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The MP2/6-31G** potential energy surface (PES) of the water molecule is used as a model to locate curves of
valley ridge inÑection (VRI) points. Crossing points between VRI curves and approximations of the reaction
path allow the identiÐcation of a symmetric bifurcation of the reaction path. The VRI points are calculated
with the help of BraninÏs method. The recently proposed method of following the reduced gradient is used to
calculate reaction path approximations of ““ inversionÏÏ and dissociation together with their possible
bifurcations. The results gained by a model PES (W. Quapp, M. Hirsch and D. Heidrich, T heor. Chem. Acc.,
1998, 100, 285) are now conÐrmed by the ab initio surface of the water molecule. We discuss the chemical and
physical meaning of VRI curves in terms of the fourfold cluster problem of highly excited rotational states ; the
core area of our surface is of sufficient quality for this.

1 Introduction

Branching reaction paths is a frequently discussed event in
chemistry but the calculation of branching points still remains
a challenge for theoretical chemistry. We seek to understand
branching in terms of the potential energy surface (PES)
which also forms the basis for the conventional transition
state theory.1 Branching of a reaction path leads to the forma-
tion of alternative reaction channels on the PES describing
the chemical reaction. Some aspects of the bifurcation have
allready been discussed in earlier publications.2h4 The
methods of PES analysis5h7 form the tool to identify the
branching of the reaction path. Furthermore, the choice of the
path deÐnition is important. The reaction path is an assumed
curve in the conÐguration space of the PES connecting the
reactant with one or more products with the help of the corre-
sponding saddle point (SP) along the so-called minimum
energy path (MEP). This way, the MEP is the leading line
characterizing the reaction channel in which the trajectories,
or, in terms of quantum mechanics, the wave packets should
move. However, the term MEP is not yet sufficiently speciÐed
to determine a curve uniquely for the reaction path. There are
several possibilities to deÐne a reaction path mathematically.
The most important deÐnitions are either the steepest descent
from the saddle or the gradient extremal which follows the
least ascent. Pathways corresponding to di†erent deÐnitions
usually branch at di†erent points of the conÐguration space.
On the other hand, the PES shows points which we intuitively
connect with the branching of the reaction path but which do
not depend on any reaction path deÐnition. They are deÐned
by the characteristics of the PES itself. Such points are the
valleyÈridge inÑection (VRI) points8 and we will di†erentiate
between these two kinds of points.

The steepest descent from the SP in mass-weighted Carte-
sian coordinates is the simplest deÐnition of a reaction path,
which is well-known as the intrinsic reaction coordinate
(IRC).9h10 The pathway is given by an autonomous system of
di†erential equations using the negative gradient of the PES
for the tangent vector of the curve. The gradient is the zero
vector at stationary points. With the exception of the station-

ary points the solution of the di†erential equation of the IRC
is unique. So, the IRC cannot bifurcate11 and consequently
the IRC method is not well-adapted to tackle the problem of
branching reaction paths.

Gradient extremals12h14 form a second possibility for deÐn-
ing a reaction path. The calculation of the gradient extremal is
much more complicated in comparison with the IRC, but the
gradient extremal is deÐned locally. Furthermore, the gradient
extremal can bifurcate.15,16 However, gradient extremals often
leave the valley ground and avoid an assumed branching by
passing a turning point. Frequently, a pair of turning points at
both sides of the assumed branching point exist. This problem
will not be discussed here.

A third possibility for deÐning a pathway between
minimum and saddle point is the method of ““ following the
reduced gradient ÏÏ (RGF).17 Here a curve is generated with a
constant gradient direction at every point along the pathway.
Such directions can always be selected to coincide with the
development of any reaction, i.e. with the main directions of
the harmonic potential, the normal modes. There has always
been a Ðeld of such curves from which the most suitable curve
may be selected. It seems interesting that the RGF method
includes the distinguished coordinate method.6,18 Thus, a
certain number of curves calculated by RGF for well-selected
directions may o†er good approximations for reaction paths.
To be more precise, the beginning of such a curve has to be
stated as a MEP which follows one of the main directions of
the harmonic potential at a minimum. After the starting phase
the curve continues and may reach a SP, although it does not
exactly fulÐll the criteria of a MEP. This third possibility to
follow a reaction path is treated in this paper, because the
branching points of the reduced gradient curve are actually
the VRI points of the PES. The VRI points gain importance
when tackling the problem of reaction path branching.

As already reported,19 the VRI points may form a manifold
in the conÐguration space of the chemical species. This mani-
fold can have the dimension N [ 2, if the conÐguration space
of the PES has dimension N.20 Hence, to Ðnd such manifolds,
test surfaces with a dimension higher than N \ 2 are needed.
In ref. 19 we have discussed a 3-dimensional test surface and
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now we will turn to the quantum chemically determined PESs
of real molecules. The MP2/6-31G** ab initio PES of the
water molecule is used to show the existence, the character-
istics and the possible meaning of VRI points for locating
branching points along possible reaction channels
(““dissociationÏÏ). A 1-dimensional manifold of VRI points is
found. It is obvious that the quantum chemical level used is
not sufficient to give a globally correct surface of the H2Omolecule. Especially, dissociations like cannotH2O ] O] H2be described adequately without using CASSCF or related
methods. It is not the objective of this paper to give an exact
description of the high-energy parts of the water PES. But, in
the region of interest up to an OÈH distance of 1.6 theÓ,
MP2 surface of is still quite similar to the MR-CIH2Osurface of Ho et al.21 In addition, we use the surface as a
model for molecules in order to discuss chemical andH2Xspectroscopic problems in a more general sense.

This paper is subdivided as follows : Ðrst we will outline the
RGF and the global Newton method (Branin method) and
show their relationship. Then characteristics of VRI points
generated in this way will be examined and the manifold of
VRI points of the PES will be speciÐed. The possibleH2Omeaning of those curves and of certain points on it are dis-
cussed. The appendix outlines a short description of the realis-
ation of the RGF algorithm in internal coordinates.

2 Reduced gradient curves and their branching
points
The idea to follow a reduced gradient was introduced in ref.
17. The method is generalised by allowing a free selection of
the gradient direction which the curve has to follow (see ref.
19). In this case, the ““ reductionÏÏ is realised by a projection of
the gradient onto the (N [ 1)-dimensional subspace which is
orthogonal to the 1-dimensional subspace spanned by the
search direction r, instead of omitting one of the coordinate
directions. A curve belongs to the search direction r, if the
gradient always remains parallel to the direction of r at every
point along the curve. Based on an explicit deÐnition, we can
follow this curve along its tangential vector. It is proved that
the tangent vector is nonzero outside stationary points and
VRI points.22 In contrast to the conventional distinguished
coordinate method (cf. ref. 18), a reduced gradient curve
passes possible turning points without jumps.

There are two di†erent methods to get a reduced gradient
curve : the RGF and the Branin method. These methods are
based on several ideas and have di†erent applications in the
examination of the PES. The method of RGF is described in
ref. 17 and generalised in ref. 19. It is given by the equation

P
r
Hx5 \ 0 (1)

where orthogonally projects to the search direction r. ThatP
rmeans The matrix H is the Hessian, and is theP
r

r = 0. x5
tangent to the curve. In general, the search direction and the
tangent are di†erent. The projector does not depend on theP

rcoordinates x or on the curve parameter. The algorithm is
realized by the predictor-corrector method.19,23 It is appropri-
ate to detect unknown stationary points, for instance saddle
points of index one (transition structures). The method starts
at a stationary point, e.g. a minimum, and follows an arbi-
trarily selected direction of the gradient on the PES.

The e†ort required for RGF lies between that of gradient
extremal and IRC following. Each step requires a Hessian
matrix or its update. The search for stationary points is the
main application of the RGF method. Success does not
depend too much on an exact selection of the starting direc-
tion and an intuitive selection is usually sufficient.

Because the gradient directions of the PES are uniquely
determined, curves calculated by RGF to di†erent directions

cross if and only if the gradient vanishes at the crosspoint, i.e.
the crosspoint has to be a stationary point. However, di†erent
branches of the solution of the same reduced gradient curve
may also cross each other. These points are then characterised
as the branching points of the reduced gradient curve, being
the VRI points of the surface. Whenever a reduced gradient
curve reaches a VRI point, the curve branches and at every
VRI point of the PES the solution of a reduced gradient curve
branches.19 The characteristic attribute of a VRI point is the
zero eigenvalue of the Hessian. At least one eigenvalue
changes its sign when going along the gradient,8 where the
corresponding eigenvector is orthogonal to the gradient. This
means that a valley changes into a ridge or vice versa.

Properties of curves calculated by RGF are illustrated in
Fig. 1. The RGF method is applied to the Mu� llerÈBrown
potential24 by using the Mathematica program.25 Figure 1(a)
shows curves belonging to the directions (0.7, [0.3) and (0.7,
0.3) (dashed). Both curves connect all stationary points of the
surface, as is the usual property of RGF. The parts of the
reduced gradient curve are not necessarily connected. The
dashed curve in Fig. 1(b) belonging to the direction (0.65, 0.35)
consists of three isolated parts. Nevertheless, all stationary
points are reached. This also means that, following an unfa-
vourable starting direction, the curve may not reach the
desired stationary point, because it is divided into discon-
nected parts. However, each closed part of a reduced gradient
curve crosses an even number of stationary points.22 Thus, if
the search starts at a stationary point and follows a closed
part, it reaches at least another stationary point. The
occurrence of a turning point is often an indication of the exis-
tence of a VRI point nearby. In such cases there is an adjacent
reduced gradient curve to another search direction, which
branches at this VRI point [note : not all VRI points of the

surface are marked in Figs. 1(a) and 1(b)]. TheMu� llerÈBrown

Fig. 1 Mu� llerÈBrown Surface24 with curves obtained by RGF. (a)
directions (0.7, [0.3) and (0.7, 0.3) (dashed). All stationary points are
connected. The dashed curve branches at a valleyÈridge inÑection
point, VRI. (b) directions (0.65, [0.35) and (0.65, 0.35) (dashed). The
dashed curve follows an unfavourable search direction. It reaches each
stationary point, but it splits into three isolated parts. The VRI point
is indicated by turning points, TP, of the curve. BP means branching
point.
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solid lines in Figs. 1(a) and 1(b) are well chosen curves for
Ðnding all stationary points. They demonstrate that a reduced
gradient curve can be chosen to form a good approximation
of a reaction path over wide regions of the PES. If a reduced
gradient curve directly connects two stationary points without
crossing a VRI point, then the indices of the stationary points
di†er by one.22 Hence, a VRI point must exist along the
reduced gradient curve which connects two SPs of Ðrst order.
(These statements are made under the assumption that the
stationary points are not the VRI point.)

The RGF method is related to the well-known mathemati-
cal theory of Branin,26 the so-called global Newton method.20
Its application to PES analysis has been described in ref. 19.
The procedure uses the adjoint A of the Hessian H. It is
deÐned by the equation AH \ Det(H)I, where I is the unit
matrix. The global Newton method deÐnes an autonomous
system of di†erential equations for the curve x(t), where t is a
curve length parameter :

x5 \ <kA(x)g(x), (2)

applied as x
m`1 \ x

m
< *tA(x

m
)g(x

m
)

The sign in eqn. (2) determines the index of the stationary
point which we are searching for. The negative sign stands for
stationary points of even index, i.e. minima or second order
SPs. The positive sign stands for stationary points of odd
index, among them Ðrst order SPs (transition structures). The
Branin method does not need any corrector step and the cal-
culation can be stopped and restarted at any time. Thus, it is
possible to change the steplength parameter, *t, and to con-
tinue the calculation at the last point. The steplength of the
Branin method depends on the adjoint of the Hessian and the
gradient. If the product of adjoint and gradient becomes a
zero-vector, the steplength is zero. This happens either in sta-
tionary points, where the gradient vanishes, or in VRI points.
In the second case the determinant of the adjoint of the
Hessian vanishes. Hence, stationary points and VRI points are
the limits of the Branin method. In mathematical terms, the
VRI points are singular points of the Branin method.20

The starting point for the Branin method may be any point
of the PES, except for stationary points and VRI points,
whereas the search direction is given by the gradient at this
point. If the search direction of a Branin curve does not
exactly coincide with the direction of the gradient at the VRI
point (which we search for), a turning point occurs [cf. Fig.
1(b)]. Hence, we have to start at a point where the gradient
has the same direction as the gradient at the VRI point. This
can be realised for manifolds of VRI points in symmetric sub-
spaces of the conÐguration space. Therefore, a systematic
search for VRI points in symmetry planes of the PES of water
is possible. In this case, along the pathway of a Branin curve,
the eigenvalue of an eigenvector, being orthogonal to the gra-
dient, converges to zero.

Another method to describe a reduced gradient curve is the
standard homotopy method as shown in ref. 27, using an
additional curve parameter which increases the dimension of
the problem by one.

3 The potential energy surface of water

Visualisation by cross sections

The calculations on the molecule use the MP2/6-31G**H2Omethod of the Gamess-UK program package.28 Internal
mass-weighted coordinates were used (see Appendix), where r
denotes the distance OÈH and a the angle HÈOÈH. As the
complete 3-dimensional potential energy hypersurface of H2Ocannot be visualised, we use three types of sections (see Fig. 2).
First, the symmetric plane (a, second, the anti-r1 \ r2),symmetric planes (a, where R is a Ðxed OÈHr2\ 2R [ r1),

Fig. 2 ConÐguration space of with the planes of section, and aH2Odisplay of selected geometries of the water molecule.

distance at and third, the planes for a Ðxed a.r1 \ r2 , (r1, r2)All these special planes are perpendicular to each other. The
sectional submanifolds of the PES are 2-dimensional surfaces
calculated by single-point MP2 calculations over grids of
41 ] 41 up to 41 ] 81 points in the conÐguration space. Inter-
polations are done by Mathematica.25 The representation of
the PES in the Ðgures is curvilinear, and is thus dis-H2Otorted. The length of the 1 arc, with a radius of 1 corre-Ó Ó,
sponds nearly to 57¡, in non-mass-weighted coordinates. We
use a standardised notation, i.e. the same letters or numbers in
the Ðgures are related to the same object. Furthermore, capi-
tals are used to denote points and regions of the PES, Arabic
numerals denote curves.

Another visualisation : ““The Apple ÏÏ

Illustrating the potential energy of in a particularH2Omanner, a 3-dimensional picture is shown in Fig. 3. The coor-
dinate system used is that of Fig. 2. The centre of the surface is
the conÐguration with the minimum energy. We leave the
minimum conÐguration in steps of equal length (0.05 inÓ)
every direction. The value of the new potential energy states
the distance of the surface point from the centre. Thus, the
energy di†erence between the equilibrium structure and a
point at a Ðxed distance from the equilibrium structure is
shown. This deÐnition is analogous to the rotational energy
surface, see ref. 29.

Fig. 3 ““The Apple ÏÏ : energy changes by leaving the global minimum
of water by equal steps in all directions. The coordinates are the same
as in Fig. 2.

Phys. Chem. Chem. Phys., 1999, 1, 5291È5299 5293



Fig. 4 The symmetric section of the PES of Point A: globalH2O.
minimum; region B: the dissociation channel forming regionO ] H2 ;
C : O] H ] H dissociation path ; point D: saddle point at the linear
structure.

Fig. 5 Antisymmetric section of the PES of taken at R\H2O1.25 Ó.

Fig. 6 Antisymmetric section of the PES of taken at R\ 1.5H2O Ó
(cf. Fig. 5). The ““eyes ÏÏ C represent the sections of two branches of the
valley leading to HÉ É ÉOH or HOÉ É ÉH, respectively. The ““mouthÏÏ B is
a cross section of the dissociation channel which forms O ] H2 .

Section of the PES of Point A is the globalFig. 7 (r1, r2) H2O.
minimum. The VRI point is near C (where r1\ r2B 1.35 Ó).

The picture depicted in Fig. 3 looks like an apple. The
““apple-blossomÏÏ and the ““apple-stalk ÏÏ represent the bending
mode, which gives the direction of the lowest change of
energy. The relation between both the symmetric and the anti-
symmetric modes can be seen in the on-top view. The sym-
metric mode lies in the direction from southwest to northeast
and the antisymmetric mode from southeast to northwest. It is
clearly seen that the ““ least ascent ÏÏ MEP starts along the bend
direction, whereas the symmetric stretch pathway comes next,
being much steeper. The antisymmetric stretch is the strongest
vibration, at least near the minimum conÐguration. The
surface may be the 3-dimensional vibrational energy picture of

seen in an inverse representation in comparison to theH2O,
usual equipotential surfaces, cf. ref. 19.

Topography and reaction channels

Fig. 4 shows the symmetric section of the PES of TheH2O.
global minimum is shown by point A (MP2/6-31G** : 0.961 Ó,
103.87¡, [76.222 449 and the SP of inversion at a \ 180¡Eh)by point D. Region B is a reaction valley related to the disso-
ciation channel forming (note that a MP2 level calcu-O] H2lation is not able to represent the whole dissociation process
sufficiently). Fig. 4 gives an impression of the MEP starting at
the minimum structure shown by A and following the sym-
metric dissociation channel. Moving from point A to region
C, there is another valley-like structure (a ÏÏcirqueÏÏ) reaching
higher energies. In the MP2 model it represents the
O ] H ] H dissociation. (The classiÐcation of valleys or
ridges is not important for the discussion of VRI points, cf.
refs. 30 and 31 and further discussions there.) An anti-
symmetric section of the PES (Fig. 5), intersecting the sym-
metry plane at shows a symmetric minimumr1\ r2\ 1.25 Ó,
representing the Ñat valley C of Fig. 4. The dissociation
channel B is visible at the bottom of Fig. 5. However, the
situation in the antisymmetric section at R\ 1.5 is quiteÓ
di†erent (Fig. 6). Whereas the ““mouthÏÏ of the ““ face ÏÏ is the
analogous section through the dissociation channel B (O

the ““eyes ÏÏ now represent the section of two branches] H2),of the Ñat valley C. Hence, the valley C bifurcates between the
distances 1.25 and 1.5 of the symmetric section. The branch-Ó
ing point is a VRI point. It can also be found in the (r1, r2)plane shown in Fig. 7 (a \ 103¡). The VRI point is located
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Fig. 8 (a) The conÐguration space of 1 : Ðrst curve of VRI points ; 2a : reduced gradient curve which belongs to the direction of theH2O.
symmetric stretch ; 2b : bifurcation of 2a towards OH ] H dissociation ; 3 : reduced gradient curve to the direction of the antisymmetric stretch ;
4a, 4b : the two parts of the reduced gradient curve which belong to the direction of the bend ; 5a, 5b : reduced gradient curve approximating the
MEP. (b) The symmetric subspace with equipotential lines. Notation is the same as in part a.

near However, this point is difficult tor1 \ r2B 1.35 Ó.
visualise because of the Ñatness of the surface in this region.

The two further valleys of Fig. 7, lying parallel to the axes,
belong to the antisymmetric stretch mode. It is well known
from experiments that this mode changes from a normal mode
behaviour (lying diagonal in the potential well) to a local
mode along one of the valleys, after sufficient excitation.32

4 The set of valley–ridge inÑection points on the
PES of water
In a previous paper,19 we used a test surface to show that VRI
points may form a manifold of the dimension O(N[ 2),
where N is the dimension of the conÐguration space. In other
words, for PESs with dimension higher than two, the set of
VRI points may be a curve or even a higher-dimensional man-
ifold. Using the Branin method, it is possible to search system-
atically for VRI points of the PES of symmetric conÐgurations
of The resulting curves of VRI points of the PES ofH2O.

are shown in Figs. 8(a) and 8(b) together with otherH2Ocharacteristic features of the conÐguration space and the sym-
metric subspace. Point A again depicts the global minimum,
point D is the SP forming the linear structure and region B is
the location of the dissociation channel forming O] H2 .
Curve 1 is a manifold of VRI points which is shown separately
in Fig. 9 together with its energy proÐle. The VRI point pre-
dicted by the two antisymmetric sections (Figs. 5 and 6) is also
located on curve 1 in Fig. 8. It is situated at the crossing of the
curves 1 and 2 in region C.

The method of calculation can be described as follows : the
VRI points forming curve 1 have been calculated by the
Branin method using eqn. (2). To Ðnd a point, we Ðrst Ðxed a
starting point. After convergence to a VRI point, the next
initial point is selected, for example along the middle part of
curve 1 by changing the angle coordinate by 5¡. The sign used
in the Branin search depends on the side of the VRI curve
where the initial point is located (relative to the global

minimum A). If necessary, we can restart the procedure with
the opposite sign. The calculated points are listed in Table 1.
We use a symmetry restriction for the two r(OÈH) distances. If
no symmetry is enforced, any small numerical uncertainty in
the two OÈH distances causes a turn o† of the Branin search
in the full 3-dimensional conÐguration space, and the search
misses the symmetric VRI point. Such behaviour has already
been reported in ref. 19.

In our Ðrst presentation17 the RGF was calculated by fol-
lowing the direction of the internal coordinate axes. A gener-
alisation of the concept was given by the use of any gradient
direction in the conÐguration space.19 It becomes particularly
important for the simulation of normal modes or combination
modes at the initial stationary point.6,7 The procedure corre-
sponds to the well-known method of a distinguished coordi-
nate.18 The curves 2È4 in Fig. 8 are calculated by the RGF
method ; they belong to the directions of normal modes at the
minimum A: symmetric stretch (curve 2), antisymmetric
stretch (curve 3), and the bend mode (curve 4). Notably,
normal modes are not necessarily the best choice of the search

Fig. 9 Energy proÐle along curve 1 (VRI points) in the symmetric
section of the conÐguration space of Capitals are used as inH2O.
Figs. 4 to 8.
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Table 1 VRI points (curve 1) at r \ r1\ r2 .

r/Ó a/¡ Energy/Eh
0.8142079 32.0898822 [75.79598381
0.8805428 32.9069335 [75.91140887
0.9321274 33.5856487 [75.97170769
0.9809287 34.2509481 [76.01118472
1.0495921 35.2165455 [76.04517464
1.0954554 35.8889383 [76.05734627
1.1261898 36.3619864 [76.06187406
1.1979250 37.6168824 [76.06381851
1.2272689 38.2585028 [76.06197996
1.2432003 38.6730896 [76.06053391
1.2660677 39.4282580 [76.05813829
1.2799648 40.0788024 [76.05673027
1.2969708a 41.5297075 [76.05603934
1.3049490 44.5677445 [76.06059859
1.3048634 46.5586749 [76.06481013
1.3075098 53.8655630 [76.07790826
1.3185499 60.8132821 [76.08490366
1.3352569 70.2243254 [76.08942604
1.3457460 80.1428205 [76.09199630
1.3485165 90.0180881 [76.09317728
1.3458742 100.3116099 [76.09245610
1.3398904 109.9777560 [76.08961314
1.3313655 119.8485404 [76.08431447
1.3214642 129.7984578 [76.07627010
1.3118746 139.8510865 [76.06502995
1.3055246 150.0896531 [76.04981237
1.3093429 161.9287987 [76.02622996
1.3231472 169.4424709 [76.00720584
1.3390953 174.9747750 [75.99261526
1.3462948 178.0451248 [75.98698623

a Bifurcation part of MEP, see discussion.

direction to approximate a reaction path by a reduced gra-
dient curve whereas curve 5, belonging to a combination
mode in Fig. 8, matches the reaction path much better than
curve 4 which belongs to the bend mode.

Curve 2 is of great interest. It is composed of two parts. The
symmetric part 2a starts at the global minimum, point A, and

Fig. 10 (a) Projection of reduced gradient curve 2. At the VRI point,
the breakdown of symmetry is energetically favourable in comparison
with the symmetric pathway. The antisymmetric branches, 2b, lead to
equivalent antisymmetric conÐgurations. (b) Projection of reduced
gradient curve 5, notation as in part a.

Fig. 11 Symmetric section of the PES of RGF and steepestH2O.
decent (SD) or IRC are compared.

goes up to region C along the valley of the symmetric stretch
mode, see Fig. 4. The part 2a branches at the intersection with
the VRI curve 1. Here, the two branches of part 2b break out
of the symmetry plane. In contrast, branch 2a in Fig. 8 goes
further uphill within the symmetry plane, but now along a
ridge. The reduced gradient curve 3 follows the direction of
the antisymmetric normal mode. One should note that in Fig.
8(a) the curves 2b and 3 do not meet. A crossing is forbidden
by di†erent gradient directions on each curve. Di†erent curves
calculated by RGF only meet where the gradient is a zero
vector and this would mean at stationary points. Curve 4
starts with RGF in the bend direction and connects three
parts of the PES: the SP of the linear at D, the globalH2Ominimum at A, and the dissociation channel at B. There it
crosses the VRI curve 1 and bifurcates into three branches
which all lead to the dissociation in Curve 5 isO ] H2 .
similar to curve 4, but it Ðts better the symmetric reaction
path of the dissociation. It is a good approximationO] H2of the MEP leading from equilibrium to the dissociation
channel B. Its search direction is a combination of bending
and symmetric stretch found by trial and error. ““Search
directionÏÏ means that at every point of the curve, which is
calculated by RGF, the gradient is parallel to this direction,
and not the tangent vector of the curve.

For a better understanding, curves 2 and 5 are depicted
again in Figs. 10(a) and 10(b). The Ðgure shows hypersurfaces
of where a is projected out of the representation. Thus,(r1, r2)curves 2 and 5 are projected onto a plane. Curve 5 [Fig. 10(b)]
follows the valley of dissociation in the direction ofO] H2the bend mode, and curve 2 [Fig. 10(a)] follows the valley of
the symmetric stretch to O ] H ] H. At the corresponding
VRI points the ascent in the symmetric direction of both
curves becomes stronger than the ascent in the direction of an
antisymmetric breakout. The curves branch. Whereas parts 2a
and 5a unwaveringly hold the symmetry to become a ridge,
the other branches leave behind the plane of symmetry to
reach the energetically favorable pathways along the valley
branches. In both cases, the two directions, in which the sym-
metry is broken, are equivalent.

Part 2a from the minimum up to the branching point at the
VRI curve may be understood as a ““distinguished coordinate
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pathÏÏ in the direction of the symmetric stretch, representing a
realistic reaction path. Beyond the branching point, the distin-
guished coordinate method would jump, orthogonally to the
former start direction, to one of the antisymmetric branches of
the curve 2b. Note that the bifurcation leads out of the sym-
metric plane. This holds for any symmetric curve calculated
by RGF which bifurcates on the PES of Obviously, theH2O.
branching of symmetric curves on a high-dimensional PES
generally takes place under loss of symmetry.

It is possible to compare RGF with steepest descent as
shown in Fig. 11. One pathway of steepest descent starts at
the dissociation channel in region B and runs down parallel to
the reduced gradient curve 5. A second pathway of steepest
descent starts at the branching point of reduced gradient
curve 2 in region C. It is evident that steepest descent and
RGF form close neighbouring curves in these cases. In partic-
ular, the IRC starting at the SP at D (linear structure) is near
the corresponding reduced gradient curve 4. This is due to the
almost linear course of the valley between minimum and SP.

5 Discussion
After Ðnding the VRI points of a 3-dimensional test poten-
tial,19 we used the experience for analysing the PES of a real
systemÈthe water moleculeÈand again we can Ðnd curves of
VRI points, i.e. 1-dimensional manifolds. The results revise the
older view of the problem,33 which suggested that an isolated,
well-deÐned point is obtained. The method of following a
reduced gradient (RGF) as well as the alternative Branin
method have succeeded in computing the VRI points. Both
methods generate the same curves, although the application of
both methods is di†erent. The Branin search converges to the
““next ÏÏ stationary point or to a VRI point with decreasing
steplength. This way allows Ðnding these important points of
the PES and a systematic search for VRI points of a given
symmetry is possible. On the other hand, using the method of
RGF, we are able to follow curves through large, possibly
unknown parts of the conÐguration space with deÐned step-
length in order to locate any stationary point or to simulate
reaction path approximations.

The results reported in this paper raise the question of the
meaning of high-dimensional manifolds of VRI points. Which
points on the VRI manifold correspond to the chemical
concept of reaction path branching? To answer this question
we need a criterion that allows us to decide whether a VRI
point is located on a MEP. The IRC is not deÐned locally and
so it is unsuitable for such a task. In contrast, if a VRI point
fulÐlls the conditions of a gradient extremal and the eigen-
values of the Hessian indicate a valley, this VRI point is
located on a MEP and so this VRI point is the branching
point of that reaction path. Now we will consider the reaction
path which follows the symmetric dissociation ofO] H2In fact, a gradient extremal crosses the VRI curve 1 nearH2O.
the VRI point at (1.297 1.297 41.5¡). The point is markedÓ, Ó,
in Table 1. This way we can state that there is a bifurcation of
the reaction path. The gradient extremal itself does not bifur-
cate at the crossing of the VRI line.

Finally, we will try to generalise the meaning of the curve of
VRI points. A set of curves calculated by RGF referring to
di†erent search directions of the PES of is displayed inH2OFig. 12. Some of the curves cross the VRI manifold and
branch there. The directions of their gradients can be com-
pared with combinations of normal modes of the equilibrium
structure. The curve of VRI points of the PES of may beH2Oconsidered as the outer limit for stable modes in the sym-
metric subspace, i.e. for the combinations of the sym-H2Ometric mode and the bending. The drawback of this view is
that in a real molecule a constant normal mode direction
cannot be conserved, if the vibration is excited. Normal modes
may change to local modes (see, e.g., ref. 32).

Fig. 12 Symmetric section of the PES of with reduced gradientH2Ocurves to di†erent gradient directions. Bifurcation points occur at the
intersection of reduced gradient curves and VRI curves.

It has to be pointed out that the curve 1 of VRI points is
sensitive to di†erent levels of calculation. At the lower
STO-3G level, this curve is not ““closedÏÏ as in Figs. 8È12 ;
however, it ““opens a windowÏÏ along the MEP to region B. In
addition, for di†erent polynomial Ðts of the PES of H2O34h36
there are di†erent VRI curves.

6 The fourfold cluster problem
In the following we will compare the results of our PES
analysis of with experimental results obtained from theH2Oanalysis of rovibrational spectra. The discussion may be excit-
ing for spectroscopists although it is not free of some specula-
tion. It must be assumed that the energy ascents along
vibrational motion pathways, in particular if they are accom-
panied by a branching, will inÑuence the character of the
spectra.

In the row of molecules (X\ O, S, Se, Te, Po), so-H2Xcalled fourfold clusters of rotational lines are predicted ;37,38
they have already been observed for X\ S and X \ Se.39 In
highly excited rotational states the centrifugal forces are
strong. They may cause a large distortion of the molecule
away from its equilibrium conÐguration and then the mol-
ecule has to be treated as being nonrigid. For high values of
quantum numbers J and the two highest rotational linesKa ,
of the former symmetric and antisymmetric vibrational states
coincide into the above-mentioned clusters, indicating the
symmetry breaking of the corresponding states with lower
rotational quantum number. Local mode states are the result
where the rotational axis of the molecule gets closelyH2Xparallel to one of the HÈX bonds. In other words, the local
mode vibrates along this bond axis, while the second H atom
is rotating around this Ðrst HÈX axis.40 The perpendicular
bond is much more a†ected by the centrifugal distortion. The
fourfold clusters emerge for pure rotational lines of the vibra-
tional ground state (Type I clusters)37 as well as for the rota-
tional lines of the system of stretches (Type II clusters).41l1/l3The fourfold Type I clusters of the vibrational ground state
of water have not yet been found, see ref. 42 and references
therein. Sarker et. al.42 use the PES of the polynomial Ðt

It is less reliable in comparison with thoughPJT1.34 PJT2 ,35
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Table 2 Comparison of VRI points of di†erent molecules

Molecule PES l1l2 l3 VRI point Ó rVRI[ re VRI E/cm~1

H216O MP2a È 1.346b 0.389 27925
H216O MR-CIc È 1.329b 0.379 27600
H216O CCDSd È 1.324 0.364 29000
H216O PJT2e 3152/1595/3656 1.29 0.32 22950
H232S PJTf 2615/1182/2629 1.76 0.41 19750
H280Se KJg 2344/1034/2358 1.905 0.42 17600
H2130Te GJh 2065/861/2072 2.145 0.43 16400

a This work. b A deviation of of 0.01 causes an energy change of B500 cm~1. c Ref. 21. d Ref. 36. e Ref. 35. f Ref. 47. g Ref. 48. h Ref. 49.rVRI Ó
Note : the PESs (d) to (h) are Ðtted to values near the minimum; they can only be considered reliably up to about halfway to dissociation, i.e. the
region where the VRI points are found represents a rough extrapolation of the PES.

it is also evident from Table 2 that is not sufficientlyPJT2reliable in the region over 20000 cm~1. The bond angle of the
water molecule at a rotational excitation of J \ Ka \ 40,

will be reduced to about 80¡.38b,c There, Sarker et al.Kc \ 0
assign an energy of 28400 cm~1. This is still below the VRI
point of curve 1 at 80¡ which is at 28630 cm~1, cf. Table 1. We
postulate that further rotational excitation could exceed the
VRI line. As a consequence, the symmetric shortening should
disappear and the molecule will jump into a local unsymmet-
rical state. Thus, the fourfold clustering should start.

The fourfold Type II clusters are experimentally observed in
and where they emerge around withH2S H2Se39 J \ Ka \ 20

the corresponding term values of 6618 and 5480 cm~1.43,44
The situation in however, is not so clear or simple. TheH2O,
latest assignment for water shows the rotationalJ \ Ka \ 28
line pair of the system to be at 19552, 19514 cm~1l1/l3energy.45 In the symmetric lines cross the antisymmetricH2O,
lines also at but without forming fourfold TypeJ \ Ka \ 19,
II clusters. In Table 2 we give a comparison of H2O, H2S,

and The VRI points used in Table 2 are found inH2Se, H2Te.
the plane with an angle Ðxed at the equilibrium value ofr1, r2the minimum (in analogy to Fig.7). Of course, the VRI point
lies on the symmetry line r1 \ r2 .

The PES of water is much steeper than those of the other
molecules. And it shows the cirque C being a ““pathwayÏÏH2Xfor high-energy symmetric excitations, see Fig. 4. Keeping in

mind that our ab initio MP2 calculation is not very reliable
above half the dissociation energy (20000 cm~1 for water), but
is much better than the surface of Table 2 (footnote e) (where
the cirque C is missing), there still remains the fact that the
VRI point for a symmetric stretch is about 10000 cm~1 higher
in the water molecule than in the other molecules. ThisH2Xcould explain the missing of fourfold clusters in the l1/l3system of water. We postulate that the existence of the curve
of VRI points is the probable reason for the instability of the
symmetric modes at higher excitation, cf. also ref. 46. The
occurrence of the fourfold clusters in the other moleculesH2Xdescribes the pathway of redistribution of rotational states of
a symmetric mode, which reach the VRI region, into a local
mode valley of the PES. However, the description uses highly
situated rotational states where the so-called rotational energy
surface (see, for example, ref. 29) changes its shape. But the
PES is the source of all molecular rigidity or even non-rigidity
(as in this case). If the anharmonic structure of the PES is the
reason for the change of the rotational energy surface, it is
also the reason for the fourfold clusters. The water molecule
should also show such features. The existence of the ÏÏclosedÏÏ
curve 1 (Figs. 8È12) of VRI points on the ab initio MP2 PES
of water is a strong hint for the unavoidable loss of stability of
states with symmetry. The pathway of any symmetricr1 \ r2combination mode bifurcates into two equivalent anti-
symmetric directions, in the corresponding a-section. Thus,
any vibrational state with symmetry should cease tor1\ r2exist if it is excited by corresponding high rotational quantum
numbers : the symmetric ground state (where bending is

involved at high rotational excitations), or also the stretching
or its overtones, or its combination modes. In this manner,l1,the VRI curve is the border of the accessible region of the PES

for symmetric states. It is the outer edge of the funnel which
collects states and directs the motions of the molecular system
into the direction of a minimum energy path. Here this MEP
may be the local mode direction to an unsymmetric disso-
ciation OH] H at approximately 41000 cm~1.
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Appendix : short description of the algorithm
We have used mass-weighted internal coordinates throughout
this work. They are given by a z matrix. The corresponding B
matrix has a pseudoinverse matrix B`. The contravariant
metric tensor (gij ) is calculated point by point taking B Æ B`
where the usual metric tensor forms its inverse matrix.(g

ij
)

The gradient g and the Hessian matrix H are calculated in
Cartesian coordinates by the Gamess-UK package.28
However, at any point they are transformed into their internal
version by and SometimesB` Æ gC\ gI B` Æ HC Æ (B`)T\ HI .the Hessian is needed in the mixed character The(gij) É HI .Hessian may be given as for the fre-[(gij )1@2)]T É HI É (gij )1@2
quency analysis, with the Cholesky decomposition50 of (gij )
into a product of an upper and a lower triangular matrix :
(gij )1@2 É [(gij )1@2]T. The eigenvalues of this Hessian matrix cor-
respond exactly to the eigenvalues of the Cartesian Hessian

where, additionally, the so-called zero eigenvalues of trans-HClation and rotation emerge.
To get the system of equations for RGF, we have to deÐne

the projector We calculate (n [ 1) orthonormal directionP
r
.

vectors being also orthogonal to the covariant selected search
direction r by using the modiÐed GramÈSchmidt algorithm.50
Then, the projector is the matrix of these (n [ 1) rows. Eqn.P

r(1) for RGF becomes a linear equation for a con-P
r
Æ HI Æ t \ 0,

travariant tangent vector t. It makes up the predictor step.
The system is solved by QR decomposition. The reduced
Hessian is augmented by the covariant tangent vectorP

r
Æ HIto an (n ] n) matrix which is the so-called K matrix.23

The corrector step is applied if the norm of the reduced
gradient is greater than a variance v which is given as aP

r
Æ gIparameter. The subsequent contravariant NewtonÈRaphson

step orthogonally to the tangent is realised by solving a linear
equation where the K matrix forms the left-hand side, and the
right-hand side is given by the reduced gradient augmented by
zero in the nth row. If the corrector steps do not converge, we
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use modiÐcations of the NewtonÈRaphson step ; for example,
the reduction of the steplength.

We may simply test the passing of a bifurcation point by
comparing the tangent vector of the predictor step with the
previous one. If the tangents point in opposite directions, then
a bifurcation point is passed.23 The test of a turning point is
the comparison of the tangent vector of the predictor step
with the direction of the Ðrst step f. The comparison is realised
by calculation of the inner product of these vectors with
respect to the metric tensor : with respect toti É g

ij
É tprevj

ti É g
ij
É f j.

Either the predictor step, or the corrector step is added to
the current z matrix values of the internal coordinates, and the
next loop of the algorithm is begun.
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