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A VALLEY FOLLOWING METHOD
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We present a procedure to follow the ‘‘path along the valley floor’’ of a hypersurface. The aim is either to find
minima, or to go from a minimum to a saddle point of index one, if the saddle is at the top of the valley
floor. The motivation is that of taking into account local nonconvexity of the hypersurface and possibly to
determine valleys. The method uses a projector technique where the projector is built by the tangent of the
valley floor line. The projector is applied to the gradient and Hessian matrix of a given function, and it
is used for predictor and corrector steps in path following. The resulting path is the ‘‘valley floor gradient
extremal’’ which corresponds to the smallest (absolute) eigenvalue of the Hessian. Convergence properties
are analysed.

Keywords: Stationary points; Path following; Projected gradient; Newton flow; Gradient extremal

Mathematics Subject Classifications 1991: Primary 90C26, 58K05; Secondary 58-04, 65H17, 53A07

1. INTRODUCTION

The so-called minimum path of theoretical chemistry [17] is roughly defined as the line
which connects two minimizers by passing the saddle point of a potential surface
following the valley in between. A possibility for this line is the steepest descent path
from saddle point, i.e. the stable manifold w.r.t. the standard gradient flow.
However, the latter is not always the valley floor [18,19]. Newton trajectories [21,22]
can be used only in certain special cases for the valley floor. The gradient
extremal [3], see also [12], appeared to represent a suitable ‘‘ansatz’’ for a valley
floor. However, up to [23], the procedure for the calculation of the gradient extremal
has required some expansive third derivatives of the surface [30]. Further, there are
many additional solution curves and turning points [13,20,23]. Usually, however, one
needs only the valley path from minimum to saddle point. In this article, the combina-
tion of the gradient extremal concept with the ‘‘reduced gradient following’’ (RGF)
[21–25] opens a manageable way to follow the valley floor of the surface. The original
RGF finds a Newton trajectory corresponding to a selected gradient direction
(the search direction). There are curves which pass all stationary points in most cases
(however, see [32] for a counterexample). RGF is an interesting procedure in order
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to determine all types of stationary points by way of trial [21]. Now, we iteratively
replace the constant search direction of RGF by the tangent of the current curve.
The new method proves a practicable algorithm for searching minima, or saddle
points of index one. The latter play a crucial role in global optimization, cf. [16],
Remark 5.2.8. The method uses explicitely the valley structure and is able to find the
saddle point if it is at the top of the valley. The valley may be of interest by itself as
it is the case in theoretical chemistry or molecular spectroscopy. There it is assumed
that the wave packet of a molecular vibration moves along the valley of the potential
energy hypersurface of the electronic energy. If such a vibration is further excited, it
can lead to a chemical reaction [31]. If only the stationary points are searched for, the
procedure may be used with crude steps along the valley. The search is restricted to the
region of attraction of any minimum or saddle of index one. Thus, no global search is
the aim. However, if the method is combined by successive searches: minimum!

saddle! next minimum ! next saddle and so on, one is able to explore diverse low
lying parts of the surface (cf. [16], Chapter 8).

The article is organized as follows: Section 2 shortly recalls the fundamentals of the
RGF method, and Section 3 repeats the definition of gradient extremals. In Section 4
the valley following method is developed. The convergence result is expressed
in Theorem 4.4. Subsequently, the success is demonstrated by an Example, and
Conclusions are given.

2. FOLLOWING THE PROJECTED GRADIENT (RGF)

The function f : R
n
! R

1 is assumed to be twice-continuously differentiable. We
consider the solution of the extremal problem for stationary points rf(x)¼ 0. By
g(x) :¼r f(x) we denote the gradient vector of f. We assume that stationary points
of f are nondegenerate (hence, isolated), i.e.

kgðxÞk þ jDetðHðxÞÞj 6¼ 0, ð1Þ

where k. . .k is the Euclidean norm, and H(x) is the Hessian matrix of second derivatives
of f : H is the Jacobian matrix of first derivatives of g. We are interested in minima and
saddle points of index one.

First, we recall the differential equation of Branin [5], see also [14–16]. It utilizes the
adjoint matrix A of the matrix H of f. This is defined as ((
1)iþjmij)

T where mij is
the determinant of the minor of H obtained by deleting from H the ith row and the
jth column. The matrix A fulfils

HA ¼ DetðHÞIn ð2Þ

with the (n, n)-identity matrix In.
Let x : R

1
! R

n be a curve, x(t) with parameter t.

Definition The differential equation of Branin [5] is given by

dx

dt
¼ �AðxðtÞÞ gðxðtÞÞ, xð0Þ ¼ x0: ð3Þ
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The vector field (3) is a Gradient Newton-flow, and curves satisfying (3) are called
Newton trajectories of the desingularized global Newton method.

Secondly, we recall another point of view w.r.t. Newton flows, cf. [6,21,22,24]. Let
r2R

n be a unit vector and Pr the orthogonal projection on the orthogonal complement
of r. Note that Pr:¼ In
 rr

T, a matrix of rank (n
 1).

Definition If the gradient g(x) fulfils

PrgðxÞ ¼ 0 ð4Þ

then this gradient is called the reduced gradient w.r.t. the direction r.

Definition Let x :R1
! R

n be a curve and x(t) be a point where kgk 6¼ 0. The curve x(t)
is called RGF curve w.r.t. direction r if

gðxðtÞÞ=kgðxðtÞÞk ¼ r ð5Þ

holds for all t.

PROPOSITION 2.1 The differential equation of Branin (3) has the same solution curve as
the RGF Eq. (5), if the initial point x0 of (3) satisfies (5). Consequently, x0(t) of (3) is
the tangent to the solution curve of Eq. (5).

Proof Let H be nonsingular. Considering the behavior of the gradient g(x(t)) along a
solution, x(t), we obtain with (2) and (3):

dg

dt
¼ H

dx

dt
¼ �HAg ¼ �DetðHÞg: ð6Þ

The gradient g(x(t)) changes proportionally to g itself. Hence, the direction g/kgk is
invariant. g

Definition [5] A point where Ag¼ 0 but g 6¼ 0 is called an extraneous singularity
of Eq. (3).

PROPOSITION 2.2 Solutions of the Eq. (4) build RGF curves w.r.t. r. They connect
stationary points which differ in their index by one, if no extraneous singularity is crossed.
The latter are bifurcation points of RGF curves.

Proof The first part follows by insetting (5) into (4). The second part is given in [14] in
connection with the Proposition 2.1. g

Note that RGF is an alternate definition of Newton trajectories [6]. The tangent x0(t)
to a curve fulfilling (4) is obtained by

0 ¼
d

dt
½PrgðxðtÞÞ�¼ Pr

dgðxðtÞÞ

dt
¼ PrHðxðtÞÞx0ðtÞ: ð7Þ

In general, the search direction, r, and the tangent, x0(t), to the Newton trajectory
w.r.t. r are different. The predictor–corrector method of RGF [21,22] is the predictor
step along the tangent x0(t), and Newton–Raphson steps of the corrector to search
for a solution of (4).
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PROPOSITION 2.3 Let kg(x)k 6¼ 0 and Det(H(x)) 6¼ 0. The point x is the carrier of a
Newton trajectory w.r.t. r where r¼ g(x)/kg(x)k.

Proof It is dimkerPrH(x)¼ 1. Consequently, the point x being a solution of (5)
extends locally to a smooth manifold of dimension 1. The latter manifold is the
Newton trajectory w.r.t. r. g

PROPOSITION 2.4 In the neighborhood of every nondegenerate stationary point xS starts a
Newton trajectory w.r.t. r for every direction r.

Proof Linearization of g near xS yields g(x)�H(xS)(x
 xS). Since H(xS) is non-
singular, any direction for g is represented near xS. Now, Proposition 2.3 completes
the proof. g

Figure 1 shows Newton trajectories for the Rosenbrock function [26]

f ðx, yÞ ¼ 100ðy
 x2Þ2 þ ðx
 1Þ2: ð8Þ

The Newton trajectory w.r.t. r¼ (1,0)T, the solution of fy¼ 0 follows the parabola
y¼ x2. It is a good approximation of the valley floor, while the trajectory w.r.t.
r¼ (0,1)T, fx¼ 0 (dashed curve), does not follow the valley throughout: it deviates at
x¼ 0 from this path and it falls to two pieces there but being not a continuous
model curve of the valley floor. The model demonstrates that the global Newton
method (to follow a trajectory of Eq. (3)) is not able to find the minimum in all cases.

3. GRADIENT EXTREMAL (GE)

For g(x) 6¼ 0 we search for the ‘‘valley floor’’ of the hypersurface, f, which let be in
C3: the point showing the slowest ascent of the valley is defined by the condition

FIGURE 1 Rosenbrock surface [26] f(x,y)¼ 100 (y
 x2)2þ (x
 1)2. Contour lines are at 0.25, 0.5, 0.75,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100. Shown is the Newton trajectory fx¼ 0 (dashes).
Gradient extremals are dotted thick curves. The streambed GE follows perfectly the valley floor, as well as the
Newton trajectory fy¼ 0 (covered by the GE).
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that the norm of the gradient is minimized over the level set Lc:¼ {x/f(x)¼ constant}
[3,20]. The measure for the ascent of f(x) is the norm of the gradient

�ðxÞ :¼
1

2
kgðxÞk2: ð9Þ

Under regularity condition, the equation f(x)¼ c defines an (n
 1)-dimensional sub-
manifold, described by x(u, c), where u is an (n
 1)-dimensional parameter. We treat
the parametric optimization problem with the objective function

�ðxÞ !
Min !
xð � , cÞ

ð10Þ

Note that both the objective function and the constraint are formed from f itself. We are
interested in following a path of local minima as the parameter c changes. For almost
all values of c one generally might expect that a local minimum x(c) of problem (10)
depends differentiable on c, mainly by virtue of the implicit function theorem. The
requirement for an extremal point of (10) becomes (use �(x) as Lagrange multiplier)

HðxÞgðxÞ ¼ �ðxÞgðxÞ: ð11Þ

The eigenvector Eq. (11) gives use to the following definition.

Definition A point x belongs to the gradient extremal (GE) [12] if the gradient of the
function f at this point is an eigenvector of the Hessian of f.

However, following a curvilinear set of consecutive GE points implies that one
actually does not move in the direction of the gentlest ascent [20].

Figure 1 shows the GEs for the Rosenbrock function (8). Here, the GE to the
smallest eigenvalue follows very well the valley floor. Figure 2 shows a GE which
changes the character when it passes the turning points, TP. (A TP is a point where
an uphill GE turns to a downhill GE, or vice versa.) But also here, one GE from
Min2 still goes to the saddle point, SP, after two sharp bends. Note that this need
not be so in all cases, cf. the Fig. 15 in [20].

Definition Using the arc length s for the curve parameter, a steepest descent curve x(s)
is defined by

dxðsÞ

ds
¼ 


gðxðsÞÞ

kgðxðsÞÞk
¼: 
wðsÞ: ð12Þ

Its curvature vector is defined by k:¼ (d 2x/ds 2). A straightforward calculation shows
the following alternate definition of GEs:

PROPOSITION 3.1 Gradient extremals consist of points where steepest descent lines have
zero curvature [27]. g

PROPOSITION 3.2 Let xS be a nondegenerate stationary point. Moreover, let the n eigen-
values of the Hessian be pairwise different. Then, exactly n GEs cross at this stationary
point.

Proof We use the Taylor series

f ðxÞ ¼ f ðxSÞ þ
1
2
ðx
 xSÞ

THðxSÞðx
 xSÞ þOððx
 xSÞ
3
Þ: ð13Þ
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After affine linear coordinate transformation to normal coordinates y, we find in
Eq. (13) the representation 1/2

P
�i y

2
i in the second order. Because �i 6¼ 0, there are

n normal coordinates yi being the eigenvectors of H, as well as they are the
gradient directions of f, if one leaves the stationary point, xS, along one of these n
directions. g

Definition A streambed gradient extremal [28,30] is the valley GE to the smallest
(absolute) eigenvalue, �1, of the Hessian in Eq. (11), thus |�1|<�i, i¼ 2, . . . , n.

We understand this GE to be the valley floor of the hypersurface f.

Note The level Lc may not contain stationary points of �(x), e.g. if Lc is unbounded.
The existence of a GE is a special event, in contrast to the Newton flow which exists
through every regular point excluding some singular points [16]. Also stationary
points which are in a certain common ‘‘neighborhood’’ may not be connected by a
‘‘direct’’ GE [12].

PROPOSITION 3.3 Let xS be a nondegenerate stationary point. Moreover, let the n eigen-
values of the Hessian be pairwise different. Then, each of the n GEs is tangential to a
certain Newton trajectory at xS.

Proof We choose the eigenvector of a given GE to be the search direction r of a
Newton trajectory. The use of Proposition 2.4 finishes the proof. g

FIGURE 2 Some equidistant contour lines of the quartic surface (16). GEs are dotted thick curves, Newton
trajectories are dashes. The GE from Min1 to SP is throughout a valley GE, however, not the GE from Min2
to SP. Its valley character ends at a turning point TP.
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We imagine to follow locally a Newton trajectory to direction r¼Ag/kAgk.

PROPOSITION 3.4 A point x where the gradient g(x) fulfils

PAgg ¼ 0 ð14Þ

belongs to a gradient extremal.

Proof It is PAg(Ag)¼ 0, and if PAgg¼ 0 then it holds that g¼ �Ag with a constant �,
i.e. g¼ (� det(H))H
1g and multiplication by H gives Hg¼ (� det(H))g. We obtain
the eigenvector Eq. (11) of the GE. g

PROPOSITION 3.5 A point x where the tangent of a Newton trajectory is parallel to the
gradient belongs to a gradient extremal.

Proof If e1,. . .,en are the eigenvectors of H with eigenvalues �1, . . . , �n then they are
also the eigenvectors of the adjoint matrix, A, but with the eigenvalues �i¼�j 6¼i�j.
This is due to the equation Hei¼ �i ei, and, by multiplication with A, we get

AHei ¼ DetðHÞ ei ¼ �i Aei, with DetðHÞ ¼
Yn
j¼1

�j : ð15Þ

The gradient is eigenvector of H and of A on a GE. Equation (3) gives the proof. g

Figure 2 shows the asymptotic convergence of certain Newton trajectories at three
stationary points w.r.t. the valley direction expressed by the GE. A GE crosses the
Newton flow at nonstationary points of f usually nontangentially. We use a quadratic
surface obtained by the product of two quadratic forms

f ðx, yÞ ¼ ððx
 1, y
 1ÞH1ðx
 1, y
 1ÞT Þððxþ 1, yþ 1ÞH2ðxþ 1, yþ 1ÞT Þ ð16Þ

with matrices being symmetric and positively definite

H1 ¼
1 
1:11


1:11 3

� �
, and H2 ¼

1 0
0 12:5

� �
:

Through upper Min1 goes a valley GE leading directly from Min1 to the saddle. The SP
is at the top of the valley. The situation changes in the lower part of Fig. 2. A valley GE
is also going through Min2, however, it ends at a TP at the slope of the surface. The next
piece of the GE is not a valley line.

4. FOLLOWING THE TANGENT OF THE PREVIOUS

PREDICTOR STEP (TASC)

The Method

The starting point is the predictor–corrector method of RGF. Now, we change the
projector of RGF after the predictor step: the tangent direction of the previous curve
point iteratively becomes the search direction used in the projector. The procedure is
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named the TAngent Search Concept (TASC). The aim is the asymptotic convergence of
Newton trajectories to a streambed extremal. Following [23] we define the TASC step:

Assume we are at point xk with g(xk)/kg(xk)k¼ rk, where rk is the unit vector of the
gradient of the Newton trajectory.

(i) Predictor Solve former Eq. (7):

PrkHðxkÞtk ¼ 0, ð17Þ

to get the tangent direction with ktkk¼ 1 for the predictor step to a Newton trajec-
tory w.r.t. rk, and do the step to xk� sktk. For a choice of the steplength sk see later
below.

(ii) Corrector change the search direction to rkþ1¼ tk, compute Prkþ1
to solve the

modified equation

Prkþ1
gðxÞ ¼ 0 ð18Þ

(instead of Prkg(x)¼ 0) by Newton–Raphson steps. If Eq. (18) is fulfilled then use
the solution as new point xkþ1.

The main idea is that (17), (18) asymptotically lead to the simultaneous equations

PrHr ¼ 0 and Prg ¼ 0: ð19Þ

From (19) it follows that g¼ �r and Hg¼ �g and, hence, the Newton trajectories
corresponding to g coincide with a steambed extremal. In order to achieve that
asymptotic behavior we prove that kPrkþ1

rkk�C �k, where 0� �<1. The main assump-
tion will be an overall domination (measured by �) of the smallest absolute eigenvalue
of the Hessian.

The Action of TASC

In general, the resulting curve of TASC is the valley floor:

PROPOSITION 4.1 The TASC corrector cycle for Eq. (18) gives a point xkþ 1 where that
gradient component is enforced which points to the direction of the eigenvector with the
smallest (absolute) eigenvalue of point xk.

Proof We use the Branin differential Eq. (3) which has the same solution as the
method of RGF by Propositions 2.1 and 2.2. If a point of the solution curve of the
RGF method w.r.t. the search direction r is reached, the gradient of Eq. (3) points
into the same direction. Expressing r by the eigenvectors of H

r ¼
Xn
i¼1

ri ei, ð20Þ

we obtain with Eq. (3) the relation for the tangent direction, see Proposition 3.5,

x0 ¼ Ar ¼
Xn
i¼1

ri
Y
j 6¼i

�j

 !
ei: ð21Þ
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Let �1 be the smallest (absolute) eigenvalue and r1 6¼ 0. The e1 component of the
preceding search direction r is enforced, if in the next step the new direction x0 of
(21) is used, thus, if the Newton trajectory which we search for is changed. The
action is the greater the larger the differences of the �2, . . . , �n are against �1. g

The rate of a possible convergence of an initial direction, r, against the path along the
eigenvector e1 depends on the entire matrix spectrum of H. Before we begin to deeper
analyse the action of TASC and its convergence properties, we must understand in
detail the

Corrector Step Let |�1|<�2, . . . , �n for the first eigenvalue of the Hessian of function f,
and let the unit vector e1 denote the corresponding first eigenvector. Along the lines of
[1,2] we start with a point x which fulfils

Pe1gðxÞ ¼ 0 ð22Þ

at the valley floor. For simplicity, we develop the idea in the special case that the system
of projector equations is fulfilled for the first normal coordinate being the direction of
the valley floor, e1. Still more simple, system (22) can be understood as (n
 1) zero
equations for the gradient components i¼ 2, . . . , n [21]. The derivative of Eq. (22)
along an assumed parameter t gives the matrix Pe1H(x) with

dim kerPe1HðxÞ ¼ 1: ð23Þ

The solution of (22) locally extends to a smooth one-dimensional manifold of
solutions. If we assume (22) to be a system of (n
 1) equations, then Pe1H(x) is an
(n
 1, n)-matrix. If we assume, again for simplicity, at point x normal coordinates,
we have

Pe1HðxÞ ¼

0 �2 . . . 0
. . . . . . . . . . . .
0 . . . 0 �n

0
@

1
A ð24Þ

in a special diagonal form. The Moore–Penrose inverse (Pe1H(x))þ of (24) is the unique
matrix with

Pe1HðxÞðPe1HðxÞÞþ ¼ In
1: ð25Þ

It is the transposed matrix of (24) where additionally the eigenvalues are inverted:

ðPe1HðxÞÞþ ¼

0 0 . . . 0
1=�2 0 . . . 0
. . . . . . . . . . . .
0 . . . 0 1=�n

0
BB@

1
CCA: ð26Þ

The kerPe1H(x) contains the searched tangent t(x). It is the vector (1,0, . . . , 0)T in
normal coordinates at point x. The reduced Hessian Pe1H(x) projects any n-vector of
R

n into an (n
 1)-dimensional subspace Y, where, at the other hand, we have from
(26) and the choice of t, the scalar product:

ððPe1HðxÞÞþyÞT � tðxÞ ¼ 0, for all y 2 Y: ð27Þ
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Thus, we can locally define the Newton method by

�xk ¼ 
ðPe1HðxkÞÞþPe1gðx
kÞ and

xkþ1 ¼ xk þ�xk, k ¼ 0, 1, . . . , and x0 is given on tðxÞ:
ð28Þ

So, by virtue of (27), the Newton steps are orthogonally to t(x). Their convergence
properties are described [10]:

PROPOSITION 4.2 Let Pe1g : R
n
!Y, Pe1g2C1(�) for some convex open set ��R

n such
that the derivative Pe1H of Pe1g satisfies (23) for all x2�. Under the assumptions that at
the initial point

kðPe1Hðx0ÞÞþPe1gðx
0Þk � �ðx0Þ, ð29Þ

and a Lipschitz condition at x0 holds

kðPe1Hðx0ÞÞþ½Pe1Hðx2Þ 
 Pe1Hðx3Þ�k � !0kx2 
 x3k ð30Þ

for all x2, x32� and x2
 x3 2 range(Pe1H(x1))
þ, where k. . .k at the left hand side depicts

a matrix norm in R
n, and the proximal root condition h0¼ �(x0)!0<1/2 defines the set

Sðx0, rÞ ¼ fx 2 R
n: kx
 x0k � rg � �, for r ¼

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
 2h0

p

h0
�ðx0Þ ð31Þ

then it holds that iteration (28) remains in S(x0, r) and converges to some x* with
Pe1g(x*)¼ 0 on the solution manifold. The rate of convergence is quadratic, and if

R ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
 2h0

p

!0
and � ¼ r=R ð32Þ

then

kxk 
 x�k �
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
 2h0

p

h0

�2k

1
�2k
�ðx0Þ: ð33Þ

The proof is a straightforward consequence of Theorem 4 in [7]. g

The step length, s, of a predictor along t should be to choose as large as possible:

x0 ¼ x0 � st0: ð34Þ

But on the other hand, we also want the Newton method in iteration (28) to converge.
That depends partly from the curvature of the solution of Eq. (18) which is described by
the difference in the square brackets in (30) being equivalent to the change of the
tangent t from one point x0 to the next x*; and to another part it depends from the cur-
vature of the hypersurface, f, orthogonally to e1 which is described by the eigenvalues
�2, . . . , �n. Bear the special case of matrix (26) in mind, we find that the second lowest
eigenvalue �2 has the highest influence for the estimation of !0 for the convergence.
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With [2] we have the following:

PROPOSITION 4.3 Consider a point x0 which fulfils (18), and the continuation step (34)
with iteration scheme (28). Let the tangent t(x0) be a solution of (17). It is a vector of
unit norm. Additionally to the assumptions of Proposition 4.2 let

kðPe1Hðx5ÞÞ
þPe1Hðx4Þt0k � !ts, ð35Þ

for any x4¼ x0þ s1t0, x5¼ x0þ s2t0, and 0<s1, s2� s such that x4, x5 2 �, and x0 is a
solution of (22). Then the iteration (28) converges to a solution x* of (22) for any starting
point x0 from (34) with

s � smax ¼
1

!0!t

� �1=2

: ð36Þ

The proof is given in [8]. g

The Proposition 4.3 shows that a line search is possible for the predictor step of
TASC. We use the line search estimation sk of [29] assuming that the final search for
stationary points is restricted to the one-dimensional line of the streambed extremal,
as it is induced by Propositions 3.3 and 3.5.

Note To neglect the assumptions of Propositions 4.2 and 4.3, we anticipate a restricted
step length of the corrector. Then TASC also works successfully in a generalized sense
using repeated corrector steps [23]: TASC can also find saddle points in cases like in
Fig. 2 if the search starts at Min2.

The Convergence Theorem

We will show that it is possible to follow exactly the streambed GE. The discovery of
the convergence resulted from computer experiments with the TASC method. Because
the self consistent search of TASC around the valley GE is a surprising successful
method [11], we have looked for a proof.

THEOREM 4.4 Let x be in a convex set ��R
n. Let |�1|<�2, . . . ,�n be for the first eigen-

value of the Hessian of function f, and e1(x) be the corresponding eigenvector. Let the
assumptions of Propositions 4.2 and 4.3 be valid. Then repeated TASC corrector steps
with successive, adapted projectors (18) converge to the streambed gradient extremal.
The smallness of �¼ |�1|/�2<1 is an efficiency measure: the convergence is with �m

where m is the step number.

Sketch of the Proof Let �1 6¼ 0. We proceed by induction.
Part (i) concerns the directions rm, m¼ 0,1, . . . . Assume that x0 is a point on the

streambed GE, then g(x0)/kg(x0)k¼ r0¼ e1(x0). The Step (34) may lead to x0 and
the Newton iteration (28) converges to x*. Set x*¼ x1. We will have again
g(x1)/kg(x1)k¼ r0. However, at the new point is e1(x1) 6¼ e1(x0), in the general case,
because the valley can be curvilinear. We calculate the tangent t(x1) of a Newton
trajectory w.r.t. e1(x0) from (17) by

Pe1Hðx1Þt1 ¼ 0 ð37Þ

and set rm¼ tm, m¼ 1. Construct Prm , m¼ 1, and iterate the Newton process (28) with
x0¼ xm, m¼ 1 and that projector Prm . The iteration gives again an x*¼ xm, m¼ 2.
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Calculate the tangent tm, m¼ 2, of a Newton trajectory w.r.t. rm, m¼ 1, a.s.o.: repeat
the process for m¼ 2,3, . . . Let xmþ1 be a point generated by this process. We find
with (21) that the tangent of a Newton trajectory w.r.t. rm points into directionP

i rmið
Q

j 6¼i �mjÞeiðxmÞ, with eigenvalues �mj and eigenvectors ei(xm) of the former
point xm. Normalized, we identify the direction of the tangent with the new search
direction of a Newton trajectory w.r.t.

rmþ1 ¼

Pn
i¼1 rmi=�mieiðxmÞPn
i¼1 ðrmi=�miÞ

2
� �1=2 ¼

Pn
i¼1 ðj�m1j=�miÞrmieiðxmÞPn
i¼1 ð�m1=�miÞrmið Þ

2
� �1=2 : ð38Þ

It is

Xn
i¼2

r2mi >
Xn
i¼2

�m1

�mi
rmi

� �2

, ð39Þ

thus if looking for the first component of the gradient, if the former rm1>0, it is now

rm1 ¼
rm1Pn

i¼1 r
2
mi

� �1=2 < rm1Pn
i¼1 ð�m1=�miÞrmið Þ

2
� �1=2 ¼ rm1=j�m1jPn

i¼1 ðrmi=�miÞ
2

� �1=2 ¼ rðmþ1Þ1: ð40Þ

On the left hand side we have the ratio of the first component of g(xm) to the first eigen-
vector, e1, at xm, where the right hand side gives this ratio for a tangent of a Newton
trajectory w.r.t. rm at point xmþ1. Repeating an internal cycle of Newton steps (28)
with projectors Prmþk

beginning with points xmþk¼ x0, k¼ 1, . . . , correspondingly, with-
out doing the predictor step, leads to convergence of the first component rm1! 1, as
well as to convergence to zero of the remaining components. They are estimated by
|rmi|<cm�

m, i¼ 2, . . . , n, and cm is bounded. This comes out by

jrðmþ1Þij ¼
jrmik�m1j=�miPn

i¼1 rmið�m1=�mið Þ
2

� �1=2 < 1

rm1

j�m1j

�mi
jrmij <

1

rm1
�jrmij, i ¼ 2, . . . , n: ð41Þ

So, the convergence is very quick if �¼ |�1|/�2� 1.
Part (ii) of the proof concerns the foot-points of the tangents tm¼ t(xm), m¼ 0,1, . . . ,

which we have treated in Part (i). We have to look for condition (29) in the mth
iteration. We estimate the component kPrmþ1

g(xmþ 1)k of that condition. It is
Prmþ1

¼ I
rm
 1 r
T
m
1, and g(xmþ1) points into direction rm. Thus we can treat

Prmþ1
rm ¼ rm 
 rmþ1r

T
mþ1rm

¼
Xn
i¼1

rmi 1


Pn
p¼1 r

2
mp�

2
m1=ð�mp �miÞPn

s¼1 r
2
ms�

2
m1=�

2
ms

 !" #
eiðxmÞ

ð42Þ

and

kPrmþ1
rmk ¼

Xn
i¼1

rmiPn
s¼1 r

2
msð�

2
m1=�

2
msÞ

Xn
p¼1

r2mp

j�m1j

�mp

j�m1j

�mp


j�m1j

�mi

� �" #2
0
@

1
A

1=2

< C�m,
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with a global constant C. The estimation leads to convergence of the points xm via
(33) where now �(xm) of the first Newton step in cycle m is estimated including the
decreasing factor �m.

Last, in Part (iii) we treat the special case �1¼ 0 where the streambed line has an
inflection point. The Eq. (21) comes out immediately with the new direction
tm¼ e1(xm) with rm1¼ 1. This is the best case for following the e1-direction. g

Leaving out from the idea of this procedure, to use a predictor–corrector scheme, the
predictor step, we will really arrive the gradient direction that is parallel to the first
eigenvector at a point xm. Then this point is situated on the streambed GE.

Note In the example below we do not use several internal cycles of Newton
correctors. We adapt the streambed GE for a crude leading line only. We can use
for comparison only one Newton step of the corrector per predictor step. Also
along such a work-to-rule, TASC works successfully. (We have tested [11] a further
improvement in the relation of predictor and corrector proposed in [6].)

5. EXAMPLE: ROSENBROCK FUNCTION

Figure 3 illustrates the action of TASC. We use the notorious Rosenbrock function (8),
cf. [4]. The minimum is f (1,1)¼ 0, and the highest level is 100 in Fig. 3, but the value of
f (
 1, 1) near the valley floor path is only 4. Along the parabola, y¼ x2, we have f (x,
x2)¼ (x
 1)2. The parabola is the Newton trajectory fy¼ 0, it is nearly the valley floor,
which we define by the GE.

To give a general case, we start at (
 1, 0.733) on the ‘‘other side’’ of the central ridge,
beside the valley floor. The first step is steepest descent to the valley ground. Searching
along the valley by TASC, we take the polynomial line search [29] for the stepsize of the
predictor, but a large threshold (of 0.25) for the corrector steps. This is well enough
to observe one corrector step before the next predictor is done. Because the valley is
curvilinear, the predictor steps are somewhat skew to the valley line, and a corrector step
has to find back into the bottom region. The convergence of the solution to the minimum
at (1, 1) is readily apparent. The eigenvalues of H at the minimum are �1¼ 0.4 and
�2¼ 1001.6, thus the condition number �max/�min is 2.5� 103. For such a valley with
bent valley floor (the banana valley problem) the precise determination of the minimum

FIGURE 3 Convergence of TASC on the Rosenbrock surface [26], see caption of Fig. 1. Starting at
(
 1, 0.733), there are 15 predictor steps to find the minimum at (1,1) along the streambed gradient extremal.
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point has been rather difficult up to now. Some optimization methods converge slowly.
Adapted methods give the following results [29]: Truncated Newton method: 22 itera-
tions, #fg: 27, nonlinear conjugate gradient: 14 iterations, #fg: 31, Quasi-Newton,
full-memory BFGS: 40 iterations, #fg: 47. (#fg is the number of function and gradient
evaluations only; TASC uses additionally the Hessian or updates of it.) In [9] an average
of 10 iterations is given for the optimization. There, the nonconvex problem (8) is
converted into a convex problem by a special new variable. Examples for TASC on
the Rosenbrock function for dimensions n¼ 20, and n¼ 100 are given elsewere [25].

6. CONCLUSION

TAngent Search Concept follows the streambed of a hypersurface, downhill or uphill.
We demonstrate the TASC algorithm by a highly coupled problem with strong non-
linearity: the Rosenbrock function. The method performs well in practice. We use
the evaluation of gradient and (updates of) the Hessian per iteration step. For minimum
optimization, we can start at any point in the catchment region of a minimum and
follow the gradient down the slope to the valley floor. Then we follow this line in the
direction of the smallest eigenvector. For saddle search, the method can only be heur-
istic because TASC works if a continuous streambed exists up to the saddle. The valley
floor may be defined by the gradient extremal. There is a convergence proof that this
valley line is calculable as exactly as we need it. The original RGF [22] forms a tool
to find minima or saddle points by Newton trajectories, where the choice of the
search direction is quite arbitrary. But RGF usually diverges from the valley floor.
The choice of the actual tangent in TASC overcomes the arbitrariness of the direction,
and it leads to a self consistent tracing of the valley.
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