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Abstract 
 
The system of ordinary differential equations for the method of the gentlest ascent 

dynamics (GAD) has been derived which was previously proposed [W. E and X. Zhou, 

Nonlinearity 24, 1831 (2011)].  For this purpose we use diverse projection operators to 

a given initial direction.  Using simple examples we explain the two possibilities of a 

GAD curve: it can directly find the transition state by a gentlest ascent, or it can go the 

roundabout way over a turning point and then find the transition state going downhill 

along its ridge.  An outlook to generalised formulas for higher order saddle-points is 

added. 

 

Keywords:  Potential Energy Surface, Reaction Path, Minimum Energy Path, 

Transition State Search. 
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INTRODUCTION 
 
The concepts of the potential energy surface (PES) [1,2] and of the chemical reaction 

path are the basis for the theories of chemical dynamics.  The PES is a continuous 

function with respect to the coordinates of the nuclei.  It is an N-dimensional 

hypersurface if N = 3n and n is the number of atoms.  It must have continuous 

derivatives up to a certain order. 

The PES can be seen as formally divided in catchments associated with local minima 

[1,3].  The first order saddle points or transition states (TSs) are located at the deepest 

points of the boundary of the basins.  Two neighboaring minima of the PES can be 

connected through a TS via a continuous curve in the N-dimensional coordinate space.  

The curve characterises a reaction path.  One can define many types of curves satisfying 

the above requirement.  The reaction path model widely used is the steepest descent 

(SD). 

There exist a large number of proposed methods that in principle reach a TS when the 

minimums associated to the reactant and product are known.  See reference [4] and 

references therein.  There are also methods that find the TS when only one minimum is 

known.  In this case, the problem is much more cumbersome because the initial data are 

just the geometry coordinates of the minimum, however, the direction of the search is 

open.  As in the first case many algorithms have been developed for this type of 

problem [4].  A great number of these algorithms are based in a generalisation of the 

Levenberg-Marquardt method [5,6,7] that basically consists of a modification of the 

Hessian matrix to achieve both, first the correct spectra of the desired Hessian at the 

stationary point, and second to control the length of the displacement during the 

location process.  The first proposed algorithm within this philosophy is due to 

Scheraga [ 8 ] and from than up to now the list is very large 

[9,10,11,12,13,14,15,16,17,18,19,20].  None of the methods are foolproof, each of them 

has some problems.  Recently E and Zhou [20] have proposed an approach called the 

"gentlest ascent dynamics" method.  This method can be seen as a new reformulation of 

the method proposed some time ago by Smith [12,13] under the name “image function”.  

The method is based on the generation of an image function that is a function which has 

its minima at exactly the points where the original PES has its TSs and moreover by an 

application of a minimum search algorithm to this image function.  The converged point 
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should correspond to a TS in the actual PES.  Helgaker [14] modified the algorithm by 

the trust radius technique.  Sun and Ruedenberg [21] analysed the method concluding 

that image functions do not exist for general PES so that a plain minimum search is 

inappropriate for them.  A nonconservative field gradient of the image function exists.  

The global structure of the image gradient fields is considerably more complex than that 

of gradient fields of the original function.  However, the image gradient fields appear to 

have considerably larger catchment basins around TSs.  Besalú and Bofill [18] showed 

that the Smith algorithm is a special type of the Levenberg-Marquardt method. 

In this article we show the connection between the Smith method [12,13] and that 

described by E and Zhou [20] to find TSs, and additionally, the mathematical basis of 

this algorithm is discussed.  Finally, some examples are reported. 

 

 

BACKGROUND OF THE METHOD 

 

Let us denote by V(q) the PES function and by qT = (q1, …, qN) the coordinates.  The 

dimension of the q vector is N.  The superscript T means transposition.  At every 

interesting point q the PES function admits a local gradient vector, g(q)  = ∇qV(q), and 

a Hessian matrix, H(q) = ∇q∇q
TV(q).  The family of image functions of V(q), labelled 

by W(q), is defined by the differential equation [21] 

 

f q( ) =Uvg q( ) = I! 2
v q( )vT q( )
v
T
q( )v q( )

"
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'
g q( )  (1) 

 

where f(q) is the image gradient vector, Uv is the Householder orthogonal matrix 

constructed by an arbitrary vector v(q) being in principle a function of q, and I is the 

unit matrix.  The Householder orthogonal matrix is a reflection at v(q).  It has the 

property that Uv = Uv
T, and it is the result of the difference between the projectors (I – 

Pv) and Pv, because it holds trivially Uv = I – 2 Pv = (I – Pv) – Pv, being Pv the projector 

that projects into the subspace spanned by the v-vector [22].  If the derivatives of v(q) 

with respect to q are nonvanishing, the image Hessian matrix, F(q) = UvH(q), is not 

obtained by the differentiation of f(q).  Taking into account Eq. (1), this differentiation 

results in 
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The term in brackets is usually not zero and not symmetric, and this non-symmetry is 

due to the effect of the differentiation on the Pv projector.  In other words, 
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The inequality of Eq. (3) implies that the image gradient field defined by Eq. (1) is not 

integrable to an "image PES" W(q).  More explicitly, 

 

W q
1( )!W q

0( ) " f T q( ) dq dt( )dt
t
0

t
1

#  (4) 

 

where dq/dt is the tangent of an arbitrary curve joining the points q0 = q(t0) and q1 = 

q(t1).  Due to Eq. (3), this gradient field vector should be considered as a 

nonconservative force field.  From this fact it follows an image of the PES function 

does, in general, not exist [21,23]. 

From Eq. (3) it is easy to see that at the stationary points, where g(q) = 0, the inequality 

is transformed to an equality if the v-vector is an eigenvector of the Hessian matrix.  

Note that if {h, v/(vTv)1/2} is an eigenpair of the H(q) matrix, then F(q) = UvH(q) = (I – 

2vvT / (vTv)) H(q) = H(q) - 2vvT / (vTv) h = H(q) - h 2vvT / (vTv)  = H(q) - H(q) 2vvT / 

(vTv) = H(q) (I – 2vvT / (vTv)) = H(q)Uv = FT(q).  As pointed out by Sun and 

Ruedenberg [21], the image functions do exist until the second order in the vicinity of 

its stationary points for any PES taking v as an eigenvector of the Hessian matrix.  Due 

to this fact the SD curves of the quadratic image function are approximations to the 

gradient image curves of W(q) being the image potential of V(q). 

With the previous analysis of the general nonexistence of an image PES, we can take 

the image gradient field given in Eq. (1) to define the field of SD curves as, 
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dt
= !f q( ) = !Uvg q( ) = ! I!P

v( )!Pv"# $%g q( )  (5) 

 

where t is the parameter that characterises the SD curve, q(t).  If Eq. (5) is multiplied 

consecutively from the left by the set of (N-1) linear independent orthogonal vectors to 

the v-vector, we see that it corresponds to a curve which is energy descending along this 

set of directions on the actual PES, whereas is ascending on the v-vector direction.  This 

property makes the set of curves defined in Eq. (5) suitable for the location of a TS from 

a minimum.  This observation is supported by the fact that Eq. (5) can be rewritten as 

 

dq

dt
= ! I!P

v( )!Pv"# $%g q( ) =! I!Pv( )g q( )+Pvg q( ) = ! I!Pv( )g q( )+ l
v

v
T
v( )

1 2

 (6) 

 

being l = vTg(q) / (vTv)1/2, where the definition of Pv has been used.  Eq. (6) is the basic 

equation of the string method proposed for the location of reaction paths and TSs [24].  

The v-vector in this method is the current tangent of the path.  Because we are interested 

to find TSs from minimums of the PES we can use the nonconservative property of the 

gradient image field to modify the v-vector, during the location process.  For this 

purpose, we first consider that at the minimum, as well as at the TS, the last term of the 

right hand side part of Eq. (2) is equal zero due to g(q) = 0.  Second, at the TS, the 

Hessian matrix, H(q), possesses only one eigenpair with negative eigenvalue.  The 

associated Raygleigh-Ritz quotient of this eigenpair with a negative eigenvalue is the 

lowest that the Hessian matrix can achieve at this point can achieved being equal to the 

corresponding eigenvalue [25].  The Raygleigh-Ritz quotient for a given vector v and 

matrix H is defined as, λ(v) = vTHv / (vTv).  The structure of this eigenvector is 

unknown.  To find the TS one should, however, ensure that during the research process 

the path walks through the PES (given until second order) such that the character of the 

surface becomes closer to a first order saddle point.  Taking into account these two 

considerations we transform Eq. (3) imposing that g(q) = 0 at each point of the search 

and multiplying the resulting equation from the left by (I – Pv) and from the right by Pv, 
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The effect of this multiplication by the projectors, (I-Pv) and Pv, is that the resulting Eq. 

(7), multiplied from the right by the v-vector, is the gradient of the Rayleigh-Ritz 

quotient with respect to this vector.  If the v-vector is an eigenvector of the H(q) matrix 

then the right hand side part of Eq. (7) is equal zero because every eigenvector 

extremises the corresponding Rayleigh-Ritz quotient.  We will denote the Rayleigh-Ritz 

quotient by λq(v) to indicate its dependence on q through the Hessian matrix.  If a v-

vector makes the gradient of the Rayleigh-Ritz quotient equal zero then this vector is an 

eigenvector of the H(q) matrix and the value of the Rayleigh-Ritz quotient coincides 

with the corresponding eigenvalue of the H(q) matrix.  These properties suggest that a 

v-vector can be changed following the SD direction of the Rayleigh-Ritz quotient 

gradient with respect to v, 

 

dv

dt
= !
vTv

2
"v!q v( ) = ! I!Pv( )H q( )Pvv . (8) 

 

Eq. (8) is also a function of q through the Hessian matrix.  The Rayleigh-Ritz quotient 

of the new v-vector obtained from, v → v + dv/dt Δt, will be lower with respect to the 

previous one and, in addition, Eq. (5) will give us a new energy ascent direction and a 

set of orthogonal N-1 energy descent directions.  Eq. (8) searches for either the lowest 

positive or the single negative Rayleigh-Ritz quotient if it exists, whereas Eq. (5) 

determines points on the PES along the action of an increase of the energy in the v-

vector, and a decrease along the set of orthogonal directions to this vector.  The specific 

action of Eq. (5) defines the type of points of the PES so that its structure until the 

second order on q resembles a first order saddle point.  In turn, Eq. (8) finds v-vectors 

with lowest or possibly negative values of the Rayleigh-Ritz quotients of the 

corresponding Hessian matrix.  These two coupled actions on the Eq. (5) and Eq. (8) 

describe a gradually or gentlest form to find the TS located on the boundary of the basin 

which contains the start minimum.  Eqs. (5) and (8) are coupled since both depend on 

the v-vector explicitly on q through the gradient vector and the Hessian matrix 
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respectively.  The integration of Eqs. (5) and (8) implies the solution of the differential 

equation 
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with the initial conditions 
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where q0 is a slightly distorted point near the minimum.  The gradient at point q0 is 

selected automatically as the initial v-vector.  Eqs. (9) are the basic expressions of the 

algorithm proposed by E and Zhou [20] which are reviewed in this study. 

Note that the system (9) is a system of differential equations.  Corresponding to the 

initial conditions (9a) there emerges a full family of solution curves passing every point 

of a given region.  This is in contrast to the long known gradient extremals (GE).  They 

also realize a shallowest ascent idea; however, they are special solution curves of the 

equation H g = λ g, where λ is an eigenvalue of H.  Thus the GEs pass only points 

where the gradient itself is an eigenvector of H [2,26,27,28,29,30,31].  GEs do not 

cover a region. 

 

 

BEHAVIOUR AND ANALYSIS 

 

The set of Eqs. (9) has been integrated using the explicit Runge-Kutta method of order 

8(5,3) [32].  We have used two-dimensional PES models to analyse the behaviour of the 

gentlest ascent path.  The first PES model used for this purpose is the Wolfe-Quapp 

PES [33,34].  The equation of this surface model is 
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V (x, y) = x
4
+ y

4
! 2x

2
! 4y

2
+ xy+ 0.3x + 0.1y  (10) 

 

We look for the gentlest ascent dynamics if we start from the minimum located at the 

point (1.124, -1.486) with energy in arbitrary units -6.369.  We take the corresponding 

gradient vector there as a starting point (1.2, -1.5) and as the initial v-vector, according 

to Eq. (9.b).  The curve line is depicted in Fig. 1.  It starts from the minimum.  The 

curve ends at the TS located in (0.093, 0.174) with energy -0.644.  It follows the valley 

joining these two stationary points.  Fig. 1 also shows the behaviour of the v-vector.  

Initially the v-vector has the same direction to the tangent of the curve but along the 

initial sub-arc of the curve the vector points to the direction where the energy increases 

very fast, and finally the vector corrects its direction towards the direction of the 

transition vector.  The transition vector is the eigenvector of the Hessian matrix at the 

TS with the negative eigenvalue.  At the end point, namely the TS, the v-vector is the 

vector which produces the lowest value of the Rayleigh-Ritz quotient of the Hessian 

matrix.  It is the eigenvalue of the transition vector.  This behaviour conforms to that 

one which is explained in the previous section.  The curve is determined by the 

condition that the v-vector minimises the λq(v) within the limits imposed by the Mini-

Max eigenvalue theorem [25]. 

A second curve is computed on the same PES to get the same TS revealing new features 

of this type of GAD curves.  In this case the curve starts near the minimum located at 

the point (-1.174, 1.477), with energy -6.762.  The behavior of this curve is drawn in 

Fig. 2.  The path follows the valley in the direction where λq(v) takes the possibly 

lowest value.  The path arrives a highest energy value at a turning point and starts to 

descend along a ridge, and it ends again at the TS located at (0.093, 0.174) with energy -

0.644.  As shown in Fig. 2, on a large sub-arc from the minimum the v-vector has the 

same direction as the tangent of the curve.  Of course, the large arc with the turning 

point at its highest energy does not represent the “gentlest ascent”, seen from the TS and 

the valley nearby.  So, the name of the method, GAD, is a suggestive name but it is not 

realised in every case.  However, note that the TS is in a side valley, but the method 

finds the TS, in general.  At the point (1.849, 0.635) the curve achieves the highest 

energy value and starts its descents.  This point is a turning point (TP) of the curve, 

where the next equation is satisfied 
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dV

dt
= gT

dq

dt
= !gTUvg = !g

T I!Pv( )g+ gTPvg = 0  (11) 

 

where Eq. (5) has been used.  In general a TP appears on the gentlest ascent path when 

the square of the gradient norm in the subspace spanned by the v-vector is equal to the 

square of the gradient norm in the complementary subspace spanned by the set of linear 

independent vectors orthogonal to the v-vector.  This result is identical to the equality 

gTg / 2 = gTPvg, and with the definition of Pv we can rewritten it as, 1/21/2 = gTv / (gTg 

vTv)1/2, concluding that the GAD curve has a TP at the point where the v-vector and the 

gradient of the actual PES form an angle of π/4 radians.  The curve leaves the valley 

where the starting minimum is located, at the point TP (1.842, 0.768) and it enters to a 

ridge region.  Because this point satisfies the next equations 

 

gTA q( )g

gTg
= 0  (12.a) 

 

A q( )g

gTg( )
1 2
! 0  (12.b) 

 

where A(q) is the adjoint matrix of the Hessian H(q) at the q point, we conclude that 

this point is a valley-ridge transition point (VRT) rather than a valley-ridge inflexion 

point (VRI) [35,36,37].  In a VRI point both equations are equal zero.  From the 

minimum to the VRT point the curve shows positive values of the Rayleigh quotient, 

gTAg / (gTg), whereas they are negative from the VRT point to the TS.  This quotient is 

taken as a convexity criterion of a PES region where a point is located.  Positivity of the 

quotient means that the point is in a valley, otherwise it is on a ridge [38].  The result 

supports the above comment, namely, that one sub-arc of the curve is located in the 

deep valley from the minimum to the VRT point.  At this point the curve turns into the 

direction of the ridge following the lowest value of λq(v).  But this corresponds to the v-

vector orthogonal to both, the ascent of the valley and the descending ridge directions.  

On the sub-arc located on the ridge at each point the gradient vector increases its 

orthogonality with respect to the current v-vector.  The curve evolves along a direction 

of decreasing energy.  We can write dV/dt = gTdq/dt = -gTUvg = 2 gTg ((gTv)2 / (gTg vTv) 
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– 1/2) ≈ -gTg < 0 since vTg ≈ 0.  In general the curve evolves so that the energy 

decreases at each step if the gradient vector g and the v-vector form an angle within the 

open domains (π / 4, 3π /4) or (5π / 4, 7π / 4) radians. 

In general we can mark the following features of a GAD curve.  When along the sub-arc 

of the gentlest ascent curve its gradient vectors define an angle with the corresponding 

v-vectors within the open domains (π / 4, 3π /4) or (5π / 4, 7π / 4) radians, then the sub-

arc shows an energy decrease.   If the angle is within the open domains (3π / 4, 5π / 4) 

or (7π / 4, π / 4) radians it shows an energy growth.  When the angle is equal to π / 4, 

3π / 4, 5π / 4, or 7π / 4 radians the curve is stationary with respect to the variation of the 

energy, the TP situation. 

The same type of calculations with the PES proposed by Neria et al. [39] and modified 

by Hirsch and Quapp [38] confirms the same facts.  The equation of this surface model 

is 

 

V (x, y) = 0.06(x2 + y2 )2 + xy! 9exp ! x !3( )
2
! y

2( )! 9exp ! x +3( )
2
! y

2( ) . (13) 

 

The central point is the TS located at (0, 0) with energy -0.002.  The minima are located 

at (2.71, -0.15) and (-2.71, 0.15) with energy -5.24.  The surface has gorges around the 

points (2, -2) and (-2, 2) [38].  We start the gentlest ascent path at the point (2.6, -0.2) 

near to a minimum.  Its evolution goes over the gorge, it leaves the valley where the 

minimum is located and it enters the ridge, but then it enters again to the valley region 

of the minimum.  The ascending energy behaviour ends at the point (0.871, -1.428) 

being a TP.  On the sub-arc between the points TP and TS a VRT point exists at (0.002, 

-1.28) corresponding to the descending energy.  At this point the GAD curve enters a 

ridge that touches the TS.  Fig. 3 depicts this behaviour, the evolution of the v-vector is 

also shown. 

On the Müller-Brown PES [40], the GAD method exhausts its possibilities.  The global 

minimum is located at a very deep valley.  The coordinates are (-0.56, 1.44).  We use 

two different starting points.  The first starting point of the GAD method is at the point 

(-0.54, 1.4) near to the minimum.  The GAD trajectory leads to the next TS, see Fig. 

4(a) where it is the dotted line.  It goes over a TP but that is normal.  In Fig. 4(a) we 

show the behavior of the gradient extremal curve (GE) [2,26,27,28,29,30,31] for 

comparison.  The GEs are the bold dashed lines.  A part of the GAD on the ridge 



  11 

coincides with the GE.  However, the coincidence is for different reasons.  For the GAD 

case, in the ridge region the v-vector is orthogonal to the gradient and due to this fact 

the trajectory shows a decrease in energy.  In other words, dV/dt is reduced, it is, dV/dt 

= -gTg < 0 since vTg = 0.  Recall that the v-vector evolves in this process to reach the 

eigenvector of the Hessian matrix of lowest eigenvalue.  Analyzing the GE in the region 

of coincidence, the gradient at each point of this curve is by construction an eigenvector 

of the Hessian corresponding to a positive eigenvalue.  The eigenvalue is positive 

because its eigenvector comes from the evolution of the Hessian at the TS labeled as 

SP1, in direction orthogonal to the col.  For the GE the variation energy is given by, 

dV/dt = (gTg)1/2eg, being eg a component of the GE tangent equation [28,31] and 

depending of its sign, the curve increases or decreases in energy.  One can conclude that 

in the region of coincidence the v-vector is orthogonal to the gradient vector, an 

eigenvector of the Hessian matrix.  Thus, the v-vector is in this region an eigenvector of 

the Hessian. 

For a second trajectory we use the point (-0.58, 1.427) for the start, also near the 

minimum, however, we get a totally different result, see Fig. 4(b).  At the beginning, the 

GAD trajectory, a continuous line, goes along the deep valley of the minimum, uphill 

like the GE, which in Fig. 4(b) is again represented by dashed lines, see also Fig. 2 of 

ref. [28], or Fig. 5 of ref. [41].  The initial evolution of GAD goes in the direction where 

the gradient and the v-vector form an angle lower than π/4 radians.  In fact it coincides 

with the GE, which in turn implies that the v-vector is parallel to the gradient.  In the 

region where both curves coincide the increasing energy along the GAD curve is dV/dt 

= (gTv)2 / vTv > 0.  The behavior ends at a TP which emerges near (-2.8, 0) in a region 

which is far away from the border line of the searched valley-ridge transition.  In Fig. 

14 of ref. [38] the borders between valleys and ridges of the Müller-Brown PES are 

shown.  After the TP the trajectory turns into the left large side valley of the Müller-

Brown surface.  There is no stationary point, so GAD cannot find any one.  The region 

is a kind of a trap, a ‘dead’ valley.  The GE passes the region and leaves it to the 

mountains at the left hand side, but the GAD trajectory goes on and back, from one TP 

to the next, and again back, and only by an accident, it later leaves the region.  

However, then it immediately leads to the TS2 of the Müller-Brown surface.  It seems 

to be accidentally which TS is found.  After the ‘chaotic’ evolution, the GAD trajectory 

finally catches a TS. 
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A DIFFERENT VIEW OF THE THEORY AND GENERALISATION 

 

Mathematically the above method can be reformulated as 
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where U(v,w) is the PES function, V(q), expressed as a function of (v, w) coordinates 

being the w vector of dimension N-1.  Finally, the Z matrix is formed by a set of N-1 

linear independent vectors orthogonal to the v-vector.  A suggested solution of the 

conditions is formulated in Eq. (9).  As noted, the method is appropriate for a first-order 

saddle point search, and can be easily generalised to the search of higher order saddle-

points.  The importance of second order saddle-points is known [42,43].  If I is the order 

of the saddle-point, where I ≤ N, then the set of Eqs. (9) takes the form 
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with the initial conditions 
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where Pvi = vivi
T / (vi

Tvi) for i = 1, ..., I, and {p0
i}i=2

I is a set of I-1 orthogonal vectors 

which are orthogonal to the vector g(q0).  If I = N then the identity matrix I in Eq. (15.a) 

should be substituted by the resolution of identity 

 

I = P
v
i

i=1

N

! . (16) 

 

The variation energy through this curve is given by 
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where the first N components of Eq. (15.a) have been used.  Eq. (17) tells us that when 

the sum of the square of the components of the projected gradient vector in the subspace 

spanned by the set of vi-vectors is higher than 1/2 then the curve evolves in the direction 

of increasing the energy.  If it is lower than 1/2 then evolves in the direction of a 

decrease of energy.  When the sum is equal to 1/2 the curve is at a TP. 

 

 

CONCLUSION 

 

In this study is reviewed the GAD method for the location of the saddle points which 

surround a given minimum.  It behaves like a growing string method.  The integration 

of the curve can be done by any method suitable to integrate a system of first order 

ordinary differential equations.  The GAD constructs a curve supported by a set of 

generated vectors.  The numerical examples reported also show that GAD has a large 

convergence region. 
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FIGURE CAPTIONS 

 

Figure 1.   

Behaviour of the GAD curve on the Wolfe-Quapp PES model [33,34].  The curve starts 

at point (1.2, -1.5) which is near to the minimum located at the point (1.124, -1.486).  

The curve evolution ends at the TS located at point (0.093, 0.174).  The set of v-vectors 

generated during the search is indicated by the set of bold arrows. 

 

Figure 2.   

Behaviour of the GAD curve on the Wolfe-Quapp PES model [33,34].  The curve starts 

at the point near the minimum located at (-1.174, 1.477).  The curve evolution ends at 

the TS located at the point (0.093, 0.174).  At the point (1.849, 0.635) the curve 

achieves the highest energy so this point is the TP.  The curve leaves the valley where 

the starting minimum is located at the point (1.842, 0.768).  This point is a VRT point.  

The set of v-vectors generated during the search are indicated by the set of bold arrows. 

 

Figure 3.   

Behaviour of the GAD curve on the Neria-Fischer-Karplus PES model [39] modified 

according to that proposed by Hirsch and Quapp [38].  The curve starts at point (2.6, -

0.2) near the minimum located at (2.71, -0.15).  The curve evolution ends at the TS 

located at point (0, 0).  At point (0.871, -1.428) the curve achieves the highest energy 

value.  The point is the TP.  The curve leaves the valley where the starting minimum is 
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located at the point (0.002, -1.28).  This point is a VRT point.  The set of v-vectors 

generated during the search is indicated by the set of bold arrows. 

 

Figure 4.   

(a) Behaviour of the GAD trajectory, dotted line, in the Müller-Brown PES model [40].  

The curve starts at the point (-0.54, 1.4) near to the minimum located at (-0.56, 1.44).  It 

leads to the TS labeled as SP1.  The GE is represented by fat, dashed lines, for 

comparison.  (b) ‘Chaotic’ GAD trajectory, continuous lines, starting at point (-0.58, 

1.427).  The curve goes through the large side valley at the left hand side by repeated 

arcs.  At last it leaves the valley at an accidental point and finds the TS labeled as SP2, 

see text.  The GE is represented by fat, dashed lines. 

 



  16 

 
Figure 1 
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Figure 2. 
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Figure 3. 
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Figure 4a. 
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Figure 4b. 
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