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The use of oriented external electric fields (OEEFs) to promote and control chemical reactivity has motivated many
theoretical and computational studies in the last decade to predict and understand OEEF effects on chemical processes.
Given a reaction, a central goal in this research area is to predict the so-called optimal OEEF (oOEEF), which can be
defined as the electric field vector that annihilates the reaction energy barrier with the smallest possible field strength.
Here, we present a model rooted in Catastrophe and Optimum Control Theories that allows to find the oOEEF for
a given reaction. In this model, the effective or perturbed potential energy surface (PES) of a polarizable molecular
system interacting with an OEEF is split into the original or non-perturbed PES and a perturbation function that
accounts for the interaction of the OEEF with the intrinsic electric dipole and polarizability of the molecular system.
We demonstrate that the oOEEF can be established once the so-called optimal barrier breakdown or bond-breaking
point (oBBP) is located in the original PES. The essential feature of the oBBP structure is the fact that this point
maintains its topological properties for all the applied OEEFs, also for the unperturbed PES, thus becoming much more
relevant than the commonly used minima and transition state structures. The model proposed has been implemented in
an open access package and is shown to successfully predict the oOEEF for two processes: an isomerization reaction
of a cumulene derivative and the Huisgen reaction.

Keywords: Effective potential energy surface, Oriented external electric field, Catastrophe Theory in Chemistry, Bar-
rier breakdown, Force displaced stationary points, Polarizability, Control Theory in Chemistry

I. INTRODUCTION

Promotion and control of chemical reactivity of molec-
ular systems through the utilization of oriented external
electrostatic fields (OEEFs) has been a focal point of re-
search in theoretical and computational chemistry for many
years. The significant influence of external fields on chem-
ical reactivity has been shown by the pioneering investi-
gations on SN2 reactions,1 Friedel-Crafts reactions,2 Diels-
Alder cycloadditions,3 C-H hydroxylations4 and activations,5

and C=C epoxidations.4 A groundbreaking scanning tun-
nelling microscopy break-junction (STM-BJ) experiment at
the single-molecule level showed that the rate of a Diels-
Alder reaction can be enhanced by means of an OEEF.6

This result boosted the research on OEEF-controlled chem-
istry due to the great potential of using electric fields as a
tool in chemical synthesis.7–10 Indeed, recent STM-BJ ex-
periments have demonstrated that OEEFs can accelerate the
cleavage of alkoxyamine C-ON bonds,11 two-step cascade re-
actions of a Diels-Alder addition followed by an aromatiza-
tion process,12 isomerization reactions of cumulenes,13 scis-
sion of C-C bonds via electrophilic aromatic substitutions,14

homolysis of O-O bonds in peroxyanhydrides15 and acyla-
tion of amines.16 Precise details on the reaction dynamics
of an OEEF-driven Diels-Alder reaction have also been ob-
tained using single-molecule setups.17 Besides STM-BJ ex-
periments, other experimental techniques that exhibit a greater
potential for scalability in the utilization of OEEFs for con-
trolling reactivity18 have been also reported.19–24 These re-
cent experimental works have inspired new computational
investigations10,25–45 focused on predicting and understanding
how chemical reactivity and selectivity can be controlled by
means of OEEFs. From a conceptual point of view, the effects
of OEEFs on reactivity can be explained using valence bond
approaches7–9,26 or quantitative activation strain and Kohn-
Sham molecular orbital theory.30 In parallel to all these en-
deavors, recent experimental and computational works have
provided strong evidence of the crucial role of local electric
fields in the active sites of enzymes in defining their catalytic
activity.46–55

In this context, the seminal work by Shaik and coworkers3

has shown that the direction of the OEEF is a critical vari-
able that needs to be considered when trying to maximize
the effect of the field in enhancing the rate of a given re-
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action. According to a first order approximation, the elec-
tric field interacts exclusively with the inherent (or intrinsic)
electric dipole moment of the system. Within this approxi-
mation, the direction that maximizes the catalytic effects on
the molecular process56 is given by the vector differences in
inherent dipole moments between the transition state and re-
actants configurations.47,48 Although this approximation cer-
tainly enables a simple and quick way to predict an appro-
priate direction of the field, it should be stressed that it it does
not take into account neither polarizability effects nor electric-
field-induced geometrical distortions. As such, this approxi-
mation can only be applied when the field strength is small.
Indeed, larger field strengths are known to give rise to impor-
tant induced dipoles and large geometrical distortions.3,31 For
this reason, it is very important to develop theoretical mod-
els that enable the prediction of the most appropriate field
direction by taking into account both polarizability and geo-
metrical perturbations. In previous works, we established the
grounds of a model to find the optimal OEEF for a chemical
system using Catastrophe Theory and Optimal Control.57,58 In
this model, the optimal OEEF (oOEEF) is defined as the field
with the smallest possible strength to render a given chemi-
cal transformation into a barrierless process. Therefore the
oOEEF associated with a given reaction provides the optimal
electrostatic field in strength and direction to annihilate the
chemical barrier. In these works, we considered the electric
field interacting with the intrinsic electric dipole moment as a
perturbation of the original potential energy surface (PES) and
established the main features of the oOEEF. The germ of this
model is rooted in previous mechanochemistry models based
on the Newton trajectory (NT) theory.59 We showed that the
oOEEF can be established once a special point of the PES
is located, namely, the so-called optimal barrier breakdown
point or, alternatively, optimal bond breaking point (oBBP).

In order to understand the concept of oBBP, let us consider
that an OEEF is applied to drive a given reaction in the direc-
tion defined by the oOEEF to induce a continuous deformation
of the original PES. For a small field strength, the reactants
will be distorted in such a way that their nuclear configuration
becomes closer to the transition state (TS) configuration. The
TS, in turn, will be distorted in such a way that their nuclear
configuration becomes closer to the reactants configurations.
As the field strength increases, reactants and TS become more
distorted and their configurations resemble to a larger extent.
For a particular field strength (the one defined by the oOEEF),
both configurations coalesce. The specific point of the per-
turbed PES in which the TS and reaction configurations coa-
lesce under the action of the oOEEF is the catastrophe point
called oBBP. The essential feature of the oBBP structure is
the fact that this point maintains its topological properties for
all the applied OEEFs, also for the unperturbed PES. Accord-
ingly, in the context of our model, the oBBP becomes a central
concept defining a new kind of special points in the unper-
turbed PES, much more relevant than the reactants or transi-
tion state configurations , which are commonly used to ratio-
nalize the thermochemistry of the molecular system (with or
without an external electric field).

In our previous works, the nature of the oOEEF was charac-

terized with necessary but not sufficient conditions.57,58 This
led to a cumbersome algorithm to find the oOEEF with associ-
ated numerical problems.58 In addition to this, electric polar-
izability of the molecular system was not taken into account,
thus preventing its use in systems where the inherent dipole is
almost constant as the system evolves from reactants towards
products on the PES. In an attempt to go beyond these limita-
tions we here find the necessary and sufficient conditions that
an oOEEF must satisfy and use these conditions to develop a
new algorithm to compute this field in an easy and efficient
way, while fully taking into account the electric polarizability
of the molecular system. Hence, we introduce the molecular
polarizable electric dipole (PMED) model to include the ef-
fects of an OEEF on the PES of a molecular system. As it will
be shown below, the oOEEF can be found by first locating the
oBBP on the original or unperturbed PES and then evaluating
the optimal field using the first and second derivatives with
respect to the atomic positions of the intrinsic electric dipole
and polarizability.

This article is structured as follows: Section II is devoted to
discuss the mathematical nature and structure of the here pro-
posed PMED model and to prove the optimality of the OEEF
derived in references 57,58. The model will first be presented
for the oBBP point and will then be generalized to any non-
stationary point of the original or unperturbed PES (in the Ap-
pendices V and VI). The numerical analysis of a generic two
dimensional model system allows one to deeply understand
the full nature of the model and its generalization. In Sec-
tion III we report the application of the algorithm to two real
chemical examples, described in Subsections III A and III B.
Finally, the main conclusions of the present study are reported
in Section IV.

II. MATHEMATICAL BACKGROUND OF THE
POLARIZABLE MOLECULAR ELECTRIC DIPOLE (PMED)
MODEL

A. Mathematical formulation of the PMED model

A general model to describe the action of an OEEF given by
e = (εx,εy,εz) = Een (with modulus E and normalized direc-
tion en) on a molecular system is provided by the polarizable
molecular electric dipole (PMED) ansatz57 as

Ven(x,E) =V (x)+Pen(x,E)

=V (x)−EeT
n {d(x)+1/2A(x)enE} .

(1)

In this expression, V (x) is the original PES, Pen(x,E) is the
(electrostatic) perturbation energy, d(x) is the electric dipole
moment vector, xT = (x1,y1,z1, . . . ,xM,yM,zM) is the vec-
tor of the Cartesian coordinates of all M atoms of the sys-
tem, and eT

n = (ex,ey,ez) is the three-dimensional normal-
ized field direction vector of the applied OEEF. We recall
that the electric dipole moment is a three-component vec-
tor, where each component is dependent (in a nonlinear man-
ner) on the x-vector, dT (x) = (dx(x),dy(x),dz(x)), whereas
A(x) is the electric polarizability tensor given by a 3× 3
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symmetric matrix, where each component, ai, j(x) for i, j =
x,y,z, is also nonlinear dependent on the x-vector. We as-
sume that V (x), di(x) and ai, j(x) are “well-behaved" func-
tions of x, thus they have continuous second derivatives with
[∇x∇T

x V (x)] = [∇x∇T
x V (x)]T , [∇x∇T

x di(x)] = [∇x∇T
x di(x)]T ,

and [∇x∇T
x ai, j(x)] = [∇x∇T

x ai, j(x)]T for i, j = x,y,z, where
∇T

x = (∂/∂x1, . . . ,∂/∂ zM). The stationary condition on
Ven(x,E) reads

∇xVen(x,E) =∇xV (x)+∇xPen(x,E)

=∇xV (x)−{[∇xdT (x)]

+1/2E[∇x[A(x)en]
T ]}enE

=0 .

(2)

It is useful to define the vectors

hen(x) = [∇xdT (x)]en = ∑
i=(x,y,z)

ei(∇xdi(x)) (3)

and

fen(x) = A(x)en = ∑
i=(x,y,z)

eiai(x) (4)

where ai(x) is the i-column of the A(x) matrix, namely,
aT

i (x) = (ax,i(x),ay,i(x),az,i(x)), and

pen(x) = [∇xfT
en(x)]en

= ∑
i=(x,y,z)

ei(∇x feni(x))

= ∑
i=(x,y,z)

ei

(
∑

j=(x,y,z)
e j(∇xai, j(x))

) (5)

being feni(x) the i component of the three-dimensional fen(x)
vector and finally,
g(x) = ∇xV (x). With these definitions we rewrite Eq. (2) in a
more compact form

g(x)− [hen(x)E +1/2pen(x)E
2]

= g(x)+men(x,E) = 0 .
(6)

We note that

−[hen(x)E +1/2pen(x)E
2] = men(x,E) = ∇xPen(x,E) (7)

is the gradient of Pen(x,E) with respect to x which is a
quadratic vectorial function in the E parameter. Let us con-
sider a given normalized constant vector en, then the set of
points (x,E) satisfying Eq. (6) is called the force displaced
stationary point (FDSP) curve. At each point of this curve,
(x(t),E(t)), where t is the parameter that characterizes the
curve, an effective PES, Ven(x,E(t)), is generated that satis-
fies the stationary condition in Eq. (6). Thus, for each nor-
malized en-vector the corresponding FDSP curve generates a
sequence of Ven(x,E) effective potentials, and each effective
potential has its own fixed E, being the x coordinates the set
of variables. Thus, the set of coordinates x plays the role of
variables whereas the intensity E plays the role of a parameter.

The FDSP curve is a generalized NT curve where the ampli-
tude of field E changes at each point to satisfy Eq. (6). It is
interesting to note that the normalized vector en plays the role
of the control axis and the intensity or amplitude E is the con-
trol parameter. Thus, we emphasise that the effective energy
potential, Ven(x,E), can be seen as a function of the set of vari-
ables x and the parameter E. When the control variable E has
a fixed value the system settles into a structure where the vari-
ables x stationarize (locally) the function Ven(x,E). In partic-
ular, the current point x(t) of the FDSP curve corresponding
to the control axis en is a stationary point of Ven(x,E) since
this point satisfies Eq. (6) for the current control parameter
E(t). As the control variable changes, namely from E(t) to
E(t +∆t), a local stationary point can disappear and the vari-
ables x jump suddenly to a different structure. In particular
the current stationary point changes from x(t) to a new point,
x(t +∆t), satisfying Eq. (6) for the new E(t +∆t). In a sim-
ilar manner, for a given normalized en-vector the manifold
of points satisfying det[Hen(x,E)] = 0 varies as the control
parameter E varies, where Hen(x,E) = ∇x∇T

x Ven(x,E) is the
Hessian matrix of Ven(x,E). We search for the E parameter
associated with a given normalized en-vector where the corre-
sponding FDSP point x is also a point belonging to the man-
ifold det[Hen(x,E)] = 0, this point x is a degenerate station-
ary point of the current Ven(x,E). The structure of Ven(x,E)
around this point is the object of analysis of Catastrophe The-
ory and has a shoulder form. In the present context, we call
this point Bond-Breaking-Point (BBP) (xBBP,EBBP) associ-
ated with the control axis en. The explanation given above
is represented schematically in Figure 1 of reference 58.
In order to obtain an analytical expression to calculate
the FDSP curve associated with a given en-vector we use
the Implicit Function Theorem60 applied to the expres-
sion d(∇xVen(x,E))/dt = 0. This leads to the differential
equation57,58

Hen(x,E)
(

dx
dt

)
= ren(x,E)

(
dE
dt

)
. (8)

In this expression, the ren(x,E) vector is

ren(x,E) = hen(x)+Epen(x) , (9)

as will be shown below. The explicit form of the Hessian
matrix reads

Hen(x,E) = H(x)−Fen(x,E) (10)

being H(x) = ∇x∇T
x V (x) the Hessian matrix of the original

PES, V (x), and

Fen(x,E) = E∇xhT
en(x)+

1
2

E2
∇xpT

en(x)

= E ∑
i=(x,y,z)

ei[(∇x∇
T
x di(x))+

E
2
(∇x∇

T
x feni(x))]

= ∑
i=(x,y,z)

εiMi(x,e) .

(11)
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We note that, −Fen(x,E) = ∇x∇T
x Pen(x,E). Eqs. (3) and (5)

have been used in the development of Eq. (11). The specific
form of ∇x∇T

x feni(x) appearing in Eq. (11) is

∇x∇
T
x feni(x) = ∑

j=(x,y,z)
e j(∇x∇

T
x ai, j(x)) i = x,y,z . (12)

Finally, the expression of ren(x,E) vector given in Eq. (8) is
obtained. We recall that the vector,

− ren(x,E) = ∂ (∇xVen(x,E))/∂E
= ∂ (∇xPen(x,E))/∂E
= ∂ (men(x,E))/∂E ,

(13)

and that

∂Ven(x,E)/∂E = ∂Pen(x,E)/∂E =−eT
n [d(x)+EA(x)en] ,

and

∂
2Ven(x,E)/∂E2 = ∂

2Pen(x,E)/∂E2 =−eT
n A(x)en ,

which recover the first and second order terms in the multipo-
lar development of the molecular charge distribution assumed
by the PMED ansatz in Eq. (1). Note that these two terms are
not necessary for the development of the present theory. We
note that the Hessian matrix, Hen(x,E), is symmetric since
H(x) and −Fen(x,E) are symmetric matrices. Eq. (8) tells
us how the planes tangent to the iso-contours, V (x) = ν and
Pen(x,E) = π , with parallel normals, g(x) and men(x,E), re-
spectively, are transported through the FDSP curve associated
with the field en.

Along the integration of Eq. (8) one finds a point where the
det[Hen(x,E)] = 0, implying that an eigenvector of Hen(x,E)
has null eigenvalue. When this occurs at a point of the FDSP
curve the eigenvector with null eigenvalue of Hen(x,E) is
taken as normalized tangent vector, dx/dt.57,58 Regarding
Eq. (8), with this tangent the left hand-side part becomes
zero and simultaneously dE/dt tends to zero. Thus, at the
point (xT ,E) of the FDSP curve where det[Hen(x,E)] = 0,
the electric field amplitude E shows a turning point. This
point is labeled as barrier breakdown or bond-breaking
point (BBP), xBBP, and the intensity of the field is labeled
as EBBP. As explained above, this point is a degenerate
stationary point since it belongs to the manifold of points
where det[Hen(x,EBBP)] = 0 of the current Ven(x,EBBP) (see
Fig. 1 of Ref. 58).

B. Defining the Optimal Oriented External Electric Field

Within the manifold of BBPs of the modified PES,
Ven(x,E), there is an optimal BBP. This BBP defines the op-
timal force in magnitude and direction that should be applied
to a molecular system to promote a given chemical transfor-
mation by means of an electric field. The electric force to be
applied to the molecular system is men(x,E) (see Eq. (7)) and

−men(x,E) = g(x). All the different FDSP curves that leave
from the reactant minimum and arrive to the same stationary
point cross at least once a det[H(x)] = 0-manifold. The FDSP
curve that crosses this manifold at the point where the square
of the gradient norm, gT (x)g(x), is minimum within the iso-
contour, V (x) = ν , is optimal with respect to x and this point
is the optimal BBP (oBBP). Thus, the optimal BBP should
satisfy the condition

H(x)g(x) = 0 , g(x) 6= 0 . (14)

The optimal BBP point coincides with a point of the gradient
extremal (GE)61–71 of the original PES, V (x). We recall that
Eq. (14) is an eigenvalue equation where the eigenvalue of
the eigenvector g(x) is zero, this is the reason why in this
point det[H(x)] = 0. The location of optimal BBPs in the
unperturbed PES is extremely important in the context of the
present model because these points reveal which is the most
efficient way to trigger a reaction by means of an external
electric field. The methods to find oBBPs have been already
published in references 72 and 73 and can be routinely used
as an interface with standard molecular electronic structure
packages.

Once the oBBP has been located, the work that remains
to be done is to find the oOEEF (the optimal OEEF). For this
purpose we need an analysis of the BBP condition. According
to the previous Subsection II A, at the BBP, (xT

BBP,EBBP), the
next two conditions are satisfied,

dE
dt

∣∣∣∣
E=EBBP

= 0 (15a)

Hen(x,E)
(

dx
dt

)∣∣∣∣(x = xBBP
E = EBBP

) = 0 . (15b)

If we substitute Eq. (10) in Eq. (15b), use the resolution of
identity and divide by the tangent norm we have(

I− ẋẋT

ẋT ẋ

)[
H(xBBP)−Fen(xBBP,EBBP)

]
ẋ√
ẋT ẋ

+(
ẋẋT

ẋT ẋ

)[
H(xBBP)−Fen(xBBP,EBBP)

]
ẋ√
ẋT ẋ

= 0
(16)

where ẋ = dx/dt. Eq. (16) states that at the BBP the tangent
ẋ is an eigenvector of the effective Hessian, Hen(x,E), de-
fined in Eq. (10). Thus the two expectation values, namely,
ẋT H(xBBP)ẋ/(ẋT ẋ), and −ẋT Fen(xBBP,EBBP)ẋ/(ẋT ẋ), must
be equal but opposite in sign at the BBP, (xT

BBP,EBBP), imply-
ing that, ẋT Hen(xBBP,EBBP)ẋ/(ẋT ẋ) = 0. We conclude that
the V (x) and Pen(x,E) are functions whose first and second
derivatives with respect to x coincide but with opposite sign
at the BBP. Taking into account that two functions are said
to have contact order two if the first and second derivatives
of these functions coincide in this point,58 we can conclude
that the x = xBBP point is the contact point of order two of
the V (x) and Pen(x,E) functions for E = EBBP. This is the
essential property of BBPs for the present development based
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in Catastrophe and Control theories.
Now we consider the case that the tangent vector ẋ coincides
with the parallel normals g(x) and men(x,E) in the BBP. In
this case the relation

ẋ√
ẋT ẋ

=
g(xBBP)√

gT (xBBP)g(xBBP)

=− men(xBBP,EBBP)√
mT

en(xBBP,EBBP)men(xBBP,EBBP)

(17)

holds, since BBP is a point of a FDSP curve and Eq. (6) should
be satisfied. Eq. (17) allows us to rewrite Eq. (15) in the fol-
lowing form,57

dE
dt

∣∣∣∣
E=EBBP

= 0 (18a)

Hen(x,E)
(

g(x)√
gT (x)g(x)

)∣∣∣∣(x = xBBP
E = EBBP

) = 0, g(x) 6= 0 .

(18b)

We note that in Eq. (18b), 1/
√

gT (x)g(x), enters as normal-
ization factor, since it is an eigenvalue equation where the gra-
dient vector, g(x), which is different to the zero vector, is the
eigenvector of null eigenvalue of the matrix, Hen(x,E), at the
point, (x,E) = (xBBP,EBBP). Taking into account this fact and
the first term of the left-hand side part of Eq. (16), we can
rewrite this equation in a decoupled form as

k(x) =
[

I− g(x)gT (x)
gT (x)g(x)

]
H(x)

g(x)√
gT (x)g(x)

=[
I− g(x)gT (x)

gT (x)g(x)

]
Fen(x,E)

g(x)√
gT (x)g(x)

, (19a)

g(x)√
gT (x)g(x)

k(x) =
g(x)√

gT (x)g(x)
gT (x)H(x)g(x)

gT (x)g(x)
=

g(x)√
gT (x)g(x)

gT (x)Fen(x,E)g(x)
gT (x)g(x)

(19b)

where, k(x) = gT (x)H(x)g(x)/(gT (x)g(x)) =
gT (x)Fen(x,E)g(x)/(gT (x)g(x)). Eqs. (19) tell us that
this class of BBP can be related with points of gradient
extremal curves (GE)61–71 if both sides of the equality that
appears in Eq. (19a) are equal to zero, k(x) = 0. The GEs
are curves that usually run along valley floors or ridges of
a PES. More rigorously, the GE of the original PES, V (x),
are defined as the curves, x(t), where t is the curve param-
eter, which cut at each point a member of the isopotential
hypersurfaces of this PES, V (x(t)) = ν(t). The square of the
gradient norm, ∇T

x V (x)∇xV (x) = gT (x)g(x), is stationary
at each point of this curve with respect to the variations of
x within the member of isopotential hypersurfaces that is
cut by the curve at this point. The same concept can be
applied to the perturbation potential, Pen(x,E), where in

this case the GE curve cuts the isopotential hypersurfaces,
Pen(x(t),E) = π(t). The corresponding square of the gradient
norm, ∇T

x Pen(x,E)∇xPen(x,E) = mT
en(x,E)men(x,E), is

stationary at each point of this curve with respect to the vari-
ations of x within the member of isopotential hypersurfaces
that is cut by the curve at this point. The condition satisfying
GE requirements for both V (x) and Pen(x,E) functions are:[

I− g(x)gT (x)
gT (x)g(x)

]
H(x)

g(x)√
gT (x)g(x)

= 0 (20a)[
I−

men(x,E)mT
en(x,E)

mT
en(x,E)men(x,E)

]
Fen(x,E)

men(x,E)√
mT

en(x,E)men(x,E)
= 0 ,

(20b)

respectively. If we assume that Eqs. (20) can be satisfied
at the class of point (x,E) = (xBBP,EBBP) of the effective
PES, where the tangent, ẋ, of the FDSP curve at this point is
collinear with the gradients of V (x) and Pen(x,E) functions,
then Eq. (17) is satisfied and the two expressions (20)
coincide with the two right hand side terms of Eq. (19a) being
both sides of this equation equal to zero, and thus k(x) = 0.
Hence, in the set of BBPs, (xBBP,EBBP), where i) the tangent
vector of the FDSP curve, ẋ, is collinear to the gradient
g(x) and ii) the point xBBP belongs to a point of GE curve
of V (x) function, the left-hand side part of Eq. (19a) is zero
and, due to this equality, this point is also a GE point of the
Pen(x,E) function and vice-versa. The eigenvalues are equal
but opposite in sign, according Eq. (19b). In other words, in
this class of BBP, the two functions V (x) and Pen(x,E) are
contact of order two and the point is a GE of both functions.

Each point of a GE curve possesses optimal properties al-
ready described in references 65 and 71. The most impor-
tant property is that the gradient norm is stationary with re-
spect to variations in x within the isopotential hypersurface.
In its ascent evolution from a minimum there is a point of
the GE curve where the eigenvalue of the gradient eigenvec-
tor is zero, thus k(x) = 0. In this point, the GE curve is
crossing the det[H(x)] = 0 manifold. This point of the GE
curve is where the square of the gradient norm, gT (x)g(x),
takes a stationary value with respect to the GE tangent vector
projected on the gradient vector. For this reason this square
of the gradient norm is stationary not only in all the inde-
pendent directions contained in the isopotential hypersurface
but also in directions that transverse this isopotential mani-
fold. Thus the square of the gradient norm is stationary in
this point with respect to all independent directions.74 If this
point is taken as a BBP of a FDSP curve, the gradient vec-
tor and its norm of this point indicate the lowest electrical
force, men(x,E), in magnitude and the corresponding opti-
mal direction that should be applied to a molecular system
in order to promote a given chemical transformation by elec-
tric field. For this reason, the FDSP path that passes through
a BBP where the tangent vector, ẋ, is parallel to the gradi-
ents of V (x) and Pen(x,E) and satisfies the GE condition (i.e.
k(x) = 0 and k(x) = 0) is the optimal FDSP (oFDSP) gen-
erated by the optimal OEEF (oOEEF) and the correspond-
ing BBP is the optimal BBP (oBBP). We label the oOEEF
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as, e∗ = Ee∗n, and the oBBP by (xoBBP,EoBBP). Thus, in the
oBBP, the corresponding oOEEF, e∗n, takes the optimal ampli-
tude, E =EoBBP, to transform the original potential, V (x), into
a perturbed potential, Ve∗n(x,E), exhibiting a shoulder around
this point, x = xoBBP: the barrier for this reaction valley has
been annihilated.
Once the optimal conditions that an oFDSP should satisfy are
known, we will now deal with the problem of finding the
oBBP and optimal electric field, (e∗), since both will char-
acterize the oFDSP curve and the oOEEF, (e∗n). According
to the previous discussion, the set of necessary and sufficient
conditions that an oBBP should satisfy are given by Eq. (17),
and Eqs. (19), with k(x) = 0 and k(x) = 0. With these neces-
sary and sufficient conditions we have to find M+3 equations,
whose solutions give the M-unknowns, xoBBP plus the three-
unknowns related with the optimal electric field, now labeled
as e∗oBBP = (ε∗ox ,ε∗oy ,ε∗oz ) = EoBBP(e∗x ,e

∗
y ,e
∗
z ) = EoBBPe∗n. Let

us stress that a basic condition should be fulfilled prior to find-
ing the solutions of these equations: at the point x to be trans-
formed into an oBBP on the effective (or perturbed) PES, the
gradient vectors and the Hessian matrices of both functions,
V (x) and Pen(x,E), must be different from the zero vectors
and zero matrices, respectively.
Once the formal conditions defining the oBBP and oOEEF
have been established, we describe the basic steps for its prac-
tical calculation:

1. Location of xoBBP associated to a given reaction valley
on the PES.
The xoBBP is the point that satisfies Eq. (14), being a GE
point with eigenvalue equal zero. The location of this
point is based in finding the point x where the so-called
σ(x)- function, σ(x) = gT (x)H2(x)g(x)/(gT (x)g(x)),
has value zero. The σ(x)-function was already
introduced in reference 72 for finding the optimal
mechanochemical pulling force. Practical schemes and
algorithms for this purpose are described in references
72 and 73. We note that the best starting point of these
algorithms is the point with higher square gradient
norm of the Intrinsic Reaction Coordinate (IRC)
path75,76 located on the reaction valley of interest.
The first and and second derivatives with respect
to x of {di(x)}i=x,y,z and {ai j(x)}i, j=x,y,z should be
computed at this point x and be sure that they are not
simultaneously zero.

2. Imposing the condition that xoBBP point belongs to the
oFDSP.
The xoBBP point should belong to a FDSP curve,
specifically the oFDSP. For this reason, Eq. (6) should
be satisfied at this xoBBP point. In order to impose this
necessary condition of the xoBBP, we multiply Eq. (6)
from the left by the outer gradient projector,(

I− g(xoBBP)gT (xoBBP)

gT (xoBBP)g(xoBBP)

)
me∗n(xoBBP,EoBBP) = 0 . (21)

Using Eq. (3) and Eq. (5) and the recalling that, e=Een,

we rewrite the men(x,E) vector at the oBBP as

me∗n(xoBBP,EoBBP) =−{[∇xdT (xoBBP)]+

EoBBP/2[∇xfT
e∗n(xoBBP)]}e∗oBBP

=−Ne∗n(xoBBP,EoBBP)e∗oBBP .

(22)

Substituting Eq. (22) into Eq. (21) and multiplying the
resulting expression from the left by its transposed, one
finds

e∗ToBBPNT
e∗n(xoBBP,EoBBP)[

I− g(xoBBP)gT (xoBBP)

gT (xoBBP)g(xoBBP)

]
Ne∗n(xoBBP,EoBBP)e∗oBBP =

e∗ToBBPD(xoBBP,e∗oBBP)e
∗
oBBP = 0 .

(23)

Thus, imposing the FDSP condition, we obtain the
first equation, Eq. (23), that should be satisfied by the
oOEEF. We note that the matrix D(xoBBP,e∗oBBP) has di-
mension 3×3, and that det[D(xoBBP,e∗oBBP)] = 0.

3. The eigenvalue condition at the xoBBP.
Eq. (19b) should be satisfied at the xoBBP with
k(xoBBP) = 0 since we are in a point of a GE
curve that the eigenvalue of the gradient eigen-
vector is equal to zero. The eigenvalue con-
dition, gT (xoBBP)H(xoBBP)g(xoBBP) = 0, is al-
ready satisfied from item 1.), thus we need
to find an electric field which makes the term
gT (xoBBP)Fe∗n(xoBBP,EoBBP)g(xoBBP) equal to zero. For
this purpose we take the expression of k(x) evaluated
at xoBBP,

k(xoBBP) =

gT (xoBBP)Fe∗n(xoBBP,EoBBP)g(xoBBP)

gT (xoBBP)g(xoBBP)
=

∑
i=x,y,z

ε
∗o
i

gT (xoBBP)Mi(xoBBP,e∗oBBP)g(xoBBP)

gT (xoBBP)g(xoBBP)
=

∑
i=x,y,z

ε
∗o
i

gT (xoBBP)ti(xoBBP,e∗oBBP)√
gT (xoBBP)g(xoBBP)

=:

∑
i=x,y,z

ε
∗o
i zi(xoBBP,e∗oBBP) =

e∗ToBBPz(xoBBP,e∗oBBP) = 0 .

(24)

In the derivation of Eq. (24), Eq. (11) has been used and
that, as well as the expression

Mi(xoBBP,e∗oBBP)g(xoBBP)√
gT (xoBBP)g(xoBBP)

= ti(xoBBP,e∗oBBP) . (25)

have been used. We note that we use z for the scalar
product in Eq. (24) being z(xoBBP,e∗oBBP) a vector of di-
mension three. The Eq. (24) gives the second expres-
sion that oOEEF should satisfy. The Eq. (24) can also
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be written as,(
I− z(xoBBP,e∗oBBP)zT (xoBBP,e∗oBBP)

zT (xoBBP,e∗oBBP)z(xoBBP,e∗oBBP)

)
e∗oBBP

= P⊥z (xoBBP,e∗oBBP)e
∗
oBBP = e∗oBBP .

(26)

4. The eigenvector condition k(xoBBP) = 0.
At xoBBP point Eq. (19a) should satisfy with k(xoBBP) =
0 for either H(xoBBP) and Fe∗n(xoBBP,EoBBP). For
H(xoBBP) this condition is already satisfied from item
1.), thus we need to find an electric field such that
this condition is satisfied for Fe∗n(xoBBP,EoBBP). For
this purpose we take the definition of k(x) applied on
the Fen(x,E) at the oBBP point and from Eq. (24),
k(xoBBP) = 0, we compute

kT (xoBBP)k(xoBBP)+ k2(xoBBP) =

gT (xoBBP)F2
e∗n(xoBBP,EoBBP)g(xoBBP)

gT (xoBBP)g(xoBBP)
=

∑
i=x,y,z

∑
j=x,y,z

ε
∗o
i ε
∗o
j tT

i (xoBBP,e∗oBBP)t j(xoBBP,e∗oBBP) =:

e∗ToBBPT(xoBBP,e∗oBBP)e
∗
oBBP = 0 .

(27)
Here, T(xoBBP,e∗oBBP) is a matrix of dimension 3× 3,
and it is positive definite. Eq. (27) is the third and last
condition that oOEEF should satisfy.

5. Proposed algorithm to find e∗oBBP.
The basic flowchart for a practical implementation of
the PMED model described in this work is presented
in Fig. (1). For a given reaction valley of the PES,
the main goals of this procedure consist in i) locating
the corresponding oBBP, ii) calculating the oOEEF for
this oBBP to annihilate the reaction barrier, and iii)
calculating the corresponding oFDSP curve to check
that the process becomes barrierless under the action
of the oOEEF. In the following, we refer to the cor-
responding parts of the flowchart to indicate the input
and output data required to solve the equations at each
step. The necessary and sufficient conditions to find the
oBBP corresponding to previous steps 1 and 2 corre-
spond to the procedure 1© in Fig. (1) whereas steps 3
and 4 provide the necessary and sufficient conditions
of the corresponding optimal direction e∗oBBP of the ap-
plied OEEF and its optimal intensity. An iterative pro-
cedure to do this search by solving the following equa-
tions by exploring different directions of the normalized
vector field as follows. The set of Eqs. (23), (26) and
(27) gives necessary and sufficient conditions to find the
e∗oBBP vector. A way to solve this system of equations
is first substitute Eq. (26) into Eqs. (23) and (27) and fi-
nally summing both resulting equations,

e∗ToBBPP⊥z (xoBBP,e∗oBBP)[D(xoBBP,e∗oBBP)+

T(xoBBP,e∗oBBP)]P
⊥
z (xoBBP,e∗oBBP)e

∗
oBBP =

e∗ToBBPG(xoBBP,e∗oBBP)e
∗
oBBP = 0 .

(28)

From an inspection of Eq. (28) we observe that
det[G(xoBBP,e∗oBBP)] = 0. Let γ the eigenvector with
null eigenvalue of the G(xoBBP,e∗oBBP) matrix, then

γT P⊥z (xoBBP,e∗oBBP)D(xoBBP,e∗oBBP)P
⊥
z (xoBBP,e∗oBBP)γ =

−γT P⊥z (xoBBP,e∗oBBP)T(xoBBP,e∗oBBP)P
⊥
z (xoBBP,e∗oBBP)γ = 0 ,

(29)
since both matrices have as lowest eigenvalue zero. At
this point it is important to consider that there is no rea-
son why, zT (xoBBP,e∗oBBP)γ = 0, since

zT (xoBBP,e∗oBBP)G(xoBBP,e∗oBBP)γ =

0 · zT (xoBBP,e∗oBBP)γ .
(30)

For this reason an Euler orthogonal transforma-
tion, R(ψ,θ ,φ), is performed in such a way that,
zT (xoBBP,e∗oBBP)R(ψ,θ ,φ)γ = 0. This rotated γ vec-
tor is taken as e∗n-vector and satisfies Eq. (24). No-
tice that this rotation makes invariant the trace of
G(xoBBP,e∗oBBP) matrix. Substituting this e∗n vector in
the expression,

mT
e∗n(xoBBP,EoBBP)me∗n(xoBBP,EoBBP)−

gT (xoBBP)g(xoBBP) =

1/4pT
e∗n(xoBBP)pe∗n(xoBBP)E4

oBBP+

hT
e∗n(xoBBP)pe∗n(xoBBP)E3

oBBP+

hT
e∗n(xoBBP)he∗n(xoBBP)E2

oBBP−

gT (xoBBP)g(xoBBP) = 0 ,

(31)

by solving this quartic polynomial form on EoBBP we
obtain EoBBP and from this e∗oBBP vector. Eq. (31) is
derived using Eqs. (6) and (7). The process is re-
peated by substituting the current e∗oBBP vector into
the G(xoBBP,e∗oBBP) matrix until the new and previous
e∗oBBP vectors do not change within some criterium. At
the initial step the matrix, G(xoBBP,0), is taken.

6. Selection of the optimal OEEF.
From the whole set of solutions we take that
lowers the value of the perturbed function,
namely, Pe∗n(xoBBP,EoBBP) = −dT (xoBBP)e∗oBBP −
1/2e∗ToBBPA(xoBBP)e∗oBBP, already defined in Eq. (1).
In this way we take the solution that minimizes the
barrier of the original PES, V (x), as much as possible.
Once the solution is taken, e∗oBBP, we normalize it
obtaining the EoBBP and the normalized direction e∗n.
With this normalized direction, the integration of the
oFDSP path is carried out, starting at the oBBP point,
(xoBBP,EoBBP), forward and backward using Eq. (8).
This searching scheme of the oOEEF in the oBBP point
of the unperturbed PES corresponds procedure 2© in
Fig. (1) and only requires the information of the oBBP
structure ( x structure, the energy V (x), gradient g(x)
and hessian H(x), electric dipole moment d(x) and its
derivatives, electric polarizability tensor a(x) and its
derivatives)) provided by standard electronic structure
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codes, hence, are require simple and computational
efficient. However, the integration of the oFSDP curve
implied by procedure 3© in Fig. (1) is more computa-
tionally demanding since this information is required
for each step of integration. However, knowing the
oOEEF field e∗oBBP = EoBBPe∗n starting at the oBBP
point is usually enough to understand and interpret the
most efficient way to reduce the reaction barrier for this
reaction valley of the PES.

This is the essential structure of the PMED model and
algorithm which transforms a GE point of the original
PES with eigenvalue equal to zero (i.e. a point where
det[H(x)] = 0) into an oBBP point of the perturbed PES where
det[He∗n(xoBBP,EoBBP)] = 0. This is the essential structure to
understand and control electrostatic catalytic effects by apply-
ing an OEEF. However, it is important to stress the fact that
other special points of the original PES with interesting topo-
logical properties can also be transformed into a BBP of the
perturbed PES, being one of them the valley-ridged-inflection
point (VRI).77–80 The modification of the PMED algorithm to
the case of VRI points and other non stationary points is given
in the Appendix A (Section V) and is applied to a toy model
system in Appendix B (Section VI).

III. APPLICATION OF THE PMED MODEL TO
CHEMICAL SYSTEMS

In this section we expose the behaviour of the present
PMED model in two chemical examples. The calculations
were made with the ORCA 5.0.381–85 suite of programs. The
data generated by this program (for the required input data for
each x structure, the energy V (x), gradient g(x) and hessian
H(x), electric dipole moment d(x) and electric polarizabil-
ity tensor a(x) ) is used by MANULS program,86 an open-
source Python software package where the PMED algorithm
described in subsection II B is implemented. The first and
second derivatives of the energy, dipole and polarizability for
reduced spaces are calculated numerically in the MANULS
code with a central differences approach. This package is
available in github.com86. Additionally, the exact version of
MANULS used to run these calculations is available from
Severi.87

A. The cis-trans isomerization of [3]cumulene derivative.

The aim of this example is to show how the optimal exter-
nal electric field annihilates the energy barrier of a trans-to-cis
isomerization of a [3]cumulene derivative, taking into account
the electric polarizability effects. We have chosen this chemi-
cal process because recent experiments88 have shown that the
OEEFs accelerate isomerizations in this type of systems. A
representation of the molecule studied is shown in Fig. (2a).
We start by calculating the potential energy curve that de-
scribes the isomerization. To do so we performed constrained
geometry optimizations in which the dihedral angle described

by the C1-C2-C3-C4 atoms is fixed and the remaining degrees
of freedom are optimized (see Fig. (2a) for the atom number-
ing). We scanned the dihedral from 0◦ to 180◦ with a step of
5◦. By convention the s-cis isomer is described by a 0◦ dihe-
dral angle, while the s-trans is described by a 180◦ dihedral
angle.

The calculations employed the UHF89,90 method and the
6− 31G∗ basis set91 in vacuo. The computational approach
relied on the broken-symmetry formalism. In this case we cal-
culated the natural orbitals associated to the lowest triplet state
and used them as a guess to perform the calculations on the
singlet state since it shows a significant open shell/diradical
character around the TS structure. The calculations were
made with the ORCA 5.0.381–85 suite of programs.

1. Results and discussion.

The molecular geometries of the s−trans isomer, the s−cis
isomer and the transition state for the conversion process are
shown in Figs. (2a), (2b) and (2c), respectively. The molecu-
lar geometry of the oBBP is shown in Fig. (3) along with the
direction of the optimal OEEF using the PMED model and
the simplified version considering the electric dipole moment
only. Finally, the unperturbed PES and the surfaces perturbed
by the optimal OEEF (i.e.: the oOEEF) using the PMED
model and the simplified version of the model are shown in
Figs. (4). The optimal bond-breaking point corresponds to a
dihedral angle equal to 140◦. Notice that the oBBP structure is
an intrinsic property of the unperturbed PES. In this point the
optimal OEEF calculated considering both the electric dipole
moment and polarizability is in the (−0.459,0.487,0.743) di-
rection and its amplitude is 0.0086 a.u. = 4.43 ·109 V/m. The
optimal external electric field calculated considering only the
electric dipole moment is in the (−0.808,0.273,0.522) direc-
tion and its amplitude is 0.0091 a.u. = 4.70 · 109 V/m. The
angle between the fields calculated in the two approximations
is 26.9◦, showing the important effect of the polarizability of
the molecular charge distribution in response of the applied
oOEEF.
Comparison of the original and the perturbed PES in Fig. (4)
clearly shows the essential role of the oBBP to rationalise the
effect of the applied oOEEF on the system and the fact that the
TS has a minor role to understand the thermodynamic prop-
erties of the unperturbed PES. Also, it clearly shows the fact
that application of an oOEEF has a global effect on the PES
which is usually ignored in simplified models based in the un-
perturbed PES.

B. The 1,3-Dipolar Cycloaddition of Fulminic Acid Plus
Acetylene to Isoxazole.

As a second realistic chemical example, we will focus on
one reaction that belongs to the family of the 1,3-dipolar
cycloadditions, which constitutes an important class of peri-
cyclic rearrangements. In particular, we will study the Huis-
gen reaction, which is an example of exergonic fusion process
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Optimal OEEF : 

 e*oBBP = EoBBP e*n  for xoBBP 

Optimize OEEF: e*oBBP = EoBBP e*n  in xoBBP 

minimizing Pe∗ (xoBBP, EoBBP) in eq. (1). 

Solve s (x) = 0 in the original 

PES to locate xoBBP in the reaction 

valley of interest 

x0 (IRC) 

g and H 

Check that 1st and 2nd 

derivatives of dipole and 

polarizability w.r.t. x are not 

zero in xoBBP  

Valid xoBBP to optimally promote the desired chemical process 

d(xoBBP) and 

its derivatives 

A(xoBBP) and 

its derivatives 

Apply an OEEF in xoBBP 

along a given direction en  to find  

eoBBP = EoBBP en  by 

1) solving Eq.(29) with en that also satisfies Eq. (24) 

2) solving the quartic Eq.(31)  to find EoBBP   

Obtain the optimal FDSP path  

starting at (xoBBP, EoBBP )  

forward and backward using eq. (8). 

An algorithm to calculate optimal OEEF and FDSP based in the 

polarizable molecular electric dipole (PMED) ansatz of Eq. (1) 

Each step xi along the 

oFDSP requires V(xi), 

g(xi), H(xi), 

 d(xi), A(xi) and its 

derivatives  

Optimal FDSP for the reaction valley of interest:  

the barrier has been annihilated by the applied oOEEF 

1 

2 

3 

FIG. 1: Flow chart describing the proposed PMED algorithm to calculate the oBBP (step 1), oOEEF (step 2) and the oFSDP
(step 3) for the reaction valley of interest on the PES. Colour code: the required input data from a standard molecular electronic

structure code is marked in green; the procedure to locate the oBBP (a catastrophe point in the original PES) using the
algorithm described in references 72 and 73 is marked in orange; the procedure to calculate the optimal OEEF at xoBBP is

marked in blue; the procedure to calculate the optimal FDSP passing through xoBBP is marked in pink.

where two unsaturated reactants come together to form five-
membered heterocycles. The Huisgen reaction between ful-
minic acid and acetylene to form isoxazole has already been
studied computationally using a variety of energy function-
als and basis sets. The rather low energy barriers reported in
previous computational studies for this reaction are consistent
with the experimental observation that 1,3-dipolar cycloaddi-
tions usually proceed under mild thermal conditions. Here,
we study the cycloaddition reaction, and we will focus our
efforts on finding the optimal OEEF that triggers the exother-
mic cycloaddition of fulminic acid and acetylene to isoxazole
through a barrierless process.

All the calculations regarding the characterization of
the PES and the scans were performed with the ORCA
5.0.381–85,92 suite of programs. The calculations are per-
formed using the B3LYP functional93–96 and def2-TZVP basis
set in vacuo.97 Every calculation employs the D3BJ dispersion

correction98,99 and the RIJCOSX approximation92 (that is the
default in ORCA code for DFT calculations).

The PES calculation were carried out the following man-
ner. After the optimization of the TS and of the products three
relaxed surface scans were performed. The first one consists
in to scan the C1–C2 and C3–O bonds from 3.4 Å to 1.2 Å
with a step of 0.1 Å. The second one consists in to scan the
C1–C2 and C3–O bonds from 3.0 Å to 2.4 Å with a step of
0.025 Å. Finally, the third one consists in to scan the C1–C2
and C3–O bonds from 3.0 Å to 2.1 Å with a step of 0.04 Å,
used only for the calculation of the FDSP path. In the Fig. (5)
is shown the Huisgen reaction and the atom numbering. In
addition to the energy value at each point of the grid, the per-
manent dipole moment (i.e., the dipole moment at zero field)
and the polarizability were also computed at each point of the
two-dimensional PES.
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(a) s-trans isomer (b) s-cis isomer (c) transition state

FIG. 2: Representation of the structure of the stationary points of the potential energy curve. The atom numbering used to
define the central dihedral angle is indicated in (a).

FIG. 3: Molecular geometry of the optimal bond-breaking
point, oBBP. Purple arrow: direction of the optimal external
electric field calculated considering the polarizability and the

dipole. Orange arrow:direction of the optimal external
electric field calculated considering only the dipole. Cyan

arrow: direction of molecular electric dipole moment vector.

1. Results and discussion

We first located the stationary points associated with the
reactants and transition state configurations. The geometry
of the minima and TS structures are shown in Fig. 6. The
most important geometrical changes of the molecular system
during the reaction process occur in the C1−C2 and C3−O
bond distances. This means that the reaction can be properly
described in the subspace defined by these two coordinates.
Taking this into account, we will find the oBBP for the cy-
cloaddition of fulminic acid plus acetylene to isoxazole in the
subspace defined by these two coordinates. Working in this
two-dimensional subspace will also allow us to better illus-
trate the algorithm introduced in the previous subsection II B.

The original or unperturbed V (x) PES in the two-
dimensional subspace was computed by means of a set of con-
strained optimizations in which the values of the C1–C2 and
C3–O bond distances were fixed at given values reported in

subsection III B.
The oBBP of the cycloaddition reaction was located ac-

cording to the algorithm described in reference 72, or that is
the same to find the point of the GE curve where the eigen-
value of the gradient eigenvector of the Hessian matrix is
near zero within some criterium. The unperturbed PES is re-
ported in Fig. (7), along with the IRC starting from the TS
and the oBBP. The red bold circle shown on the unperturbed
PES of Fig. (7) marks the location of oBBP point, (xoBBP),
being near to the IRC curve. Notice the large difference be-
tween oBBP and TS structures and the fact that is sitting half
way between TS and reactants. Now we can compute the
oOEEF, namely, e∗oBBP =EoBBPe∗n at the oBBP and the oFDSP
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FIG. 4: Curves on the PES describing the s− trans/s− cis
isomerization in all the three discussed cases: no OEEF
applied (unperturbed PES) in blue; perturbed PES with

optimal OEEF calculated considering the PMED model in
orange; perturbed PES with optimal OEEF calculated

considering simplified model considering only the electric
dipole moment in green. The energy values are relative to the
energy minimum of the PES calculated without the effect of
the electric field, that is the s− cis isomer in gas phase. The
red dot represents the location of the optimal bond breaking

point.
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FIG. 5: The Huisgen reaction between fulminic acid plus
acetylene to give isoxazole. The atom numbering is also

reported.

curve using the normalized direction of oOEEF starting at the
xoBBP point. At this point, it is interesting to compute the
oOEEF with the simplified model that only takes into account
the electric dipole moment to assess the role of the polariz-
ability in the determination of the oOEEF. The application
of the PMED model including the polarizability of the elec-
tric dipole leads to an oOEEF in the (−0.871,0.036,−0.489)
direction with 0.0879 a.u. = 4.52 V/Å amplitude whereas
the simplified model leads to a different oOEEF pointing in
the (−0.722,+0.666,−0.188) direction with an amplitude of
0.1937 a.u. = 9.96 V/Å. A representation of the oOEEFs is
in Fig. 8 showing a large difference in direction and intensity
when polarizability is taken into account. Indeed, while the
oOEEFs obtained with both levels of approximation are suc-
cessful in eliminating the reaction barrier (see Figs. 9 and 10),
they differ considerably. In this case, the amplitudes of the
oOEEF computed with the two levels of approximation differ
in 73% and the angle between the two field directions is even
larger than in the cumulenic system, 44.7◦, showing the essen-
tial contribution of the polarizability in reducing the oOEEF
strength. Finally, the comparison of the oFSDP curves using
the PMED model appears smoother than the corresponding
curve from the simplified model, in line with the simultane-
ous breaking of the C1−C2 and C3−O bonds expected for
this kind of concerted cycloadditions.

IV. CONCLUSIONS

In this article we present a novel theoretical model based
in the polarizable molecular electric dipole (PMED) ansatz,
which is aimed at providing new tools to establish which
is the optimal direction in which an external electric field
should be applied to annihilate a given reaction barrier in
the most efficient form. Here we propose the PMED model
which is based on Catastrophe and Optimal Control Theo-
ries where the electric field enters in a quadratic way since
we consider the electric dipole and polarizability to account
for the response of the molecular system to an applied OEEF.
We have presented the foundations of these theories in the
context of mechanochemistry72,73 and OEEF driven chemi-

cal reactivity57,58. The PMED model fully takes into account
electric-field induced distortions of the molecular charge dis-
tribution taking into account the electric polarizability, thus
going beyond simple treatments that rely exclusively on the
intrinsic dipole moments of the stationary points (TS and re-
actants) of the unperturbed PES. Our previously proposed
scheme based on molecular electric dipole57,58 is a significant
improvement over these simplified “rigid” models but the in-
clusion of the electric polarizability in the PMED model in-
troduces the essential electrostatic response of the molecular
system that can be treated in a feasible computational appli-
cation due to the intractable complexity of the equations and
its computational cost. The concept of barrier breakdown or
bond-breaking points, BBPs, of the perturbed PES is central
in our model due to their unique topological properties. These
points embody essential topological information of the evolu-
tion of the perturbed (or effective) PES as a function of the
direction and strength of the applied OEEF.

In the PMED model, for each direction of the OEEF (given
by en) applied to promote a process along a given reaction val-
ley of the unperturbed PES, there exists a BBP configuration
lying somewhere between the reactants and the TS configura-
tions of this reaction valley. Each BBP is a Catastrophe point
in which the reactants and the TS configurations coalesce in
the perturbed PES for a given strength of the electric field par-
allel direction en. Once a BBP has been located, the evolution
of the PES with the field strength (for a fixed direction en)
can be obtained by integration of the so-called FDSP curve.
Within the manifold of BBPs associated to this reaction valley,
there exists one configuration, so-called optimal BBP (oBBP),
which is associated with the optimal OEEF (oOEEF) that cor-
responds to the minimum possible field strength to make the
process barrierless.

The necessary and sufficient conditions to find the oBBP
and its associated oOEEF are provided in this work, along
with an efficient algorithm to evaluate them using the unper-
turbed PES only. Once the oBBP has been located with the
algorithms presented in Refs. 73 and 72, the oOEEF can be
found in a one-step procedure by imposing the two following
conditions: i) the Hessian of the original PES must be equal
to that of the perturbation coincide with those of the pertur-
bation function at the oBBP configuration, and ii) each gradi-
ent is an eigenvector of the corresponding Hessian (Gradient
Extremals condition). The PMED model has been extended
to other special points of the PES such as the valley-ridged-
inflection (VRI)77–80 points that can be important for the de-
scription of the dynamics of chaotic systems under the influ-
ence of an OEEF. The proposed PMED algorithm performs
the calculation of the oBBP and the oOEEF in a two-step pro-
cedure that essentially requires the information related to the
oBBP structure (gradient, hessian, electric dipole and polariz-
ability and their first and second derivatives) whereas the most
computational demanding step is the integration of the oFSDP
curve which requires this information for each step of the in-
tegration. The algorithm has been implemented in a open-
source Python software package86 that can be interfaced with
standard electronic structure packages. The PMED model has
been applied to describe the catalytic effects when OEEFs are
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(a) Fulminic Acid (b) Acetylene

(c) Transiton State (d) Isoxazole

FIG. 6: Representation of a-b) the reactants, c) the transition state and d) the product of the 1-3 cycloaddition of fulminic acid
and acetylene to isoxazole. The C1−C2 and C3−O bond distances are 2.17 and 2.38 Å for TS, and 1.42 and 1.34 Å for

isoxazole.

applied to several model PES and two relevant chemical reac-
tions to show its capabilities and performance of the proposed
algorithm. These examples provide an interesting picture to
explain electrostatic catalytic effects in molecular systems: for
a given reaction valley, the effect of applying an electric field
parallel to the direction dictated by the oOEEF with an in-
creasing strength will distort the original PES in a way that
the structure of the reactants’ configuration will move closer
to the TS configuration in the perturbed PES. For a sufficiently
high intensity of the OEEF (the EoOEEF ), the reactants and TS
configurations will coalesce at the optimal BBP and then the
chemical process becomes barrierless. This image of both the
reactants and TS configurations moving closer to each other
on the perturbed PES and eventually coalescing at the oBBP
as a result of the applied external field dictated by the oEEF
provides a firm conceptual framework for the burgeoning field
of electrostatic catalytic effects observed in different organic
and biologic processes. In particular, the concept of oBBP
might of fundamental relevance in the field of enzymatic catal-
ysis in view of the key role played by the electrostatic fields
exerted by the active sites of enzymes in their catalytic activ-
ity. Finally, these examples show the central role played by
the oBBP to understand this kind of chemical control and the
fundamental implications of the Catastrophe and Control the-
ories in chemistry.

V. APPENDIX A: GENERALIZATION OF THE PMED
ALGORITHM DESCRIBED IN SECTION II B APPLIED TO
OTHER SPECIAL POINTS OF THE PES

The algorithm described in subsection II B shows how the
OEEF transforms a GE point with eigenvalue equal to zero of
the original PES, a point where det[H(x)] = 0, into an oBBP
point of the perturbed PES where det[He∗n(xoBBP,EoBBP)] = 0,
but other points of the original PES can also be transformed
to BBP of the perturbed PES, being one of them the valley-
ridged-inflection point (VRI).77–80

In fact, in a previous work we already demonstrated that me-
chanical forces can transform a VRI point into a BBP.59 We
recall that a VRI point is also a GE point where normally the
eigenvalue is not equal to zero,71 and thus does not satisfy the
optimality conditions just described above. Here we develop
a formal scheme, similar to the one previously shown for the
oBBP, to establish the necessary and sufficient conditions to
locate the optimal VRI and OEEF by means of the topological
properties of the VRI points on the unperturbed PES. Notice
that for a PES of more than two dimensions, VRIs are usu-
ally not isolated, single points (like minima and SPs), but they
exist as a manifold of points.78–80,100–107 The VRI point trans-
formed into a BBP will be labeled as xvBBP. The algorithm to
make this transformation is analogous to the PMED algorithm
for locating oBBPs but with the following changes:

1. Location of xvBBP.
An algorithm to locate a VRI point on the original PES,
V (x), is already described in reference 79. This point
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FIG. 7: 2D (top) and 3D representations of the original (or
unperturbed) PES in the space represented by the C1−C2

and C3−O bond distances. The red dot is the optimal BBP.
The orange dots represent the IRC trajectory. The energy is
relative to the minimum of the surface on the bottom left of

Fig. 7a.

satisfies the eigenvalue equation, H(xvBBP)g(xvBBP) =
g(xvBBP)g(xvBBP), being g(xvBBP) the eigenvalue nor-
mally different to zero. The VRI also satisfies the
det[H(xvBBP)] = 0 condition, since another eigenvector
of the H(xvBBP) matrix has null eigenvalue. It should be
verified that the first and and second derivatives with re-
spect to x of {di(x)}i=x,y,z and {ai j(x)}i, j=x,y,z at xvBBP
are not simultaneously zero.

2. Imposing the condition that xvBBP point belongs to the
FDSP.
This step is the same to the item 2.) of the previous
algorithm by changing xoBBP by xvBBP.

3. The eigenvalue condition at the xvBBP.
At the xvBBP, Eq. (19b), should be satisfied with
k(xvBBP) = g(xvBBP) since we are in a point of GE curve
that the eigenvalue of the gradient eigenvector is equal
to g(xvBBP). Thus the Eq. (24) now is,

k(xvBBP) = eT
vBBPz(xvBBP,evBBP) = g(xvBBP) . (32)

(a)

(b)

(c)

FIG. 8: Three views from different perspectives of the oBBP
geometry. The purple arrow represents the direction of the

optimal external field calculated considering the PMED
model (i.e.: considering both the molecular electric

polarizability and the dipole). The purple arrow represents
the direction of the optimal external field calculated
considering only the electric dipole. The cyan arrow

represents the direction of the electric dipole moment vector.

4. The eigenvector condition, k(xvBBP) = 0.
At the xvBBP point Eq. (19a) is satisfied with k(xvBBP) =
0. In this case Eq. (27) now is,

kT (xvBBP)k(xvBBP)+ k2(xvBBP) =

eT
vBBPT(xvBBP,evBBP)evBBP = g2(xvBBP) .

(33)

5. Proposed algorithm to find evBBP.
The set of Eqs. (23), (32) and (33) gives the necessary



14

1.5 2.0 2.5 3.0
C1 C2 distance (Å)

1.5

2.0

2.5

3.0
C 3

O
 d

ist
an

ce
 (Å

)

135
120
105
90
75
60
45
30
15

0

Re
la

tiv
e 

En
er

gy
 (k

ca
l/m

ol
)

(a)

(b)

FIG. 9: 2D (top) and 3D representations of the perturbed PES
with an oOEEF calculated using the PMED model (i.e.: by
considering both the polarizability and the dipole). The red
dot is the oBBP. The blue dots represent some calculated
points of the oFDSP curve. The energy is relative to the

minimum of the unperturbed PES in Fig. 7.

and sufficient conditions to find the evBBP vector. A way
to solve this system of equations is to find the eigenvec-
tor of null eigenvalue of the matrix,

T(xvBBP,evBBP) =

T(xvBBP,evBBP)− z(xvBBP,evBBP)zT (xvBBP,evBBP) .
(34)

Let τ be the eigenvector of null eigenvalue of
the T(xvBBP,evBBP) matrix, if the dot product,
τ T z(xvBBP,evBBP) 6= k(xvBBP), then we rotate τ such
that Eq. (32) is satisfied being this rotated τ vector the
evBBP vector. Notice that Eq. (23) is automatically sat-
isfied after doing the appropriated rotation. This pro-
cess is repeated until the variation on the evBBP vector is
smaller than a given threshold.

6. Selection of the OEEF.
This step is identical to the item 5.) of the PMED al-
gorithm. Eq. (23) changing xoBBP by xvBBP, Eq. (32)
and Eq. (33) give the necessary and sufficient condi-
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FIG. 10: 2D (top) and 3D representations of the perturbed
PES with an oOEEF calculated using the simplified model

considering only the electric dipole. The red dot is the oBBP.
The blue dots represent some calculated points of the oFDSP

curve. The energy is relative to the minimum of the
unperturbed PES in Fig. 7.

tions to find evBBP vector, however, as in the previ-
ous algorithm, solving this problem we get many solu-
tions. We take the evBBP vector that lowers the value
of Pen(xvBBP,EvBBP) function. The normalization of
the selected evBBP vector gives the en normalized di-
rection and the norm EvBBP. The integration of the
corresponding FDSP curve is carried out using Eq. (8)
and this normalized direction starting form the point,
(xvBBP,EvBBP).

Finally, we consider the general case consisting in the trans-
formation of a point x of the original PES, V (x) where
g(x) 6= 0 to a BBP point of the effective or perturbed
PES, Ven(xBBP,EBBP). It is important to recall that for this
point at the effective PES red it holds that the gradient,
∇xVen(xBBP,EBBP) = 0, and det[Hen(xBBP,EBBP)] = 0. The
algorithm to make this transformation is analogous to the two
previous algorithms for oBBP and vBBP but with the follow-
ing changes:

1. Given a point x to be transformed to xBBP.
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A point x should be given where g(x) 6= 0. We denote
by w a vector that can be either the gradient, g(x), or an
arbitrary tangent vector, ẋ, in both cases this vector w
plays the role of tangent of the FDSP curve. Also the
Hessian matrix should be computed H(x). The first and
and second derivatives with respect to x of {di(x)}i=x,y,z
and {ai j(x)}i, j=x,y,z should be computed at this selected
point and be sure that simultaneously are not zero.

2. Imposing the condition that xBBP point belongs to the
FDSP.
This step is the same to the item 2.) of the first
algorithm by changing xoBBP by xBBP.

3. The expectation value condition at the xBBP.
At the xBBP, Eq. (19b), should be satisfied with
k(xBBP) = wT H(xBBP)w/(wT w). Thus the Eq. (24)
now is,

k(xBBP) = eT
BBPz(xBBP,eBBP) . (35)

Where, k(xBBP), has the value previously computed.

4. The condition, k(xBBP) 6= 0.
At xBBP point Eq. (19a) is satisfied with k(xBBP) 6= 0. In
this case Eq. (27) now is,

kT (xBBP)k(xBBP)+ k2(xBBP) =

eT
BBPT(xBBP,eBBP)eBBP .

(36)

We recall that the vector k(xBBP) is computed as fol-
lows,

k(xBBP) =

(
I− wwT

wT w

)
H(xBBP)

w√
wT w

. (37)

5. Proposed algorithm to find eBBP.
The set of Eqs. (23), (35) and (36) gives necessary and
sufficient conditions to find the eBBP vector. A way to
solve this system of equations is to that described in the
case to find evBBP vector.

6. Selection of the OEEF.
This step is identical to the item 5.) of the first algo-
rithm. Eq. (23) changing xoBBP by xBBP, Eq. (35) and
Eq. (36) give the necessary and sufficient conditions to
find eBBP vector, however, as in the previous algorithm,
solving this problem we get many solutions. We take
the eBBP vector that lowers the value of Pen(xBBP,EBBP)
function. The normalization of the selected eBBP vector
gives the en normalized direction and the norm EBBP.
The integration of the corresponding FDSP curve is
carried out using Eq. (8) and this normalized direction
starting form the point, (xBBP,EBBP).

VI. APPENDIX B: A TWO DIMENSIONAL EXAMPLE
WHERE A VRI POINT IS TRANSFORMED INTO A BBP
BY MEANS OF AN APPLIED OEEF

As noted in the previous section, in a general a general
manner we can say that a BBP defines the force in magni-

tude and direction that should be applied to a molecular sys-
tem to promote a given chemical transformation by means
of an electric field. In this section we show using a two-
dimensional toy model the case where the BBP corresponds
to a VRI point of the original PES. The general algorithm that
transforms a VRI point to a BBP is already explained in the
previous appendix (subsection V). For this purpose we use
the Wolfe-Quapp toy PES108,109, see Fig. (11), for the con-
stant dipolar field in direction of the left upper VRI point lo-
cated at (xV RI ,yV RI) = (−0.493, 0.814). We select the NT
curve with constant direction, (0.476,−0.879), which is a
singular NT and meets the former VRI point. Notice that
this VRI point is located in the left upper corner of the PES.
If one choses a fixed, but strong enough, OEEF in this di-

-2 -1 0 1 2

-2

-1

0

1

2

x

y

FIG. 11: Equipotential lines of the Wolfe-Quapp PES108,109.
The bold curve is the singular NT, with constant direction,
(0.476,−0.879). This NT curve passes through the VRI
point located at the (xV RI ,yV RI) = (−0.493, 0.814). The
green line corresponds to the manifold of points where,

det[H(x,y)] = 0, the dashed-line is the valley-ridged border
line110.

rection, one can overcome the VRI point and the stationary
point of index 2 behind the VRI and open a single channel
for the reaction from the upper left to the lower down mini-
mum. We use now the dipole dT (x, y) = (dx(x, y),dy(x, y)) =
(0.476x,−0.879y) and add the new part, the perturbation po-
tential, Pen(x,y,E) =−E(ex, ey)

T d(x, y), to form the effective
new PES, Ven(x,y,E). Thus, each point of a FDSP path satis-
fies the equation,

g(x,y) =
(

gx(x,y)
gy(x,y)

)
=−men(x,y,E) =

[∇(x,y)(dx(x),dy(y))]
(

ex
ey

)
E =(

0.476 0.0
0.0 −0.879

)(
ex
ey

)
E =

(
0.476ex
−0.879ey

)
E ,

(38)

where, gx(x,y), and, gy(x,y), are the components of Wolfe-
Quapp PES gradient vector. In this case, the Hessian matrix
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of the Wolfe-Quapp PES, H(x,y) 6= O, whereas the Hessian
matrix of the perturbation, Fen(x,y,E) = O, where O is the
zero matrix of dimension 2× 2, thus, Hen(x,y,E) = H(x,y).
This implies that through a FDSP path, the Wolfe-Quapp PES,
V (x,y), and the perturbation potential, Pen(x,y,E) have con-
tact of order one. For this reason, to compute the electric field,
only the first item of the algorithm should satisfied. Taking
into account this fact, the (non-normalized) OEEF is trivially
computed from Eq. (38) at the VRI point, now taken as BBP,
given rise the expressions, εv

x = gx(xvBBP,yvBBP)/0.476 =
5.476 and εv

y =−gy(xvBBP,yvBBP)/0.879 = 5.401, in arbitrary
units. The normalization of this OEEF vector gives the con-
stant direction of the field, eT

n =(ex, ey)= (0.712, 0.702). The
normalization factor is the intensity of the OEEF at VRI point,
EvBBP = 7.69, in arbitrary units. Taking the normalized OEEF
and different intensities, E = 5.13, 5.98, 6.84, 7.69, we ob-
tain different contour plots of the effective PES exposed in
Fig. (12). As we can see in Ven(x,y,E) for E = EvBBP, the two
valleys from the upper left minimum disappear, and a single
channel opens for a direct reaction.
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FIG. 12: Different effective PESs, Ven(x,y,E), from the perturbation of the Wolfe-Quapp PES, with different field strengths:
from left to right, E = 5.13, E = 5.98, E = 6.84, and EvBBP = 7.69. The strength of the field is given in arbitrary units.

Comparing V (x,y) of Fig. (11) with Ven(x,y,E) for E = EvBBP, we see that the two original valleys joining the upper and left
minima disappear, and a single channel opening a new direct reaction emerges. The green line corresponds to the manifold of

points where, det[Hen(x,y,E)] = det[H(x,y)] = 0, the dashed-line is the valley-ridged border line110.
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