
Abstract. Valley–ridge inflection (VRI) points of a po-
tential-energy surface (PES) may have a strong relation
to the occurrence of bifurcations along reaction path-
ways of molecular rearrangements. We discuss two dif-
ferent definitions of VRI points in the literature. The
calculation of symmetric VRI points has already been
reported [W. Quapp et al. (1998) Theor. Chem. Acc. 100:
285–299]. Here, we in addition calculate special asym-
metric VRI points which are placed on gradient extre-
mals (GE). Following a GE opens the possibility to find
the VRI point on it. An application is presented to
search for asymmetric VRI points near the isomerization
valley of the PES of the HCN molecule. A new method
for GE-following is based on a mathematical connection
between the following of a reduced gradient and the
calculation of GEs. The tangent search method to follow
a GE to the smallest eigenvalue [W. Quapp et al. (2000)
Theor. Chem. Acc. 105: 145–155] is extended to follow
also GEs to higher eigenvalues in order to find a VRI
point. The new method needs gradient and second
derivatives of the PES only.

Keywords: Reaction path following – Projected gradient
– Gradient extremal – Valley–ridge inflection point

1 Introduction

Potential-energy-surface (PES) analysis remains an
important basis for classifying and understanding the
fundamentals of chemical reactions and their dynamics.
It leads to the conception of the so-called minimum
energy path, or the reaction path (RP) on a PES [1],
which is an important theoretical tool in reaction theory
with high intuitive power for chemists. The RP is

roughly defined [2, 3] as the line which connects two
minimizers by passing the saddle point (SF) of the PES
following the valley in between. The whole chemical
reaction (gross reaction) may be composed of a number
of such elementary processes forming the mechanism of
the reaction. The RP is conventionally defined by the
mass-weighted steepest descent (SD) from the SP, the
intrinsic reaction coordinate (IRC) [4, 5, 6, 7]. There are
a number of other RP definitions. The curves which
follow projected gradients (reduced gradient following-
RGF) can be used in certain cases to characterize the
reaction channel [10, 11]. Some special gradient extre-
mals (GEs) [11, 12, 13, 14, 15, 16, 17, 18] also appeared
to form a suitable ansatz for valley floor lines. Recently,
Quapp et al. [19] proposed the tangent search concept
(TASC) method to calculate the valley extremal using
the gradient and the Hessian of the PES only. In the
present paper we extend the RGF and TASC methods to
follow other GEs using again first and second derivatives
only. We employ certain GEs that describe the chemi-
cally interesting situation of valley or cirque structures of
a PES, as well as their complements of ridges or cliffs
[16, 20]. This opens the possibility to find valley–ridge
inflection (VRI) points and, in succession, bifurcation or
branching points (BPs) of RPs. The mathematical
description of RP-branching is of great interest. In our
opinion, it is one of those questions which now requires
closer consideration in PES computational chemistry:

‘‘The rate of a reaction can be estimated by transi-
tion state theory from the energy, structure, and
vibrational frequencies of the transition state. Reaction
path following can identify with some certainty the
reactants and products connected by the transition
state, unless the path branches. If the branching occurs
before the transition state, there will be a separate
transition state for each branch, and transition state
theory can be used to estimate the relative rates. If the
branching occurs after the transition state, ... , the
branching ratio cannot be determined by transition
state theory, but depends on the nature of the potential
energy surface as it descends from the transition state
toward the different products. ...’’ [21].
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There are a number of older as well as recent studies
dealing with aspects of the definition of RPs and their
bifurcation: a sizable literature exists concerning BPs
[15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64,
65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96,
97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120,
121, 122, 123]. (Papers with RP bifurcations are legion.)

Looking for the potential of the usual RP-following
to locate bifurcations, we have to treat firstly the IRC [7,
8, 124, 125]. It is a simple RP concept forming the SD
from an SP. This pathway is defined by an autonomous
system of differential equations for a tangent vector
along the curve searched for. Its solution is unique;
therefore, no bifurcation can occur before reaching the
next stationary point. Hence, no branching of PES val-
leys will be truly described by following the IRC, see the
discussion in Refs.[79, 81], and Figs. 1, 2, 3 and 4.

It is helpful to consider that RP-branching is in many
cases connected with the emergence of a special class of
points of the PES, the VRI points [10, 26, 35]; we first
give a definition of these points.

Definition 1 (traditional): A VRI point is that point in
the configuration space where, orthogonally to the
gradient, at least one main curvature of the PES

Fig. 1. Equipotential lines of a model potential-energy surface
(PES) (2) with l=2. Gradient extremals (GEs) are shown as thick
dotted curves, reduced gradient following (RGFs) as bold dashes.
(The diagonal line is GE, RGF, as well as the intrinsic reaction co-
ordinate IRC.) The valley–ridge inflection (VRI) point is at (0, 0)

Fig. 2. Equipotential lines of 2D model PES (2) with l=1.75 . The
IRC from Saddle point(SP1) is the dotted line. GEs are the thick
dotted curves, RGFs are the bold dashes. Pairs of eigenvectors of the
Hessian are shown at a grid of points. The thin dashed lines are the
border (3) between the valley and the ridge of the PES

Fig. 3. Equipotential lines of model PES (2) with l=1. The IRC
from SP1 is the dotted line, and two further steepest descent lines
are given by dots. They go from valley to ridge: the thin dashed lines
are the border (3) between the valley and the ridge of the PES
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becomes zero. This has two conditions: 1. one eigenvalue
of the Hessian must be zero, and 2. the gradient is
orthogonal to the corresponding zero eigenvector.

VRI points in the narrow sense of definition 1 are
given independently of an RP definition (in contrast to
the weaker definition 2, see later). VRI points are, in
general, not identical with BPs of any RP. Usually, VRI
points represent nonstationary points of the PES [35]. A
failure of the IRC concept is that the IRC can miss
asymmetric VRI points, see Figs. 2, 3 and 4.

A favorable approach to find the RP-branching is the
RGF [10]. The method utilizes the fact that VRI points
are the BPs of RGF curves. The RGF method finds a
curve with a selected gradient direction at every curve
point [9, 10, 127, 128]:

gðxÞ=kgðxÞk ¼ r ; ð1Þ
where r is the unit vector of the search direction, and g is
the gradient of the PES. Different branches of the
solution of the same reduced gradient curve with respect
to r may cross each other. Such crosspoints of the
reduced gradient curve form the VRI points of the
surface [10]. Of course, not every RGF curve has such a
BP. The path following along those RGF curves which
have a BP allows one to find VRI points—but finding
such curves is the problem.

Curves equivalent to RGF are obtained by the global
Newton method (Branin curves [10, 129]). Branin’s
method is additionally well adapted to exactly calculate
symmetric VRI points [10]. There have been successful
applications to H2O [121], H2S, H2Se, and H2CO [122],

and C2H
þ
5 [123]. However, the calculation of asymmetric

VRI points on RPs is still an open task and a challenge
for theoreticians. In the present paper a first solution is
proposed—still for a subset of asymmetric VRI points
on GEs.

GEs show an intrinsic possibility for finding a VRI
point. They are defined by curves where the gradient
itself is an eigenvector of the Hessian. If there is a point
where another eigenvector has a zero eigenvalue, the
point automatically is the VRI point. GEs are signifi-
cantly more complicated than the IRC, but are well
suited to help us find VRIs. In this paper, we use the GE
from a stationary point as the leading line to find the
next VRI point. (At least, the combination of the GE
concept with RGF opens a calculable way to follow
every GE of the surface.)

The first modification of the RGF method to follow a
GE was TASC [19]. The constant search direction r for
the gradient of Eq. (1) is replaced by a variable direc-
tion: the tangent of the curve searched itself. The cor-
rector steps are calculated using the tangent direction of
the previous predictor for the search direction. This
quickly leads to self-consistency on the valley floor GE.
(There is a convergence proof of TASC [126].)

A second modification of RGF to reach GE-follow-
ing is proposed in this paper. It uses a deeper analysis of
the action of TASC: its self-consistency for the direction
of the first eigenvalue. This does not work for the con-
tinuation of GEs to higher eigenvalues. So, the next step
is again a change of the search direction. We use the
eigenvector of the GE of interest to define the projector
for the gradient search. Mathematical complications
connected with such an idea are discussed, and a general
procedure is derived.

The paper is organized as follows. The next section
gives an answer to the question: why is it not clever to
search for an asymmetric, a ‘‘lopsided’’, VRI point using
the SD from the SP. We employ a sequence of simple 2D
examples. Additionally, we discuss the two different
definitions of VRI points from the literature. The fun-
damentals of the RGF method and the definition of GEs
are briefly recalled in Sects. 3 and 4. We illustrate the
importance of VRI points on GEs in the 3D configura-
tion space of the HCN molecule in Sect. 5. The TASC
method is recalled briefly in Sect. 6. After that the new
idea of numerically following the ‘‘higher eigenvalue’’
GEs is introduced: a new version of a modified RGF is
proposed.

2 Why it is difficult to find a lopsided VRI point?

At the very beginning we stated that an RP connects two
mimima of the PES via a transition state; however, this
simple definition does not exclude more complex courses
of reactions passing additional SPs between reactant and
product [51]. A sample PES can be described by a valley
descending from the higher-energy SP, thereby leading
into another (‘‘orthogonal’’) valley. If the descending
valley comes from the side slope, and if there emerges a
symmetric ridge in between, we find a symmetric VRI, or
alternatively in the asymmetric case, a lopsided VRI

Fig. 4. Equipotential lines of model PES (2) with l ¼ 0:5. A family
of RGF curves (bold dashes) is additionally shown, where
corresponding branches lead from SP1 to MIN. TPs are turning
points of the GE from SP1 to the VRI to SP2
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point. (Then the question emerges whether to include the
VRI point and the lower SP into an RP definition, or
not!) The following four examples show different
situations of such sequential SPs. We treat the test
function

Eðx; yÞ ¼ 1

2
ðxy2 � yx2 � lxþ 2yÞ þ 1

30
ðx4 þ y4Þ ; ð2Þ

where l is a parameter. We use l=2, 1.75, 1, and 0.5 to
generate a sequence of VRI points of different environ-
ments on the PES. Figure 1 starts with the symmetric
case, l ¼ 2, of the PES (2). Note that three minima of
the surface exist outside the figure, where the minimum
at the top left is considered as the reactant, and the two
other minima represent the two products. Two SPs with
orthogonal valleys are shown. An SD pathway (IRC)
leads from SP1 to SP2. The IRC here coincides with a
GE. Because of symmetry conservation the IRC leads
from SP1 to the second transition state. But the second
part of the pathway, near SP2, leads down along a ridge.
The point (0, 0), where the first valley ends, and meets
the ridge, is the VRI point. The VRI point can be a
bifurcation point, from which RPs may lead to one of
two product minima. However, the IRC does not follow
the possible RP-branching. After the VRI point, the IRC
as well as the GE pass the ‘‘unstable’’ region along the
crest of the ridge [3, 33, 34, 68, 75]. An example for such
a PES has already been found for the thioformaldehyde
molecule, where the VRI emerges by the second-order
Jahn–Teller effect [69, 70, 78]. Both IRC and GE do not
reflect that there are two valleys besides the ridge leading
to the two product minima. They cease to be useful
definitions of the RP. Only in the case of a numerical
uncertainty, the calculation of SD leaves the symmetric
IRC and reaches, after a more or less long adaption, one
of the valleys. If the symmetry is held, the IRC is the
method of choice to calculate the VRI point: by taking a
test for the zero eigenvalue belonging to an orthogonal
eigenvector [38]. Note an inflection point of an energy
profile along a RP is generally not a VRI point, because
the gradient is not orthogonal to the corresponding zero
eigenvector. A special RGF curve is included in Fig. 1.
One branch of the RGF also coincides with the IRC
from SP1. At every point on this curve, the gradient of
the PES has the same direction (�1, 1). The RGF curve
has a bifurcation point at the VRI point and the
bifurcating branches reflect the symmetry break. One
may consider the RGF curve as a model of an RP. It is
composed of the branch from SP1 to the VRI and of the
two pitchfork tines from the VRI to one of the two
product minima correspondingly. We have the problem
of a ‘‘cornered’’ RP model. But that is always the case
under bifurcation: it does not lead to smoothly leaving
branches. Nevertheless, this pathway is ‘‘shorter’’ than
the IRC from SP1 to a minimum via the SP2.

A slightly disturbed symmetry of the surface (2) using
l ¼ 1:75 is shown in Fig. 2; compare it with an example
in Ref. [39]. Now, the IRC leads directly from SP1 to the
left-hand deeper valley below, but the GE further fol-
lows the crest of the ridge to connect the two SPs. The
VRI point is again at (0, 0) on the GE; it is not on the
IRC from SP1. Note that the IRC leaves the asymmetric

ridge without any violation of a restriction: the IRC and
GE follow their own ways, both are asymmetric. The
IRC from SP1 can lead only to one product [22]. A
question emerges: is there a point where the SD meets a
direction with zero curvature of the PES orthogonal to
the gradient? The answer is yes, it happens at the two
points where the IRC meets the border of the ridge re-
gion. That border is defined by

gTAg ¼ 0 ; ð3Þ
where A is the adjoint matrix [10] to the Hessian, H. A is
defined as ½ð�1Þiþjmij�T, where mij is the minor of H
obtained by deletion of the ith row and the jth column
from H, and taking the determinant. The superscript T
denotes the transposition. Equation (3) is given here for
the first time. At the border, of course, a valley–ridge
transition occurs. So, we may use it for a second
definition.

Definition 2: A valley–ridge transition point on the
IRC is the first intersection of the IRC with the manifold
of solutions of Eq. (3).

There, the gradient is not orthogonal to one of the
eigenvectors of the PES, in the general case, and both of
the two eigenvalues are not zero. The zero curvature of
the PES along the level line comes from a suitable linear
combination of the two eigenvalues. The VRI point is a
special point on that border, but the general points of
that border do not fulfill the narrow definition 1 of the
VRI point. In Fig.2 we include couples of eigenvectors
of the PES, at a grid of points, to be able to compare the
gradient and the eigenvectors of the Hessian. Through-
out the GE, the gradient is by definition an eigenvector
of the PES. And also at the VRI point on the GE, the
gradient is orthogonal to the zero eigenvector. (In two
dimensions then the gradient is always an eigenvector at
the VRI). In contrast, this is, in general, not the case
along the IRC. There does not exist a VRI point with
definition 1. The IRC goes anywhere through the region
of the ridge and meets definition 2. Understanding the
IRC from SP1 to be the only possible RP model then
there would be no RP bifurcation at the valley–ridge
transition; however, there is a valley branching at the
VRI region.

We stress that the 7D-projection (1-P)H(1-P), where
the IRC direction is included in the P-matrix [38, 79, 80,
120] additionally to the six ‘‘zero’’ directions to trans-
lation and rotation [130], would give in the asymmetric
case a valley–ridge transition definition in analogy to
definition 2. It then changes the usual point of view of a
VRI to a weaker perspective [131]. The aim of the pro-
jection is to find ‘‘zero’’ directions orthogonal to the
IRC; however, these directions are not eigenvectors of
the Hessian of the full surface.

The special RGF curve to the gradient direction
(�l, 2) with l=1.75 is also included in Fig. 2. It is the
curve which has a BP at the VRI point. It may serve as
an RP model with bifurcation, alternatively to the IRC.

A further extension of Eq. (2) to the more asym-
metric lopsided VRI case with l ¼ 1 is shown in
Fig. 3. Again, the VRI point is at (0, 0) on the GE,
which again connects SP1 and SP2. The GE curve
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carries the VRI. The IRC deviates early from this GE
by going down the slope to the deeper minimum. The
type of SP1 is related to Jensen’s ‘‘side-on’’ type SP [67,
132]. The symmetry is so strongly disturbed that the
IRC does not meet the ridge region; however, there is a
‘‘remainder’’ of a valley–ridge transition near the VRI
point. We show two SD lines (meta-IRCs [125]) which
include this region (bullet lines). They come from a
valley region with convex behavior of the PES and
they pass or touch the ridge region with concave
behavior. Finally, they asymptotically approach the
deeper valley like the IRC from SP1. Included in Fig.3
is again the border (3) between the valley and the ridge
of the PES. A curve like the GE from SP1 over the
VRI to SP2 is assumed by some workers to be not a
good RP model [68] because SD lines from above
intersect the GE under large crossing angles. However,
a dynamically favored non-SD path from SP1 [21, 107,
111] may directly find the second minimum at the
right-hand side of Fig. 3. Thus, there is a valley
branching. The special RGF curve with gradient
direction (�l, 2) with l=1 is included in Fig. 3. It has
a BP at the VRI point. It may serve as an RP model
with bifurcation.

Finally, Fig. 4 refers to the case of Eq. (2) with
l ¼ 0:5. It is a further extension of the asymmetry of the
PES. The qualitative description is equal to that of
Fig. 3. However, the GE between the downward valley
of SP1 and the uphill crest of SP2 shows two turning
points (TPs). So, the structure of the GE becomes more
complicated [14, 15]. TP1 marks the end of the valley of
SP1, whereas TP2 marks the end of the ridge of SP2. The
VRI point is only a point of the border between the ridge
above and the valley below. But also in this case there is
the VRI point (0, 0) on the GE. We conclude that there
is a border between the SD valley through SP1 and the
steepest ascent ridge through SP2. If we know the SP1

and SP2, as well as the VRI point in between, we may
derive branching ratios of reaction trajectories [21]. The
intermediate GE between the two TPs is not a model of
an RP. It is a tool to calculate the VRI point. On the
other hand, TP1 forms a qualitative valley character-
ization: the pass valley ends here. The SD, as well as a
family of RGF curves through SP1, estimate the reaction
channel to the minimum below. This family of RGF
curves is bounded by the special RGF curve to the
constant gradient search direction (�l, 2) with l ¼ 0:5.
It is the curve which has a BP at the VRI point. It may
again serve as an RP model with bifurcation.

The IRC from SP1 in Figs. 2, 3 and 4 does not find
the VRI point (in the narrow definition 1); however,
there is in every case a special RGF curve which leads to
the VRI point and bifurcates there. This curve could be
obtained by trial and error (using an iteration method, in
the 2D case); however, in more than two dimensions,
there is no straightforward method to find the special
RGF curve which bifurcates at a lopsided VRI point.
The only direct way is to follow the GE. A strategy to
follow a GE has already been given by Sun and Rue-
denberg [17] (see also the test report in Ref. [133]); but
the method needs some third derivatives of the PES.
This will be avoided in the procedure proposed next.

3 Following the projected gradient (RGF)

We repeat the way to look for the RGF lines [9, 10, 121,
122, 127]: we choose a search direction r, a unit vector,
and define a projector Pr which realizes Prr ¼ 0. It is a
constant matrix of rank (n� 1). If there is a point x
where the gradient gðxÞ fulfills the system of projector
equations

PrgðxÞ ¼ 0 ð4Þ
then this gradient is named the reduced gradient with
respect to the direction r. Solutions of Eq. (4) build the
RGF curve to direction r. It connects stationary points
which differ in their index by 1, if no BP is crossed. We
numerically follow the curve (4) by tangent continua-
tion. The tangent x0(t) is obtained by the solution of the
system of the derivative to the curve parameter:

0 ¼ d

dt
Prg½xðtÞ�f g ¼ Pr

dg½xðtÞ�
dt

¼ PrH½xðtÞ�x0ðtÞ : ð5Þ

In general, the search direction, r, and the tangent, x0ðtÞ,
to the RGF curve with respect to r are different. The
predictor–corrector method of RGF is the predictor step
along the tangent x0(t) and Newton–Raphson steps of
the corrector to search (usually orthogonal to this
direction) a solution of curve (4) [9, 10, 19, 127, 128,
134]. The simplicity of RGF is based on the constancy of
the Pr matrix which is used in Eq. (5). We recall that
RGF curves are not generally the so-called valley
ground pathways, or valley floor lines. Nevertheless,
these curves may follow a valley in favorable cases, at
least qualitatively. Like SD curves, RGF curves also
form a dense family of curves in the coordinate space. If
gðxÞ 6¼ 0 then the point x is the carrier of an RGF curve
with respect to r, where r ¼ gðxÞ=kgðxÞk.

4 Gradient Extremal

4.1 Definition of GE

gðxÞ 6¼ 0, and we assume we are on a ‘‘valley ground’’ of
the PES. A point showing the gentlest ascent of the
valley is defined by the condition that the norm of the
gradient forms a minimum taken along an equi-subsur-
face, EðxÞ ¼ c, where c is constant, i.e. in all directions
perpendicular to the gradient [11, 12, 14, 16]. The
measure for the ascent of the PES, EðxÞ, is the norm of
the gradient vector, the functional

rðxÞ :¼ 1

2
kgðxÞk2 : ð6Þ

We treat the problem to minimize rðxÞ where the
nonlinear constraint is EðxÞ ¼ c. Thus, the function to
optimize and the constraint are developed from the PES
itself.

It results in the basic eigenvector relation

HðxÞ gðxÞ ¼ kðxÞgðxÞ : ð7Þ
The proportional factor k(x) is an eigenvalue of the
Hessian matrix, and the gradient is its eigenvector.
Curves xðcÞ defined by Eq. (7) consisting of such points
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on consecutive equi-hypersurfaces for different sections
of increasing or decreasing c are termed GEs [14]. If r(x)
has a minimum, the PES usually has a valley extremal,
however, it may also have a crest of a ridge.

4.2 Relation between GE and SD

With arc length s for the curve parameter, an SD curve
xðsÞ and its curvature vector are defined by

dxðsÞ
ds

¼ � gðxðsÞÞ
kgðxðsÞÞk ; k ¼ d2x

ds2
: ð8Þ

One finds the following relation: GEs consist of points
where SD lines have zero curvature [17, 135].

4.3 Relation between GE and RGF

A point x belongs to a GE if the tangent of an RGF
curve through this point is parallel to the gradient [126].
The proof is easy. If e1; . . . ; en are the eigenvectors of H
with eigenvalues k1; . . . ; kn then they are also the
eigenvectors of the adjoint matrix, A, but with the
eigenvalues li=

Q
j 6¼i kj [19]. The gradient is an eigen-

vector of H and also of A on a GE. RGFs are also
solutions of the differential equation of Branin [129] by

dx

dt
¼ x0ðtÞ ¼ �A½xðtÞ� g½xðtÞ� : ð9Þ

This gives the proof.

4.4 Relation between GE and VRI

The definition of a GE is that the gradient is itself an
eigenvector of the Hessian. It is clear by definition 1 that
if another eigenvector becomes a zero eigenvector, the
point of the GE where this happens is a VRI point.
Walking along a GE from a convex to a concave region,
where an orthogonal eigenvalue has to change its sign,
must lead to a VRI point. If one starts at a stationary
point and follows a GE, it may lead to the next stationary
point without change of convexity of the level hypersur-
faces. However, if the GE leaves the region of convex
level lines of the PES, it has to meet directly the VRI
point, or it meets the VRI point ‘‘indirectly’’ after a TP.

Vice versa, if a GE intersects the convexity border (3)
then it meets a VRI point. There the gradient is an
eigenvector of H with eigenvalue k1, and the gradient is
also an eigenvector of A with eigenvalue l=

Qn
j¼2 kj ¼ 0.

To fulfill Eq. (3), one of the kj, j ¼ 2; . . . ; n has to be
zero, the corresponding eigenvector orthogonal to the
gradient is the zero eigenvector.

To take the well-known Müller–Brown (MB) poten-
tial [137] as an example in Fig. 5, there are four VRI
points which all fulfill the pattern to lie on GEs. The MB
potential additionally shows that our idea of VRI may
be questionable, in that strong asymmetric case. VRI1
indicates a region where a ridge uphill ends and changes
into a valley. However, even in this quasi-symmetric

case, the two ‘‘wings’’ of the ridge region end uphill
without a VRI point. The points VRI2, VRI3, and VRI4
are located anywhere at the border of the valley–ridge
coincidence, but not at extreme functional values of the
ridge regions (r).

On the high-dimensional PES of a molecule, the sit-
uation is still more complex. There are more VRI points
than the GE-following will find [10]. This is due to def-
inition 1, which does not demand that the gradient is
itself an eigenvector of the Hessian. It is enough if the
gradient is only orthogonal to the zero eigenvector. That
looseness means that, in more than two dimensions,
manifolds of VRI points may exist where most of the
points may not belong to a GE. It was demonstrated by
calculation for three-to seven-atom molecules [121, 122,
123]. The situation for molecules is, nevertheless, not
hopeless because, the valley floor GE describes with
some certainty the minimum energy path of chemistry
(whatever this means). If there is a VRI point on the GE,
that point is in a certain sense a special minimal VRI
point of the VRI manifold and it is important to cal-
culate the special VRI points on the GEs [10].

Note that the BPs of the GE [11, 12, 13, 14, 15, 16, 17,
19, 37] are usually not the VRI points of the PES. In
Fig. 5 approximately at (0.2, 2.1) there is a BP which is
far away from the VRI, and the VRI points do not
indicate a bifurcation of the GEs. Only TPs of the GEs
indicate the beginning or the end of valleys and ridges in
the asymmetric case of this test potential.

5 Application

We refer to the calculations [13] of the isomerization
valley of the HCN 6-31G� potential surface:

Fig. 5. The four VRI points (o) of the Müller–Brown potential lie
on GEs (bold dashes). TPs (+) of the GE. BP is a branching point
of a GE. The dotted line is the border between valleys (v) and ridges
(r) of the surface

45



HCN![SP]!CNH. In this paper we extend the
investigation to leave the isomerization valley at the
SP by going uphill along some marked side slopes.
The process of leaving the valley can only be followed
within the scope of the Hartree–Fock method if
dissociation is excluded. In spite of this fact we extend
the PES calculations to larger distances to test the
methods for BP calculation. So, we use the HCN 6-
31G� PES as a model PES to develop further the tools
of general RP analysis. The GEs around the nonlinear
SP structure of the isomerization are shown in Figs 6
and 7. The SP is at (CN, CH, a)=(1.169Å, 1.155Å,
77.49�). The configuration space of any nonlinear
HCN is 3D and can be fully illustrated by the internal
coordinates r1, the CN distance, r2, the CH distance,
and a, the bending angle of HCN (a=180� at the
HCN minimum). The PES is also 3D, a hypersurface
in four dimensions over the configuration space: it is
not fully illustrable. (Thus, no energy is directly
involved in Figs. 6, 7 and 8). The valley GE of the
isomerization reaction is number 1 between HCN and
the SP, and number 2 between the SP and CNH in
Fig.7. The GE has an inflection point (IP) at every
side of the SP where the convexity of the PES around
the minima changes into the 1D concavity of the col-
way of the SP.

Orthogonal to the SP valley are two other eigenvec-
tors with two positive eigenvalues. They point in the
direction of the CN stretch (GEs 3, 4) and the CH
stretch (GEs 5, 7). These GEs go uphill on the 3D PES
along the two different normal mode directions where
the bending ridge is orthogonal in both cases.

GE3 corresponds to the CN stretch. It leads to an
asymmetric VRI point (1.47Å, 1.125Å, 86.3�). The VRI
structure is a triangular structure like the SP. We may
assume that there the dissociation channel of the N
atom starts from the C–H diatom. This channel is a
valley going further uphill. The N atom escapes ‘‘in
front’’ of the diatomic CH part. Vice versa, at the
corresponding VRI point, the incoming N atom has the
possibility to descend to the SP or to bypass the SP to
reach the HCN side of the PES. It is enlarged in Fig. 8,
which includes the RGF curve through the VRI point.
Additionally, in another representation Fig. 9, we have
included level lines of a PES section with a fixed CH
distance of 1.125Å through the VRI point. The situa-
tion is also shown schemetically in Fig. 10b. Whereas
GE3 follows the ridge to the SP, the corresponding
‘‘reaction’’ pathway to the basin shaped valley of HCN
must be calculated by means of an RGF curve
(depicted by b), or by an SD (not shown). The calcu-
lation of a bifurcating RGF is quite easy if the VRI

Fig. 6. GEs of the HCN 6-31G* PES in nonlinear nuclear
configurations. The vertical axis is the HCN bending scaled to
a=90�, the top of the figure contains the HCN minimum, and the
bottom the HNC minimum. Additionally, the bottom contains a
hypothetical linear C–H–N structure which is a high–energy SP.
The other two axes are the CH and the CN distance (angstroms)

Fig. 7. GEs of the HCN 6-31G* PES in nonlinear configurations in
a complementary view to Fig.6. The vertical axis again is the HCN
bending. The other two axes are the CN distance in the foreground,
and the CH distance (angstroms). The numbers describe individual
GEs, see text
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point is found before on the GE. The section plane of
Fig. 9 perfectly forms the tangential plane to the four
branches of the RGF curve which meet the VRI point.
The pattern of the RGF branches around this VRI
point is comparable with Fig. 3; however, it does not
include a connection of branch d to the second mini-
mum, HNC. By the way, this VRI is not the usual
‘‘pitchfork’’ bifurcation, however, here an incoming
valley c and a ridge d go over into an outgoing ridge
a and a skew valley pathway b. The combined path-
ways c and b form a continuous valley for the incoming
N atom, which takes a short-cut before the ridge
region of the SP. Branches c and b may serve for a RP
model.

Going back to Figs. 6 and 7, the alternative GE4
describes the shortening of the CN bond. It leads along a
ridge to unfavorable high energies; the calculation is
stopped at ‘‘chemically forbidden’’ energy. A GE
orthogonal to GE4, as well as to the SP-col, is GE7,
which describes the shortening of the CH bond. It also
quickly leads to very high energies, where the calculation
ends.

From the SP, the CH stretch mode is followed by
GE8. This GE only leads a small distance along the ridge

of the stretch followed by a sharp bend. The GE turns
off and follows the CN shortening. At the other side of
the kink, the ‘‘true’’ CH stretch is followed by GE5 up
the ridge to point (1.19Å, 3.57Å, 76.7�) which is the
asymmetric VRI point of the dissociation channel of the
H atom from the diatomic remainder, CN. This channel
forms a valley uphill. It is shown schemetically in
Fig. 10a. More distant, the H atom feels the attraction
of the CN group as a whole. Vice versa, at the VRI
point, the incoming H atom has the possibility to turn to
the CNH side of the PES, or to the SP. Whereas GE5
follows the ridge to the TP downhill, the corresponding
‘‘reaction’’ pathways to the minimum have to be calcu-
lated with the help of RGF, or an SD. A branch of the
RGF also follows a pathway to the SP nearly parallel to
GE5. The calculation of a bifurcating RGF is quite easy
if the VRI point is found before on the GE.

Because of the more complicated situation owing to
the existence of a TP at the lower end of GE5, there has
to exist an outgoing GE (numbered 6 in Fig. 7). GE6 is
at the very beginning a ridge, and it finally leads into
mountains of high energy.

GEs9 and 10 fall out of the pattern of the other ridge
GEs. They are shown schemetically in Fig. 10c. Whereas

Fig. 8. Approximation of a bifurcating RGF curve of the HCN
6-31G* PES using a view like that in Fig.7. The BP is the VRI point
on GE3 of Fig. 7. Branches of the RGF curve: a. branch between
the VRI and the SP of the isomerization path; b. branch
between the VRI and the HCN minimum; c. branch between the
VRI and the dissociation of the single N atom; and d. branch
between the VRI and the path to a linear SP of type C–H–N. c and
a correspond to GE3. Branches b and d do not correspond to GEs.
The energy increases along c and d, but decreases along a and b

Fig. 9. 2D contour diagram of the HCN PES section for
CH=1.125 Å fixed (distance of the configuration of the VRI
point). The reaction path (RP) model curves of Fig. 8 are included
by the projection into the plane of the PES section. The symbols
used are these of Figs. 6, 7 and 8. In the full 3D space, the CH
distance varies from 1.058 Å at the minimum to 1.155 Å at the SP.
The projection does not very much disturb the picture, it gives a
realistic impression of the region of the VRI point, and also of the
SP and minimum
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GE9 is the dissociation channel of the C atom in an
angle region between the SP and the CNH basin-shaped
valley, it does not meet the isomerization SP. The lowest
point of the PES along GE9 is a TP where the valley of
GE9 simply ends. (Here, the GE is not a good model for
an RP.) The TP situation is comparable to the TP below
an SP on the MB potential of Fig. 5. An SD can start at
the TP of GE9 at (1.39Å, 1.64Å, 39.47�). It leads
immediately to GE2 and along this GE to the CNH
minimum (not shown). GE9 continues after the TP, now
described by GE10. There is a VRI point where a ridge
emerges, however, going strongly uphill over two further
IPs; the pathway changes at least into a valley GE
leading to a further SP of index 1 with the (hypothetical)
linear structure C–H–N.

As already stated, at every VRI point there is a
bifurcating RGF curve. This is explicitly shown in
Figs. 8 and 9. If the VRI point is found by following the
GE, we start the RGF calculation at this point, and we
immediately obtain the corresponding branches. If the
single RGF branches are going along a convex valley
they may serve as an RP model. It should be remarked
that only some branches (a, c) correspond to GE curves.
The combination of GEs, RGFs, and SD may give a
satisfactory idea of the corresponding PES region
around the VRI points.

6 Following the tangent of the previous predictor step [19]

The tangent direction of the previous curve point, from
Eq. (5), iteratively becomes the search direction used in
the projector. The procedure is named the TASC. But
the calculations of the predictor–corrector method were
still done by Eqs. (4) and (5). We define the TASC step:

1. At a point xk, with gðxkÞ=jjgðxkÞjj ¼ rk being the RGF
search direction, solve

PrkHðxkÞx0k ¼ 0 ð10Þ
to get the tangent direction tðxkÞ ¼ x0k=kx0kk for the
predictor step to an RGF curve with respect to rk, and
do the step to xk � stðxkÞ. s is a step length.

2. Change the search direction to rkþ1 ¼ tðxkÞ and
compute Prkþ1 to solve the modified equation

Prkþ1gðxÞ ¼ 0 ð11Þ

[instead ofPrkgðxÞ ¼ 0] byNewton–Raphson stepsDxi

Prkþ1HðxiÞ
� �

Dxi ¼ �Prkþ1gðxiÞ;
xiþ1 ¼ xi þ Dxi; i ¼ 0; 1; . . . ; x0 ¼ xk :

ð12Þ

If Eq. (11) is approximately fulfilled then use the
solution as the new point xkþ1. The point is situated
on an RGF curve with respect to direction rkþ1. The key
idea is that like in the derivation of Eq. (5) we have also
assumed a ‘‘constant’’ Px0ðtÞ matrix in the current step.
This is here an approximation, but it works self-
consistently. The numerical procedure leads to the valley
GE. A convergence proof of TASC was given recently
[126]. The approximation of a constant Px0ðtÞ matrix
allows us to avoid third derivatives of the PES [19].

7 Approximate search for GEs to higher eigenvalues

7.1 Method to follow for any GE

The TASC method (implicitly) uses the property of the
valley floor: the GE of the floor and a swath of RGF
curves along the valley are nearly parallel. TASC
calculates the floor GE by using an RGF curve to tangent
direction t. For higher GEs, or for the GE of a finishing
valley, that property does not generally hold. RGF curves
may intersect the GE at a higher eigenvalue under a
large angle. We circumvent that, but we further use the
RGF idea. On the GE, the gradient g is an eigenvector ei
of the Hessian. We search for a curve point where

Pei gðxÞ ¼ 0 : ð13Þ
The equation is trivially fulfilled on the GE, and it is
used for the corrector step. After the prediction of a
point near the GE, we start with the ei of that point and
use the corrector for Eq. (13) to get point x1. Next we
iteratively have to calculate the ei at a solution point xk,
k ¼ 1; 2; . . . and repeat the corrector for Eq. (13) up to
convergence. Locally, at points near the GE, the method
works. (The exceptional case of a GE turning point is

Fig. 10. Nonlinear attack of a the H atom, b the N atom, and c the
C atom to the diatomic remainder of the (HCN molecule) followed
by GE or other RP. A star is a possible stationary molecular
structure of the incoming atom. The structure shown is the SP of
the H isomerization path. The outer pathway of the attack is in
every case a minimum pathway with a quasi T-shaped configura-
tion. The numbering is analogous to Fig. 7. Arrows without
numbers do not follow GEs but follow other RP models. VRI
points (o) emerge where the valley (v) of the incoming atom changes
into a ridge (r), whereas in c the valley ends anywhere at the slope
of the PES at a TP (+). Steepest descent leads to the minimum
connected with the VRI. Only an RGF curve connects GEs9 and 10
with the SP of isomerization. b is shown in detail in Fig. 8
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given in Sect. 7.3.) The analogy of Eq. (13) to the GE
Eq. (7), ðH� kIÞg ¼ 0, was already used by Jørgensen
et al. [137]; however, these authors used an Equation like
Eq. (12) for an approximation of the predictor step. We
use it (quasi without approximation) for corrector steps
back to the GE.

However, the tangent of an RGF curve to the
eigenvector ei cannot be used to get the predictor step. A
way out is a very simple predictor step using the secant
step of the two previous points, xk and xk�1, of the GE:

d ¼ xk � xk�1; and xkþ1 ¼ xk þ d : ð14Þ
The method is very cheap and works well. Note that one
does not economize derivations of the gradient, because
in order to solve Eq. (13) by the Newton–Raphson
method we again need second derivatives, or updates of
the Hessian, like in RGF/TASC.

It is possible that along a GE the numbering of the
eigenvalues may be changed. If one starts with a gradient
equal to ei near the stationary point, the ki may become
degenerate at an xk and the eigenvector e may assort to
ki�1 or to kiþ1 after xk. It is only a bookkeeping problem.
But if at xk the eigenvalues are exactly degenerate then
the case is problematic: the eigenvectors can rotate in a
plane. Following a GE it is possible to jump across such
a point, for instance, by using a 2 d step in Eq. (14).

7.2 Search for VRI points

To solve Eq. (13) we use the Newton–Raphson method
orthogonally to the search direction, which is a gradient
and an eigenvector of H. Here we observe the intrinsic
difficulty of the method: near the VRI point the
Newton–Raphson method has to work along a zero
direction, for example, following a 1D flat potential
curve orthogonal to the gradient. The Newton–Raphson
method breaks down when searching on the ‘flat’ region.
So, we are unable to determine explicitly the VRI point
by this method.

The search along a GE by the generalized RGF,
(Eq. 13), works before reaching (or after leaving) the
VRI point. A possible VRI point has to be tested by
looking for the development of the smallest (absolute)
eigenvalue of all eigenvectors. If the steplength of the
predictor is sufficient the VRI point may be overcome;
however, if the point is nearly met, the Newton–Raph-
son method results in steps that are too large. Here, a
further general trick works: the step length of the cor-
rector step is restricted. It has to be smaller than the
predictor step.

7.3 TPs of the GE

Another mathematical drawback of a generalized RGF-
following for GEs is the emergence of GE TP. There, the
gradient of the PES is orthogonal to the tangent of the
GE, and the direction of the tangent changes from uphill
to downhill, or vice versa (Figs. 4, 5). One can try to
handle the TP by testing the angle of gradient and
‘‘tangent’’ direction d of Eq. (14). If the curve following

is near a TP, one may jump across the region and,
additionally, one has to change the search direction from
uphill to downhill, or vice versa.

8 Conclusions and perspectives

The IRC is the most used model of the RP. This is due to
the following properties:

1. Simplicity.
2. Computational economy.
3. Reproducibility.
4. Conceptually free of error.

The simplicity of the IRC is evident. For point 2, there
are sometimes convergence problems near the mini-
mum on a flat valley floor, because the IRC shows an
affinity to zigzag [8], and point 3 needs a careful
definition of the coordinate system [7]. (We again
report the possible independence from the coordinate
system for curves and VRI points in Ref.[119]. This
means that we will find a VRI point no matter what
coordinate system we use.) If there is a continuous
valley from the SP to the minimum (convex isopoten-
tial hypersurfaces with respect to the minimum) the
IRC may best serve as an RP model. However, in case
of the existence of concave VRI regions along the IRC
progress, point 4 is generally not fulfilled. One has to
look for other RP models or modifications which may
bifurcate at the VRI point.

The new model should include the RGF approach (cf.
the RP Hamiltonian on RGF curves [138]) as well as the
valley extremals, special GEs. Starting at a stationary
point, one can follow the GE in a valley or cirque
direction and search for the next VRI point at the end of
the valley. Beginning at this point (using the gradient at
this point for the search direction), one can calculate the
branches of the corresponding RGF curve and can as-
sign the RP model to the branches which show the
‘‘good’’ direction. Because there is now the possibility to
calculate also asymmetric VRIs, we hope that the future
will bring a broad practical significance of such points.
RGF fulfills points 1–3, see [10]; however, the numeric
GE calculation does not fit point 2, [17, 20]. Therefore,
we propose to calculate the pathways along any GE
more simply. The proposed method is a further modifi-
cation of the TASC method, which is itself a modifica-
tion of RGF [19]. It follows the line of the chosen GE of
a PES, downhill or uphill. It uses the evaluation of the
gradient and the Hessian matrix for each iteration step.
The procedure is a new method for studying the GEs of
a multidimensional hypersurface. It is possible that a GE
starting from a stationary point can lead to a VRI point.
Thus, path-following along GEs may be the tool to find
VRI points (in the narrow sense of definition 1). The
method is implemented as a separate FORTRAN shell.
It will be distributed on request.
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