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Abstract 

We develop the theoretical tools for a realistic visualization of curvilinear molecular vibrations. We transform the 
internal coordinates of a molecule into Cartesian coordinates. The transformation of curvilinear coordinates quickly 
gives complicate differential geometrical expressions. 

We describe the mathematical formalism on a low level of the corresponding power expansions. We present a 
computer program which uses the derived formulas and computes data for an animation of the trajectories of the 
vibrations. 

1. Introduction 

Modern molecular theoretical methods include 
potential energy minimization and techniques of 
vibrational normal modes analysis. They open the 
possibility to understand the complex pattern of 
molecular systems. These procedures also allow 
treatments of systems which are not, or only partly, 
tractable by experimental chemical methods. An 
interesting aspect of molecular theoretical research 
is the treatment of molecular processes above the 
normal modes. For example, we can get insights in 
the behaviour of bonds or into reaction dynamics, if 
we know the behaviour of vibrations. 

The theoretical understanding of vibrations is 
based on calculations of the corresponding force 
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constants the exactness of which should be very 
high. In this field, there are great improvements 
in the last years. There are empirical calculations 
of force fields of a quality being acceptable. The 
problem is that force constants are derived via 
perturbation theory from complex experimental 
data [I]. On the other hand, force constants can 
also be calculated with quantum mechanical (non 
empirical) methods. But, the tributes to this way 
are enormous costs for computer time especially 
if we include the electron correlation. Today, quan- 
tum chemical program systems are very powerful 
tools for quite exact calculations of force fields 
FL31. 

A parallel development to these direct methods 
points in the direction of a suitable interpretation 
or summarized explanation of the huge amount of 
calculated data. The many possibilities of com- 
puter graphics for visualization are one way. Pro- 
gram systems for quantum chemistry [4] include 
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modules for interpretation of the results which 
reach for normal modes a good level of imaginary 
power. However, the straight normal modes tend 
to exaggerate highly the animated picture [5]. 

This paper deals with the next step: The inclusion 
of the vibrational behaviour via a realistic 
animation of real curvilinear vibrations. The 
visualization of vibrations of a molecule on the 
screen of a PC, or of a work station for greater 
molecules, can be a piece of the bridge to under- 
stand the mechanisms of chemical reactions. 
Unimolecular reactions can result directly from 
highly excited vibrations [6,7]. The importance of 
programs for molecular modelling can be 
raised, if we couple their results with vibrational 
events [8]. 

The spatial extension of a molecule is modified 
by its vibrations, and this holds already near the 
absolute zero of the temperature scale. An impor- 
tant question is: do certain molecules agree with 
some reactive holes, reactive centers of other 
greater molecules, like a key in a lock? The answer 
depends on the spatial extension of the key and 
lock molecules. Such kinds of problems are treated 
in pharmacological research for drug design using 
molecular modelling programs [8,9]. Also, in the 
field of zeolite research, we find widespread use of 
molecular modelling. Those investigations are the 
aim which allow to decide which zeolite adsorb and 
can be a molecular sieve in the course of a 
separation process. The question is, if or if not 
certain small molecules can selectively pass the 
cages of the zeolite [lo]. 

The start that this paper gives towards the 
solution is the following. For a realistic visuali- 
zation of vibrations we have to transform the 
natural, curvilinear coordinates of a molecule, the 
internal ones, into Cartesian coordinates. The step 
is not to avoid, because the points of a picture on 
the screen are calculated via the Cartesian coordi- 
nates of the screen. But, the internal coordinates 
are curvilinear; and the transformation of curvi- 
linear coordinates quickly gives quite complicate 
differential geometrical expressions [ 111. In this 
paper we describe the mathematical formalism on 
a low level of the corresponding power series 
expansions. And next, we describe a computer 
program which uses the arrived formulas and 

computes data files for an animation of the inter- 
esting vibrations. 

2. Theory 

To make an animation of molecular vibrations. 
we have to solve the Lagrange equations of motion, 
and also we have to solve the Schrodinger 
equation. But, the first step in the formulation of 
these equations is the development of kinetic and 
potential energy, and of the Hamiltonian using 
internal coordinates q. The kinetic energy is given 
by the quadratic form 

(1) 

The elements &, mean the rank-2 covariant metric 
tensor. We use the Einstein summation convention: 
it is to sum over any repeated upper and lower 
indices. The potential energy is given, in the 
general case, by a series expansion in powers of 
the internal coordinates. 

v = V(q,) + ~ 
dV(%) Aqk + ! d2 v(qe) k 

dq” 
---Aq Aq” 

2 dq%q” 

+l a3 V(s) 
6 dqkdq”dq’ 

Aq”Aq”Aq’+ 

The first term of the r.h.s., the absolute term, can be 
omitted. It has no influence on the vibrations of 
interest in a molecule. The second term of the 
r.h.s., the linear term, has to be zero, because 
we assume an equilibrium position in qe. The 
system is in q, in a stationary point, which is a 
minimizer of the potential energy hypersurface. 
The Hamiltonian is 

gk” are the elements of the rank-2 contravariant 
metrtc tensor, r;, are the Christoffel symbols of 
second kind [11,12]. Not all terms in Eq. (3) are 
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of the same order. A good approximation of for- 
mula (3) is given by 

ii* kn a2 
HE-- 

li* agkn d + v 

2g dqkdq”-- 
-- 

2 dqk 84” 
(4) 

An harmonic approximation of the kinetic energy 
means the development of the gk,, terms and a cut 
of the power series expansion, already after the 
absolute term. Hence, the Hamiltonian in har- 
monic approximation is 

AqkAq” (5) 

Using this harmonic approximation, we can trans- 
form to principal axes both, the kinetic energy and, 
at the same time, also the potential energy [l, 131. 
The solution of the principal axes problem includes 
the solution of the eigenvalue problem 

gYqP)J;IT!I. = ~~~nr~,.~ (6) 

,f,, are the elements of the force constants matrix in 
internal coordinates 

aq%q” 
(7) 

6”’ is the symbol of Kronecker, and & are elements 
of the matrix of eigenvalues. The internal coor- 
dinates are calculated with the matrix L of eigen- 
vectors and with the curvilinear normal 
coordinates Q 

Aqk = 1,Q” (8) 

Since the problem is formulated in normal coor- 
dinates, then kinetic energy and potential energy 
are separated, they are decoupled. 

The usual understanding of vibrational motions 
is based on internal coordinates. On the other 
hand, an animation of molecular vibrations needs 
a Cartesian representation of trajectories of the 
involved atoms. To make a computer graphic, we 
have to compute the screen points. The available 
screen points are addressed by Cartesian coordi- 
nate tupels. The movement of a vibration goes on 
in a subspace of all possible changes of all atomic 
positions. Thus, we have to develop a scheme for 
the subspace of interest. We use developments 
in power series expansions of the internal 

coordinates. These internal coordinates are given 
themselves by series expansions of powers of 
mass weighted Cartesian coordinates X: 

AsO _ “‘(%‘) k ’ d2X”(%) k ----Aq +-- 

dqk 2 aqkaqn 
Aq Aq” 

+ A ~3~“hA 
6 i3qkdq”dq’ 

AqkAq”Aq’ + . . . (9) 

The differential quotients in series expansion (9) are 
not directly calculable by derivations. It is neces- 
sary to create a new method to develop these dif- 
ferential quotients. The internal coordinates are 
given in explicit form by functions of the mass 
weighted Cartesian coordinates, but the inversion 
of this relation is not given [14]. This gap is caused 
by the problem of the 6 degrees of freedom of a 
molecular translation and rotation giving zeros in 
the inversion matrix. The terms dZ”/dqk are the 
vector base of the interesting subspace. They are 
calculated with the reciprocal vector base and the 
covariant metric tensor. Vector base and reciprocal 
vector base define the orthogonal projector 

From Eq. (10) we can conclude 

(10) 

(11) 

The summation over index c in Eq. (11) cor- 
responds to the projection of the reciprocal vector 
base. This projection of the reciprocal vector base 
is the full reciprocal vector base. From (11) we get 
the relation 

If we differentiate, we are lead to 

(12) 

(13) 

And again, a next differentiation gives 

d3i” --= 
f3q%q”dq’ 

6 

The differential quotients in Eq. (9) are given by 



Eqs. (12) to (14). The Christoffel symbols of second 
kind are 

Their derivatives are given by 

(15) 

(16) 

The detour from mass weighted Cartesian coordi- 
nates [15] to Cartesian coordinates via internal 
coordinates gives a power series expansions, 
which is a Cartesian representation of the curvi- 
linear trajectories of the atoms 

Axa = mab aq”(xe) ~&&I,)Aclk 

+ ! mah ad+4 
2 ~g”(qe)r;~(qe)Aq~Aq’ 

+’ 
6 

&b aq”(xe) 
;i;-g.~,(9f)r:,(q,)r~,(q,) 

+,@b aqs(xe) ari, he) 
i)Xhg&le) dq’ 1 

xAqkAq”Aq’ + . . . (17) 

m 
ah are the elements of the inverse mass matrix 

being a diagonal matrix. In Eqs. (15) and (16), 
there the elements of the inverse mass matrix are 
represented in explicit form. 

ad ah 6’ r;, = -gks-m 
axa 

-m 
aXbaXc 

(18) 

ar;, a? nd 
-= 

aq r;,rL, + rx;, - aXaaXbaXrm 

The elements of the contravariant metric tensor are 

(20) 

Thus, the problem is reduced to the calculation of 
derivatives of internal coordinates to Cartesian 
coordinates. 

We have written program GI- in t.oKrRAN ‘i Il6], 
It calculates the trajectories of atoms as a data file 
of Cartesian coordinate tupels for an animation 
program. 

3. A consideration of molecular vibrations in the 
theory of molecular modelling 

The geometrical measurement of a molecule in 
the equilibrium state is changed by vibrations. 
Generally, the extension of a molecule is greater 
than the geometry of the equilibrium state. For 
molecular modelling [8], the problem is impor- 
tant, which space the molecule needs in the course 
of its vibration. 

For a calculation of the space needed under 
vibrations, we calculate for every normal coor- 
dinate the mean value 

and the dispersion 

Dk = 'I';(Qk - pk)9,, ndQ" (-7.2) 
I 

The eigenfunctions Qn are products of eigen- 
functions of the harmonic oscillator. The integrals 
(21) and (22) are fully integrable; the solutions are: 

pk = 0. 
Dk = (2nk + llh 

2&G 

(23) 

nk is the quantum number of the vibration and &i, 
is the eigenvalue of normal vibration k. With (23) 
we can calculate the ranges of the normal coordi- 
nates 

112 lj2 ii!!,=- CD’ . 
[ I 

& = + c D’ 
I [ 1 I 

(24) 

If the normal vibration k is twofold degenerated, 
then the sums in (24) have two terms correspond- 
ingly, the dispersions of the normal coordinates. 
which describe this vibration. Analogously, in 
cases of higher degeneracy, we have more terms. 

If we have the ranges of normal coordinates, we 
can compute the range of internal coordinates 
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using relation (8) 

I r 

(25) 

The visual representation in space of the full range 
of the vibrating molecule makes it necessary to 
overlay the representations of the molecule in dif- 
ferent geometries, given by the points 

Aqk = r-k - Sk + 1 
Aqk_, + 

Sk - 1 

rk 
-A&. 

rk 

Sk = 1. . . . . rk+l (26) 

The quality of a representation depends strongly 
on the number of the rk. Over all, there are to 
compute, and also to represent, &(rk + 1) geo- 
metries using Eq. (17). 

4. The computer programs 

Calculation and visualisation of molecular 
vibrations have considerable complexity. Separat- 
ing calculation from visualisation, visualisation can 
be done even with medium hardware capabilities. 
The following steps must be taken: 

6) 

(ii) 

Computation of data of the molecule: car- 
tesian coordinates of the atoms, internal coor- 
dinates, Cartesian force constants, . . These 
calculations can be done by GAUSSIAN so, MNDO 

or other well known programs. 
The output of the first step provides the input 
of our program GF calculating the molecular 
vibrations. GF provides 

information about the normal mode of the 
molecules 
Cartesian coordinates of all atoms during 
one period of the vibration, which repre- 
sent the trajectories of the atoms 
two corresponding quantum numbers 
GF is compiled from a FORTRAN 77-source. 

(iii) The output of step-2-calculations contain all 
data needed for visualization. Its volume is 
considerable. It is contained in seven files. 
Our goal was also to enable visualization on 
a IBM-compatible PC. In order to handle 

39 

these datafiles by a program running under a 
DOS-like operating system with its strongly 
limited resources, the datafiles are converted 
to a direct-access-file by the programm 
EINAUS.EXE. On UNIX operating system com- 
puters the output files of GF are handled 
directly. Here visualisation makes profit from 
graphical hardware. We used a SGI computer 
with its c&-library. The visualisation-software 
SHOWVIB also can be compiled on other systems 
using this library. The used method is ray- 
tracing. 

All software including sources, comments on the 
structure of datafiles in detail and examples is con- 
tained in the file ANIVIB.TAR.Z (directory: ;PUB/UNI- 

LEIPZIG) available via anonymous ftp from the 
ftp-server of the Leipzig University (SER- 

VER2.RZ.UNI-LEIPZIGDE). 

5. The program GF 

We have developed the FORTRAN 77 program GF 

[ 161. The name GF is a tribute to the famous Wilson 
GF matrix theory [13]. It realizes the interface 
between program systems of molecular physics, 
quantum chemistry and an animation program 
[17]. Fig. 1 shows the structure of the program 
GF. The input for the program includes data 
about the molecule, like atomic numbers and Car- 
tesian coordinates of the atoms. Further input are 
the internal coordinates. The concept of the pro- 
gram allows any linear combination of internal 
coordinates. Thus, it is possible to define sym- 
metry coordinates [18] or Pulay’s coordinates 
[19]. The last input is the matrix of Cartesian 
force constants. 

The program transforms the matrix of force con- 
stants in the defined internal coordinates. The next 
step is the solution of the eigenvalue problem of the 
harmonic vibrational analysis (6) using a 
Cholevsky factorization [20] of the covariant 
metric tensor. Trajectories of atoms correspond- 
ing to Eq. (8) are computed, where the used coor- 
dinates are the internal ones. But, the animation of 
molecular vibration makes it necessary to represent 
these trajectories in Cartesian coordinates. The 



Program GF 

(i) Solution of eigenvalue problem 
of harmonic vibrational analysis 

(ii) Transformation of internal 
into Cartesian coordinates 

Fig. I. Structure of the program GF 

program computes with Eq. (17) Cartesian coor- 
dinates from the internal coordinates. This version 
of the program does this step up to linear and 
quadratic terms of the power series expansion; 
and it gets the trajectories of atoms as a tupel of 
Cartesian coordinates for the animation. The 
representation of the trajectories does also depend 
on quantum numbers of the vibrational state. The 
trajectory of a nondegenerate normal vibration 
only depends on one quantum number. Tra- 
jectories of atoms of degenerated normal vibra- 
tions are defined by two quantum numbers [21]. 

Output of program GF is stored in a five- 
dimensional field 

DXYZ(ZNDEXl,ZNDEX2,ZNDEX3,ZNDEX4, 
ZNDEXS) 

The first INDEX1 describes normal modes of the 
molecule. This can be nondegenerate or degenerate 
normal vibrations. With this definition, for exam- 
ple, the ethane molecule has 6 nondegenerate and 6 
twofold degenerate normal modes. The second 
INDEX2 describes the Cartesian coordinates. 
INDEX3 contains the course of any Cartesian 
coordinate for one period of the corresponding 

normal vibration. INDEX4 and INDEX5 are 
quantum numbers. In case of a nondegenerate nor- 
mal vibration, there is only one quantum number 
of relevance [ 121, and INDEX5 is meaningless. The 
field DXYZ contains all data for an animation 
program, in our laboratory the program ANIVIB 

[ 171. Additionally, program GF calculates the struc- 
ture of the molecule. The first program ANIVIB was a 
32-bit version on PC level, and it is now available 
for work stations (IBM-RISC/6000, Silicon Gra- 
phics Indigo). 

In Fig. 2 we give as an example the molecule 
ethane, in three different snapshots, in the tor- 
sional vibration at 182.4 (Ais) in the first row, in 
the deformation vibration at 1478.7 (A2J in the 
second row, and in the deformation vibration at 
1498.7 (A,,) in the lower row. 

6. Discussion 

We note that this program deals only with the 
vibration of a molecule in its internal coordinates. 
These have to be defined in an adequate form. In 
general, a large amplitude vibration of a molecule 
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Fie. 2. Torsion in the first row, and deformation vibrations of the ethane molecule (screen dumps of snapshots). The center column 
shows the equilibrium. (You should see it in color and in motion!) 

strongly depends on the shape of the potential 
energy hypersurface [22]. The advantage of 
internal coordinates is to meet better the 
global path of a curvilinear potential valley than 
the Cartesian normal coordinates [23]. The 
relationship between potential energy surface 
valleys and internal coordinates is a new problem, 
cf. [14,24]. 
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