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I. COMMENT

This remark concerns articles [1, 2] by Barkan and
Bruinsma (BB). They use parts of the theory of New-
ton trajectories (NT) [3, 4] as a tool to rationalize the
biochemical phenomena of slip- and catch-bonds.

BB study the mechanochemical potential

Vf (x) = V (x) − f l̂ · x (1)

where V (.) is the potential energy surface (PES), or the

free energy surface, of a molecule, l̂ is the direction of
an external force vector acting on the molecule, and f is
the magnitude of the force. Note that ansatz (1) is the
simplest possible, with a linear external force.

The stationary points of the PES move under the ac-
tion of the force. For the movement of any critical point,
xc, BB create a misleading differential equation, their
Eq.(2), by

dxc

df
= H−1(xc) l̂ (2)

where H−1 is the inverse of the Hessian matrix of the
original PES.

We wonder about this equation. The determinant of
H is positive in minima and negative in saddle points of
index one (SP1) of the PES. So there is always a point
on the way from a minimum to an SP1 where the deter-
minant of H is zero and where Eq.(2) becomes singular.

This problem was solved long ago by Branin [5], cf. also
text book [6], using the so-called adjuct Hessian.

A = Det(H) H−1 . (3)

The better equation with A is given in ref. 34 of BB citing
one of our articles [3]

dxc

dt
= Det(H) H−1(xc) grad(xc) , (4)

So the right one desingularized equation is made worse
into an equation with a singularity. Of course you need
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more effort to deal with it, with the situation of singular
points on every possible reaction pathway. This is then
a part of the annotated paper, compare Eq.(3) of ref.[1].

A second change in the clumsy differential Eq.(2)

is the direct use of direction l̂ , in contrast to the
gradient of the PES in Eq. (4). This does not change

a correct NT to direction l̂ . However, if one starts
anywhere in the configuration space then it causes false
solution curves, see below the Section: “The field of NT”.

The singularities of Eq.(2) are artificial, so to speak.
And they do not generally generate a force-induces
switch, like it is claimed in paper [1]. Every solution of

Eq. (4) to different directions l̂ connecting a minimum
with an SP1 has to cross the curve of points where
Det(H) = 0 applies, so also right regular and ‘direct’

solutions. The force in direction l̂ with the special
magnitude, f , to reach the Det(H) = 0 curve forces
a coalescence of former minimum and former saddle
SP1 for the effective PES. These points now form a
shoulder on the effective PES (1). This event is named
bond breaking point (BBP) [7, 8]. Each local point on
the Det(H) = 0 curve determines one solution curve
of Eq.(4), through its corresponding gradient direction
there. The reason is that along each solution curve of
Eq.(4) the gradient direction is fixed because it is equal

to l̂ . It means that one cannot start on different points

on the Det(H) = 0 curve with the same direction l̂ .

We have to identify a further weakness in Eq.(2) of
ref.[1], the use of the force f for a curve length param-
eter. The Branin equation uses here an ’extra’ curve
length parameter, t, because f has to have on the way
from minimum to SP a maximal value in between, at
the corresponding BBP, compare many illustrations in
ref. [3]. Thus f is not the curve length parameter of the
NT. However, f decreases to zero again to reach the SP.

II. THE FIELD OF NT

A remark to the ‘flow’ images in Figs. 1(e) and 1(f),
and in the SM of ref. [1]. These pictures are misleading
for the imagination of NTs. Every NT starts in a station-
ary point of the original PES, V (x), and a family of NTs
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leads to the next stationary point with an index differ-
ence of one [13]. Each NT follows exactly one direction,

l̂ . There is not such an arrow field like the named Fig-
ures offer. No, there is always a one-to-one relationship
of the external directions and the NTs. The field which
the NTs follow is the field of constant gradient directions
of the original PES.

This remark also touches on the claimed ‘ellipticity’

near an l̂ switching point. The word implicates a circular
behavior of NTs which is not true. (For an exceptional
case see in ref. [15] the dent by a thumb on the ridge of
the PES where a compact NT exits.)

The incorrect field of NT curves through the Det(H) =

0-curve around the l̂ -switch point of ref. [1] may be the
result of the awkward use of Eq. (2) for the Branin equa-
tion for a mechanochemical ansatz.

III. DISCUSSION

We propose to lead back Eq.(2) to the desingularized
form, the Branin equation (4) and use it consistently.
Note that for Eq.(3) of ref.[1] the essential Det(H)-factor
is used, compare Eq.(SM18). We propose to use Eq.(4)
because we think that paper [1] examines an important
topic in mechano-bio-chemistry, namely the switching be-
havior of reaction pathways under external force. It is an
important point.

We state that the theory of Newton trajectories
(NT), this is the name of solution curves of differential
equation (4), which is correctly named only in the SM of
paper [1], already offers many tools for the investigating

of reaction path models. Because the solutions of Eq.(4)
can just serve by itself for reaction pathway models,
apart from the well known steepest descent model of the
IRC [9, 10] or gradient extremals [11–14].

A remark to the n̂ points of ref. [1]: they are the known
and often discussed valley-ridge inflection points (VRI)
[3, 4, 16–22] of the PES. They are characterized by a spe-
cial kind of NTs, so called singular NTs which bifurcate
at the VRI point. The singular NT through the bifur-
cation then has four branches. From minimum one to
the VRI point, from there it has two branches to the two
next SP1, and one branch normally continues uphill to an
SP2, a saddle of index two. The bifurcation explains the
observed ‘hyperbolicity’ of NTs nearby a VRI in ref.[1].

IV. CONCLUSION

A consequent application of the theory of NTs would
make paper [1] easier to understand. We demand the
use of the Branin equation (4) for the treatment of
mechanochemical problems.
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