left) and tangential (right) curves.
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Figure 16. Global boundary Eα to NT T , see text.

In Figure 16 the NT T (bold) transversally crosses the equipotential surface
Eα, and it tangentially touches Eβ . It holds ξ(x) = 0 on the dashed line.

In every point x ∈ M the tangential space TxM spans the whole R
n together

with NG(x). An equipotential surface is a global boundary of the vector field of
the Branin equation (16), if there does not exist an NT which touches it tangen-
tially. In figure 16 the two compact components of Eα form a global boundary
to every NT, however, not Eβ . The gradient is always orthogonal to the equipo-
tential surface. Thus, an NT crosses the equipotential surface in a regular point
x̄ transversally if it holds ξ(x̄) �= 0, and tangentially if ξ(x̄) = 0.

Conclusion 9. A compact component of an equipotential surface Eα is a global
boundary of the vector field NG to the Branin equation (16) if the pcx index is
not zero on Eα.

Proposition 10. [15] Suppose that M is a global boundary for vector field NG.
Then, the trajectory map r

¯
restricted to M is locally a diffeomorphism and maps

M onto Sn−1.

If a compact component of an equipotential surface Eα is a global bound-
ary to NG, it is diffeomorph to the sphere in R

n and, additionally, the gradient

points on Eα always in distinct directions. If x, y ∈ Eα and
G(x)

‖G(x)‖ = G(y)

‖G(y)‖
then it holds x = y.

Proposition 11. Be M a 1-codimensional, compact manifold in R
n, and be the

field of normals on M diffeomorph to Sn−1, then the interior of M is convex.
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Proof. We choose any direction v and jam M with two (n − 1)-dimensional
hyperplanes orthogonal to v like a vise. The hyperplanes are tangential planes to
M. At the points of touch one normal vector directs to v and the other directs
to −v. Every plane touches one point of M only, because otherwise, there would
exist two equally directed normal vectors in different points of M, and the nor-
mal field would not be diffeomorph to Sn−1. If one moves one of the hyperplanes
in direction v into the interior of M, then the intersection is diffeomorph to Sn−2

at the beginning. If, in a hypothetical case of the movement of the plane through
the interior of M, the intersection does not become diffeomorph to Sn−2, then
the plane would be in that point a tangential plane to M in a third point, but
there the normal would be equally directed to v or −v. Consequently, the nor-
mal field to M would not be diffeomorph to Sn−1. Thus, every intersection of
an (n − 1)-dimensional plane having common points with the interior of M is
diffeomorph to Sn−2 and the interior of M is convex.

Conclusion 12. Let the pcx index not be zero on the boundary ∂Lα = Eα of a
compact component of a lower level set Lα, and let the boundary not contain
stationary points, then the component is convex.

Proof. The equipotential surface Eα is a global boundary for NG because ξ �=
0, and consequently, the gradient field, being for Eα a field of normals, is diff-
eomorph to Sn−1 on Eα. With proposition 11 we get the conclusion.

Proposition 13 (Global boundary). [15] Let E: R
n −→ R and possible stationary

points should not be degenerate. Additionally, let M be a global boundary
to equation (16) and M does not contain extraneous singularities of E. Then
holds:

• The interior of M contains no periodic trajectories of equation (16),

• M is diffeomorph to Sn−1,

• The interior of M contains only one stationary point.

Figure 16 illustrates the proposition. Every component of the equipotential
surface Eα forms a global boundary to the field of tangent vectors to the NTs.
Only on the line ξ = 0 the NTs have a TP. It means that compact components
of equipotential surfaces which are not intersected by 
 = {x ∈ K | ξ(x) = 0}
form a global boundary to the tangent vector field belonging to equation (16).
These components enclose only one minimum. However, the other equipotential
surfaces (i.e. Eβ) enclose both minima, and they do not form a global boundary
to NG.
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Theorem 1. If the compact component of an equipotential surface Eα does not
contain stationary points, and if the pseudo-convexity index ξ is not zero on a
corresponding lower level set Lα\Ess(K) without stationary points, then the PES,
E, is strictly pseudo-convex (s.pcx) over this lower level set.

Proof. With the given assumptions it follows from conclusion 12 that every
component of Lγ , γ < α is convex, which is contained in the component Lα. Let
x, y ∈ Lα and (x−y)T G(y) > 0. Because LE(y) is convex, it follows E(x) > E(y),
and the theorem is shown.

The next step is to show that one can often continue the property of strictly
pseudo-convexity uphill to an SP of index one. With that tool one can under-
stand the character of the neighborhood of a curve, to be a valley or not. One
can answer the question whether a curve leads through a valley or over a ridge
employing the pcx index.

Proposition 14. Let C: (a, b) → R
n, x(t) = C(t) be a branch of an NT connecting

a minimum, C(a), and a saddle, C(b), then, the following items are equivalent:

• C is strictly pseudo-convex.

• The pcx index is larger than zero on C.

• C increases strongly monotonically.

Proof. The PES is given by E(t) = E(x(t)) over the curve. It follows by the
chain rule

∂E

∂t
= ∂E

∂x
· ∂x

∂t
= G(x) · ẋ .

The minimum C(a) = limt→a x(t) is a repeller of the vector field NG given by
the Branin equation (16). The tangent ẋ = AG is a pointer away from minimum.
Curve x(t) is passed in this direction. It holds for all t ∈ (a, b)

∂E

∂t
= GAG = ξ‖G‖2 > 0

and it follows from t2 > t1 that E(t2) > E(t1).

Proposition 15. Let Ux̄ be an open neighborhood of a regular point x̄, and let Ux̄
not contain stationary points. The pcx index for all x ∈ Ux̄ is not equal to zero.
Then for every α ∈ R the restriction of the trajectory map on the intersection of
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x

xU

Figure 17. Convex neighbourhood of regular point x̄ with equipotential lines (dashed) and the field
of NTs in a schematic view.

Eα and Ux̄, r
¯
: E(α) ∩ Ux̄ → Sn−1 is a diffeomorphism on an open subset of Sn−1.

(see figure 17.)

In other words: if the pcx index is not zero over an open subset of the
configuration space, and if the subset does not contain stationary points, then
every NT crosses every equipotential surface once only in the subset. It means
that the gradient never has the same direction on the intersection, and there do
not exist NTs to every direction in the subset. To prove the proposition 15 we
use the proposition 2 to trajectory map.

Proof. We put Eα(Ux̄) = Eα ∩Ux̄ with α = E(x), x ∈ Ux̄. Because it holds ξ(x) �=
0 for all x ∈ Ux̄, all points on Ux̄ are regular. From the proposition 13 to global
boundary follows that Eα(Ux̄) is open for all α, because Ux̄ should not contain
stationary points. The vector field of NT NG crosses Eα(Ux̄) transversally. The
kernel of dr

¯
(x) is spanned by the tangent of the NT Tr

¯
(x) through x with prop-

osition 2. For no x ∈ Ux̄ the kernel is contained in the tangential space TxEα to
equipotential surface Eα through x. It follows that the rank of the Jacobi matrix
is maximal, which is formed from the trajectory map r

¯|Eα(Ux̄) restricted to Eα(Ux̄).
It is rank dr

¯|Eα(Ux̄)(x) = (n−1) and dim Ker dr
¯|Eα(Ux̄)(x) = 0. From the inverse

function theorem follows that the restriction of r
¯

onto Eα(Ux̄) is a diffeomor-
phism and that r

¯
(Eα(Ux̄)) ⊂ Sn−1 is open.

The open set Eα(Ux̄) = Eα ∩ Ux̄ need not be connected. Proposition 15 is a
supplement to proposition 10. The proof sounds analogous, see [15], and it uses
that points with ξ(x) �= 0 are regular points of the PES.

Now, the next aim is to transfer the content of theorem 1 to the neighbor-
hoods of proposition 15. It will be possible if the sets Eα(Ux̄) can be seen to be
a part of a compact set being diffeomorph to Sn−1 and convex. Thus, if we can
find a PES Ẽ which is equal with E on Ux̄, and the levels Eα(Ux̄) of it are subsets
of equipotential surfaces fulfilling the assumptions of theorem 1. Consequently,
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it is true if the Ux̄ is near a minimum, and the equipotential surfaces are curved
positively in all directions.

For ind(x) = 0 the condition is fulfilled trivially.
For ind(x) = 1 the number of negative eigenvalues of the adjoint matrix A

is n − 1. From uT
i Hui = λuT

i ui < 0 it follows uT
i Aui = µuT

i ui > 0, and vice versa.
With Sylvester’s law of inertia the number of positive and negative subspaces of
a matrix is constant, respective of a linear operator, and it follows from GT AG =
ξ‖G‖2 > 0, GT HG < 0, and so vT Hv > 0 for all v out of the tangential space
to the equipotential surface staying orthogonally to G. So it holds:

Theorem 2. Be Ux̄ an open and convex neighborhood of a regular point x̄, which
does not contain stationary points. Be the pcx index larger than zero for all x ∈
Ux̄, and ind(x) � 1. Then the PES E is strictly pseudo-convex over Ux̄.

6.1. Pseudo-convexity and structure of a valley

Around a minimum the pseudo-convexity boundary marks the end of
pseudo-convexity, and in this sense the end of the valley character. The defini-
tions of the pseudo-convexity index and the pseudo-convexity boundary are use-
ful.

A sharpening of proposition 14 for a stricter convexity is not possible. A
smooth curve connecting a minimum and an SP of index one always has at least
one inflection point where the gradient has a local extremum. Such a curve can-
not be convex. The pseudo-convexity makes that the curve increases strongly
monotonically from minimum up to the SP. The change of the index at the
inflection point is not important for answering the question of the character of
the valley around the curve. An older, simpler formula, instead of equation (19)
is given with H for A in the Rayleigh quotient [33]. Such a quotient would also
include the “simple” inflection points. However, the pseudo-convexity index used
here only shows the changes of the index taking place orthogonally to the gra-
dient, thus the changes caused by the VRIs.

It is clear that the pseudo-convexity of a curve is not a sufficient criterion
for a valley. Every steepest descent curve is pseudo-convex, however, it can go
over a ridge. On the other hand, also the condition that the pcx index is larger
than zero over any smooth curve is not a sufficient criterion for the pseudo-con-
vexity of the curve. A smooth curve C: (a, b) −→ R

n, connecting a minimum,
C(a), and an SP of index one, C(b), is strictly pseudo-convex if it increases
strongly monotonically.

On the basis of the theorems 1 and 2 we find a general characterization for
a valley with the help of the pseudo-convexity index.

Definition 15. Between a minimum, C(a), and a saddle, C(b), there is throughout
a valley, if there is a smooth curve, a valley curve, connecting C(a) and C(b) and
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fulfilling throughout ξ > 0, and for which the energy increases strongly mono-
tonically.

From proposition 14 follows:

Theorem 3. The branch of an NT may connect a minimum and a SP of index
one. It is a valley curve if the pcx index over the branch is larger than zero.

If one wants to know that an NT from minimum does not lead over a ridge, it is
sufficient to know that its energy increases strongly monotonically. Complemen-
tary, an NT from minimum enters into a ridge region at its first TP. A branch
being free of TPs of an NT always connects minimum and SP through a valley.

7. Discussion and conclusion

There is no method which always finds a “valley path” between minimum
and SP. The reason is that such a valley does not always exist, see figure 8 of
ref. [12], figure 4 of ref. [34] or figure 2 of ref. [35]. Additionally, a valley curve
can exist but not an NT which is a valley curve, see figures 20 and 23 below.
Our treatment is a hint that the definitions, which are given in this paper, are
still too coarse. The mathematical definitions given here are general imaginations
which one may have about valleys or ridges. The peculiarity of our ansatz is that
its mathematical part is considered not as a game with deductive reasoning and
symbols, but as a part of natural science, especially of chemistry, i.e. as an exper-
imental treatment [36].

In this section we discuss the relation between the three curves of interest
here, the IRC, the NT, and also the gradient extremal (GE), to describe a valley
structure.

a cy x

f

f’(y)

b

Figure 18. Pseudo-convex curve between a and b. f is convex between a and c, but not between
c and b.
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Figure 19. Poseidon PES [11], top: the NT belonging to 90◦ has two consecutive VRI points and
forms a double trident. Bottom: an NT being valley trajectory (bold), pcx boundary (dashed) and

GEs (small).

The lower part of figure 19 shows the “good” case for an NT being a valley tra-
jectory from minimum to SP. Going through a valley region throughout means
that along the increase of the RP we always have convex equipotential surfaces.
NTs from the Branin method have special properties: a monotonically increas-
ing NT automatically goes through a valley. Note that the GE does not con-
nect the minimum and the SP of interest, like the given NT, in figure 19. At
a turning point of an NT this NT has a local extremum of the energy, and
it enters the complementary region. It changes from valley to ridge region, or
vice versa. The property allows to construct a new index, the index of pseudo-
convexity, using the Branin equation (16). The pcx index ξ = GT AG/(GT G)

answers the question for the valley- or ridge character of a region where the
index of the Hessian is zero or one. For a Newton trajectory holds that if
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it connects minimum and SP by a strongly monotonically increasing curve it
fulfills ξ > 0. For other curves one may add the condition ξ > 0 to the condition
of a strongly monotonically increasing curve to obtain a valley curve throughout.

Figure 20 shows the “bad” case, for one example, where no NT connects
the minimum, being below in the center, and the SP in the right upper cor-
ner. However, there is a valley curve. From the minimum at ≈ (0.95, −1.05)

leads a small valley region around (1.45, −0.75) to the saddle of index one at
≈ (1.6, −0.3). We may draw a valley curve “by hand” through that region like
in a children’s game. The scheme below shows that there is no branch of an NT
from the minimum to the SP of index one in the right upper corner. The situ-
ation for the other higher SP of the example seems to be quantitatively similar,
however, it is qualitatively different. There is also a small “corridor” with val-
ley character, here around (0.65, −0.85), being a bottle-neck, but the drawn NT
exactly leads through the region of the corridor and connects minimum and the
left upper SP with a valley trajectory.

0.25 0.5 0.75 1 1.25 1.5 1.75

-1

-0.8

-0.6

-0.4

-0.2

0

1 10

1 12

Figure 20. PES of Smeyer et al. [37], modified [11,34], top: GEs (bold), pcx boundary (dashed)
and three NTs (small); bottom: scheme of singular NTs (dashed) with VRI points (empty).

Given is also the index of the stationary points.
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The question remains for conditions for the existence of an NT being a val-
ley curve. Figure 21 schematically shows two pieces of an equipotential surface.
We project the normalized tangents of NTs onto the tangential plane to the equi-
potential surface. We obtain vectors of length between 0 and 1. The projection
has length 1 on the pcx boundary 
 because there the tangent is in the tangen-
tial plane of the equipotential surface. The projection has length 0 if the tangent
of an NT is orthogonal to the tangential plane of the equipotential surface, i.e.,
if it points with gradient direction. Then the equation (16) demands that the gra-
dient is eigenvector of the adjoint matrix A, but of the Hessian H also. It is a
GE shown on the left hand side. In the right part of figure 21 the projection of
the normalized tangent always points in the same direction. One tangent points
into the region with ξ > 0 but the other tangent points away from the region
with ξ > 0. We meet the case in the right corridor of figure 20 at (1.45, −0.75)

as well. Thus, the right corridor need not be “permeable” to NTs being more or
less orthogonal to the equipotential surfaces. However, in the other, left corridor
of figure 20, there the pcx boundary 
 is a global boundary of the vector field
of the tangents and one can apply the proposition 13 to a global boundary. At a
stationary point of the vector field we find a GE which crosses the equipotential
surface.

One could speculate on the following

Conjucture 16. A valley curve meets the equipotential surfaces of the PES. For
every equipotential surfaces it should be possible to find a global boundary
inside the region of ξ > 0 of the vector field of the projected tangents. If every
crossing point is inside the global boundary then a NT exits which is a valley
curve.
Or similarly, if there is a valley curve such, that every equipotential surface which
it crosses will also be crossed by a gradient extremal inside the same ξ > 0 region,
then exits a NT which is a valley curve.

The conjuncture does not include that the GE itself connects minimum and
SP, see figure 22, where in the left part the GE from SP is not a valley curve
connecting the SP and the minimum. An NT is shown which is a valley curve.
The right part of figure 19 also supports the conjuncture. There are very small

Ξ
Ξ

Ξ
Ξ

GE

Figure 21. Projection of tangents of NTs on an equipotential surface which crosses two times the
pcx boundary, 
. In the left case the projection has to be zero at a point GE, and the proposi-
tion 13 to global boundary is fulfilled. At GE the equipotential surface is crossed by a gradient

extremal.
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Figure 22. Gradient extremals (bold), one NT (thin) and pcx boundary (dashed) on MB
potential [10].

“corridors” for the valley region from minimum up to SP, but there are NTs
finding their way through the corridors.

However, the hypothesis of the conjuncture 16 is not a sufficient prerequi-
site. This is demonstrated by a last figure 23. It is the slightly modified PES of
Neria et al. [38]. Two minima at the sides are connected over an SP at (0, 0).
There, the GE plays a lone hand being the valley curve throughout. None of the
NTs connecting minimum and SP are valley curves.

The aim of our visualizations is to support analysis and interpretation
of reaction pathways. Chemists have a long tradition in inventing and apply-
ing models for the analysis of molecular transformations taking place in a
reaction. The development of new ideas, definitions, and methods for mod-
eling an RP critically depends on visualization as an effective way to gain
an understanding of a problem. For a long time the IRC was the model
of choice of theoretical chemistry. It is simple, and it can also be under-
stood to be a pre dynamical model of an RP [39,40]. However, the IRC
from SP downhill can enter a ridge. Then it loses the property to be an
MEP. One may exclude this situation by employing the pcx index. If ξ > 0
on the whole IRC, it is a valley curve. The ξ > 0 condition gives one the
possibility of a panoramic view over the RP of interest. The IRC is auto-
matically decreasing throughout. If a NT monotonically increases between
minimum and saddle then it is automatically a valley curve. The ξ > 0 condition
is fulfilled. Thus, the NTs are well adapted to the problem treated in this paper:
to enlighten the valley structure of the region around the reaction path.
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Figure 23. PES [38], modified [11]. Dashed line is the pcx boundary between valley and ridge. The
IRC (thin points) crosses the ridge. A family of Newton trajectories is concentrated upon small
gorges near (±2, ∓2). However, none of them goes to the SP thoughout in the valley. They cross the
other ridge near the SP, or diverge. Only the gradient extremal (bold) is a valley curve throughout.

Appendix – List of model surfaces

Figures 2 and 3 use

E(x, y) = −5((y − 0.5)x2 + y)

E(x, y) = −5((y − 0.5)x2 + y + ln(x + 2.1))

The Müller–Brown potential [10] is used in figures 7,10–12, 14, and 22. It is

E(x, y) =
4∑

i=1

Ai exp(ai(x − x0
i ))

2 + bi(x − x0
i )(y − y0

i ) + ci(y − y0
i )

2

with A = (−200, −100, −170, 15)

a = (−1, −1, −6.5, 0.7)

b = (0, 0, 11, 0.6)

c = (−10, −10, −6.5, 0.7)

x0 = (1, 0, −0.5, −1)

y0 = (0, 0.5, 1.5, 1).

Figure 16 uses the potential E(x, y) = 0.3(x + 1)2(x − 1)2 + y2.
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Figure 19 is named “Poseidon” PES. It is

E(x, y) = 0.02y2 + 0.01x2 − 0.2δ

((
x

y

)
,

(
0
2

))

−δ

((
x

y

)
,

(
1.2
0

))
− δ

((
x

y

)
,

(−1.2
0

))
+ δ

((
x

y

)
,

(
0

3.5

))

−0.4δ

((
x

y

)
,

(
0

−0.5

))
+ 0.4δ

((
x

y

)
,

(−2
3.5

))

+0.4δ

((
x

y

)
,

(
2

3.5

))

with the help of the dent function

δ(x, x0) := exp(−(x − x0)
2) and x = (x, y), x0 = (x0, y0)

Figure 20 is a PES of Smeyer et al. [37], modified by [34] and [11]. It is

E(x, y) = 44730.4129 − 66786.5363 cos(y) + 26352.6908 cos(2y)

−3117.3613 cos(4y) + 659.3217 cos(6y) − 111.5488 cos(8y)

+621.9640 sin(3x) sin(y)−138.3050 sin(3x) sin(2y)−500.0 sin(3y)

−7.7979 sin(3x) sin(6y) + 9.9258 cos(6x) − 19.0681 cos(6x) cos(y)

+41.8227 sin(3x) sin(4y)+600 cos(6x) cos(2y) + 60x

Figure 23 is a PES of Neria et al. [38], modified by [11]. It is

E(x, y) = c(x2 + y2)2 + xy − 9 exp(−(x − 3)2 − y2) − 9 exp(−(x + 3)2 − y2)

where we use c = 0.03 and in [38] is used c = 0.06.
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