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1 Introduction

An important goal in chemistry is the control of processes, if possible in an opti-
mal manner, for the quantitative conversion of a molecule to a desired product.
Normally, the control in chemistry is achieved modifying the thermodynamics
of the process or the reaction through the external parameters like temperature,
pressure, concentration, or solvent. This is the first and the most widely used
control in chemistry. A second way is to manipulate the kinetics of the process
by adding or modifying an appropriate catalyst. The third way is the most
recent and now under strong development, namely, the control of the reactions
through special light sources offering the opportunity to control quantum sys-
tems coherently. Within the third option were first the theoretical proposals
due to Brumer and Shapiro1, and to Tannor-Kosloff-Rice2. The latter authors
proposed a pump-pump scheme where the laser light is used to create and steer
nuclear wavepackets to control the molecular reaction. The first experimental
realization of the theoretical proposal was demonstrated by Zewail and cowork-
ers3,4. From a theoretical point of view, optimal pulses steering a reaction
coherently from the given reactant to a desired or predefined product: that
can be found in a more direct way by utilizing the approach of optimal control
theory (OCT)5,6.

Other important applications of optimal control theory are given in the area
of chemical engineering. The chemical industry moves towards the field of life
sciences in which fed-batch processes are predominant (e.g. production of food),
optimization and control of fed-batch bioreactors have become more challenging
than ever. By programming substrate feeding, one can control important phe-
nomena such as substrate inhibition, glucose effect, and catabolite repression.
From the control engineering point of view, fed-batch processes are quite chal-
lenging, since the optimization of the substrate feed rate is a dynamic problem7.

Finally, workers in theoretical chemistry have proposed algorithms to find
transition states that are based in the optimal control theory8. This theory is
contained therein to find the set of rules of a system in a way that a certain
optimality criteria is achieved. It is the part of mathematics that formalizes and
solves the problem to choose the best way of realizing a controlled process in
a prescribed sense. Depending of the parameters, or control parameters, which
usually are subject to some constraints, the optimal control process is described
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through differential or integral functionals. According to the formulation of the
problem, the search of the controls and the realization of the process is chosen
in accord to certain prescribed constraints. In fact the term “mathematical
theory of optimal control” is applied to the part of mathematical science deal-
ing with the solution of non-classical variational problems of optimal control.
The type of problems permits the search of non-smooth functionals and ar-
bitrary constraints related with the control parameters or on the dependent
variables. The term covers mathematical methods involving a statistical pro-
cess or the dynamic optimization, and its interpretation is given in terms of
applied procedures for adopting optimal solutions. Taking this into account,
the mathematical theory of optimal control contains elements of operations re-
search, mathematical programming, game theory and machine learning. The
set of problems studied in the mathematical theory of optimal control have
arisen from practical demands like automatic control theory. In methods and
in applications, the mathematical theory of optimal control is closely related
with analytic mechanics, in the areas relating to the variational principles of
classical mechanics.

The variational theory is applied extensively in theoretical chemistry espe-
cially in quantum chemistry, see e.g. McWeeny9, Carbó–Dorca10 and Bofill11.

The reaction path (RP) concept12 is one of the most widely used models in
theoretical chemistry. The nature of many types of curves representing RPs
has been proved to be variational8,13–17. The recently proposed curve for a RP
model, the gentlest ascent dynamics18 is an example of a curve that falls in the
group of a variational problem of optimal control8. We describe such a reaction
path in this chapter. Its nature is based on the Maximum Principle, the basis of
the OCT, and it can be used to locate transition states on a Potential Energy
Surfaces (PES). Additionally we review the variational nature of some other
types of paths. We treat steepest descent, gradient extremal, and distinguished
coordinate or its modern version, the Newton trajectory. An extension of the
model and its behavior is also discussed.
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2 The Maximum Principle as a Basis of the Gentlest
Ascent Dynamics Model

In this section we report a proof of the Optimal Control character of the curves
of the Gentlest Ascent Dynamics (GAD). For this purpose we consider a system
with N degrees of freedom represented by a point vector x ∈ RN . Curves in the
RN are usually characterized by x(t) with a parameter t. The potential energy
is described by the PES function, V (x). The concept of the GAD model is that
of a dynamical system. The solution curves of the GAD equations18 evolve
from a point close to a minimum to an stationary point (SP) on the PES.
The GAD model is based on the gradient field of the PES, g(x) = ∇xV (x),
and a normalized control vector, w. The Hessian matrix is also used, H(x) =
∇xg

T (x). The control vector itself is generated on the path, point by point,
by a continuous version of the power method for finding the eigenvector of
the Hessian matrix which belongs to the smallest eigenvalue. The first GAD
equation for the tangent or velocity vector ẋ of a GAD curve is the sum of the
reverse (negative) gradient plus two times an effect of the control vector, w,
shorten with the projection on the gradient

ẋ = −
[
I− 2wwT

]
g(x) , (1)

where we assume that the w-vector is normalized. Geometrically, the matrix[
I− 2wwT

]
is a mirror transformation at the mirror line through the control

vector w, the Householder orthogonal transformation19. Note that (wwT )
is a dyadic product matrix. The control vector w(t) depends on the curve
parameter, t. Finding the variational bases of this model is, in general, difficult.
It was proved to be an optimal control problem by Bofill and Quapp8 based
on Zermelo’s navigation problem20, see also Zermelo’s navigation problem in
Carathéodory’s book21 and Carathéodory’s 1926 article22 which can be seen
as precursors of the maximum principle and OCT. They are the foundations
attributed to the field of variational studies which are realized during the last
fifty years of the 20th century. In the GAD model is (realistically) assumed that
the gradient vector field cannot be controlled and that the control is to execute
by the normalized vector, w, which is here generated by the power method to
find the eigenvector with the lowest eigenvalue of the Hessian, H; thus

ẇ = −
[
I−wwT

]
Hw , (2)

the matrix
[
I−wwT

]
is the projection orthogonal to the control vector, w.
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The equivalence between Zermelo’s navigation problem and the GAD sys-
tem can be seen as follows: in the navigation problem the central question
is the present location of a ship in the sea, with a given current distribution
characterized by a local dependent vector field. The current is assumed to be
independent of a time, it only depends on the position. One desires to find the
optimal control of the ship so to reach the destination in the shortest possible
time. In the GAD model the gradient vector field of the PES function can
be thought of as representing the current of the sea, which we cannot change,
whereas the normalized vector w determines the control. The destination is
the next SP of the PES. We recall that the set of coupled first-order ordinary
differential equations, Eq.(1) and (2), constitute the fundamental expressions
of the GAD model18,23 In the recent reference8 we use both, a device due to
Zermelo as well as the Lagrange multipliers method,20 see also Carathéodory21.
There the variational nature of the GAD model was proved. Now we will proof
that GAD is an example of OCT based on a Legendre construction.

2.1 Variational Necessary Conditions

Let us consider a controlled object which is represented by a point
x = (x1, · · · , xN)T in the N -dimensional configuration space, and we use the
system of N non-autonomous differential equations (1) with the control pa-
rameters w = (w1, · · · , wN)T which are the components of the w-vector. The
values of the w-vector are assumed to be on the unit sphere of RN wTw = 1.
For the reason we have N − 1 control parameters in the GAD model. Now,
we have given an initial state that is supposed to be a minimum of the PES,
x0 = x(t0), and a final state, a stationary point of index one of this PES,
xTS = x(tf) with a variable tf depending from the pathway to the TS. We will
find a control w(t)-vector on the unit sphere of RN for t0 ≤ t ≤ tf such that it
minimizes the transition of the state point x moving on a GAD path from x0

to xTS according to the non-autonomous system of Eq.(1).

In a more precise way, the GAD model consists in the determination of the
minimum of the t-parameter, J [xTS(w(tf))] = tf − t0. A controlled point can
be evolved from a given minimum point of the PES, x0 = x(t0), to a final
transition state of this PES, xTS = x(tf). The evolution of the test point is
described by the system of ordinary differential equations (1). Note that x(t)
is a N -dimensional vector of the configuration space, where w(t) is a normal-
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ized N -dimension vector of the control parameters. Due to the normalization
condition of the w(t)-vector we have N − 1 control parameters, and for every
t these control parameters belong to the unit sphere.

Since t0 is fixed, the required minimum tf is merely the minimization of the
functional J [xTS(w(tf))] that depends on the chosen w(t)-control normalized
vector. Thus the GAD model is a t-parameter-optimal control problem and can
be considered as a particular instance of the Mayer problem of the Theory of
calculus of variations, and is obtained from these problems by the special form
of the functional to be optimized. The GAD, as a case of an optimal control
problem, must satisfy the Pontryagin Maximum Principle, which is a necessary
condition that generalizes the necessary conditions of Euler and Weierstrass,
used in the classical Theory of calculus of variations21,24, see here the Mayer
problem. From this formulation of the GAD model and following Pontryagin25

we can formulate the GAD problem as follows: if the pair of vectors x(t) and
w(t) for t0 ≤ t ≤ tf is an optimal solution then there exists a nonzero covector-
function y(t) such that x(t), w(t) and y(t) for t0 ≤ t ≤ tf is a solution to the
system of differential equations Eq.(1) and the equation

ẏ(t) =
d

dt
y(t) = −

[
∇xẋ(t)T

]
y(t) = H(x(t))

[
I− 2w(t)w(t)T

]
y(t) , (3)

where ẋ(t) is that given by Eq.(1), and along the solution, for every t a type of
maximization with respect to the normalized w(t)-vector is satisfied. The type
of maximization will be treated below.

We suppose that the set of admissible (w1, · · · , wN) values of the control be-
longs to the unit sphere with wTw = 1. Since the curve, x(t), for t0 ≤ t ≤ tf
is optimal, it traverses at each value of t a plane. The covector-function, y(t),
is orthogonal to this plane, and Eq.(3) represents the “transportation” of this
plane along the optimal curve x(t), for t0 ≤ t ≤ tf . The first order variation on
w(t0) produces a first order variation on the difference vector, xv(tf) − x(tf),
being xv(t) the curve that starts at x0 = xv(t0) = x(t0) but with a different
w(t0)-vector of the control. According to Pontryagin et al. the above difference
vector xv(tf) − x(tf) is orthogonal to the y(tf)-vector and all the difference
vectors generated in this way are orthogonal to the y(tf)-vector. The full set
of difference vectors are in a plane whose normal is the y(tf)-vector and which
contains the point x(tf). The plane formula is y(tf)T [xv(tf)− x(tf)] = 0
and the dimension of the subspace formed by the set of difference vectors,
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{[xv(tf)− x(tf)]}, is N − 1.

Now a problem is to solve. We have only the initial point x0 = x(t0), and
we take an arbitrary initial value y0 = y(t0) 6= 0, and we attempt to solve the
system of 2N equations, namely, Eq.(1) and (3) with 3N unknowns, x(t), y(t),
and w(t) proceeding along an arbitrary extremal GAD curve passing through
x0. Clearly we need another equation for w(t) such that the above problem
can be solved uniquely. If this is possible then the 2N unknown parameters are
left, x(t) and y(t), subject to the system of 2N differential Eq.(1) and (3) and
the initial conditions, x0 = x(t0) and y0 = y(t0). Because the adjoint Eq.(3)
is linear in y the function y(t) is defined up to a nonzero constant factor. This
property we will use later.

Collecting the two necessary conditions (1) and (3) given above we can put a
certain combination of symbols in the scalar-valued function of three arguments

H(x(t),y(t),w(t)) = ẋ(t)Ty(t) = −g(x(t))T
[
I− 2w(t)w(t)T

]
y(t) (4)

where Eq.(1) has been used. The function enables us to rewrite the system of
equations (1) and (3) as a Hamiltonian system and the function of Eq.(4) as a
Hamiltonian function,

ẋ(t) = ∇yH(x(t),y(t),w(t)) ,

ẏ(t) = −∇xH(x(t),y(t),w(t)) . (5)

We have used that the Hamiltonian function is a scalar function, being a prod-
uct of a matrix that is multiplied by two different vectors from the left and
from the right. For this reason this scalar function can be written as

H(x(t),y(t),w(t)) = −y(t)T
[
I− 2w(t)w(t)T

]
g(x(t))

= −g(x(t))T
[
I− 2w(t)w(t)T

]
y(t) .

So, H(x(t),y(t),w(t)) is a function of x through the gradient vector, g(x(t)).
Applying Eq.(5b) to this Hamiltonian function we get Eq.(3).

The Hamiltonian function of Eq.(4) is the GAD Hamiltonian, see also Eqs.(18)
and (41) of Ref. 8. Because the optimal GAD curve, x(t), traverses at this point
a plane, (it is not tangent to this plane) to which the y(t)-covector is the normal
vector, we obtain

H(x(t),y(t),w(t)) = y(t)T ẋ(t) > 0 . (6)
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Hence the plane divides the configuration space, RN , in two distinguishable
half-spaces, RN

− , before the optimal GAD curve, x(t), intersects the plane, and
RN

+ , after the intersection. In particular every initial control vector, wv(t0),
different with respect to the initial optimal control vector w(t0), displaces the
endpoint of the optimal curve x(tf) to another point. The real displacement
∆x(tf) = xv(tf) − x(tf) is certainly a nonlinear function. Generally, it stays
off the plane, namely, x(tf) + ∆x(tf) ∈ RN

− or x(tf) + ∆x(tf) ∈ RN
+ . From

a geometric point of view, the optimal GAD curve, x(t), t0 ≤ t ≤ tf consists
in the assertion that the displacement of its endpoint due to the differences of
the control vector, wv(t) and w(t) falls into the half-space RN

− , in other words,
x(tf) + ∆x(tf) ∈ RN

− for any variation of the control vector.

Along the above reasoning we can conclude that additional to the necessary
conditions on a GAD curve given by the Eqs.(1) and (3) another necessary con-
dition emerges. The scalar product y(tf)T∆x(tf), where ∆x(tf) is obtained
from any variation of the initial control vector is nonpositive provided that the
covector y(tf), which is the normal to the plane, is correctly normalized (di-
rected toward the half-space RN

+ ). In other words, y(tf)T∆x(tf) ≤ 0, for any
variation of the initial control vector, see Fig.(1).

In Fig.(1) we show the optimal GAD curve, x(t), which starts at x0 = x(t0)
with the initial control vector, w(t0). At t = tf the curve transverses the hy-
perplane of dimension N−1. The normal of this hyperplane is the y(tf)-vector.
The other curve xv(t) with initial control vector wv(t0) does not achieve the
xTS position at the time t = tf . It is not the optimal curve and for this reason
y(tf)T∆x(tf) = y(tf)T [xv(tf)− x(tf)] ≤ 0, which is the additional neces-
sary condition supporting the Maximum Principle. In the GAD model this
additional necessary condition is achieved by maximization of the Hamiltonian
given in Eq.(4) with respect to any direction y(t) under the normalized control
vector w(t).

For the GAD model this necessary condition can be written as

H(x(t),y(t),w(t)) = max
{y(t)|yTy=1}

H(x(t),y(t),w(t))

= max
{y(t)|yTy=1}

{−y(t)T [I− 2w(t)w(t)T ]g(x(t))} , (7)

where Eq.(4) has been used. The direction y(t) that maximizes the Hamilto-
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Figure 1: Scheme of the Pontryagin Maximum Principle applied to the GAD model.

nian is attained as follows:

We observe that wT (t) is a left eigenvector of the matrix [−I+ 2w(t)w(t)T ]
with eigenvalue +1. This is the only one positive eigenvalue. All the possible
(N−1) linear independent eigenvectors orthogonal tow(t) have the (N−1)-fold
degenerate eigenvalue −1. Thus to get a maximum in Eq.7 we must chose the
direction y(t) = w(t). Taking this direction we would get in Eq.(4) the value
w(t)Tg(x(t)) which still depends on the length of the gradient, the g(x(t))-
vector. To avoid this and to ensure that for any t0 ≤ t ≤ tf the Hamiltonian
function of Eq.(4) achieves a constant maximum value, we take

y(t) =
w(t)

w(t)Tg(x(t))
(8)

for a solution of the maximum direction in Eq.7. With this solution we get
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H(x(t),y(t),w(t)) = 1. This is the maximum value which the GAD Hamilto-
nian achieves along the optimal GAD curve.
Substituting solution (8) in Eq.(3) we obtain a new expression for the ẏ(t)-
vector,

ẏ(t) = −H(x(t))w(t)

w(t)Tg(x(t))
. (9)

If we differentiate Eq.(8) with respect to t and if we equating the resulting
expression to Eq.(9) we obtain

w(t)Tg(x(t))ẇ(t)−w(t)
[
ẇ(t)Tg(x(t)) + w(t)T ġ(x(t))

]
(w(t)Tg(x(t)))2

= −H(x(t))w(t)

w(t)Tg(x(t))
.

(10)
Multiplying Eq.(10) from the left by

[
I−w(t)w(t)T

]
and using that

w(t)T ẇ(t) = 0 and
[
I−w(t)w(t)T

]
w(t) = 0 we obtain the Eq.(2) which is

the searched second GAD equation for t0 ≤ t ≤ tf .

With these results we can paraphrase the Pontryagin Maximum Principle25

applied to the GAD curve model. We assert that the extremal GAD curves are
solution of the Hamiltonian system of Eq.(5) or equivalently, Eq.(1)–(2) and
according to the Eq.(7) their points maximize the Hamiltonian function (4)
with respect to the control vector w(t); furthermore according to the Eq.(7),
along the GAD extremal curves the control vector for which the Hamiltonian
function attains its local maximum is given by Eq.(8). Along the optimal GAD
curve the Hamiltonian H(x(t),y(t),w(t)) achieves its maximum value being
equal to 1.

2.2 Extensions of GAD model

The results of the previous section motivate us to propose new curves based on
the GAD model and the requirements of the Pontryagin Maximum Principle.
With this consideration a curve was proposed such that the tangent is given by
the general expression8

ẋ = −g(x) + f(φ,x,w)w , (11)

where the control vector, w, is assumed to be normalized. The function
f(φ,x,w) is a continuous and differentiable function with respect to x, and
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φ is a constant. In this case the expression for ẇ is

ẇ = −
[
I−wwT

]
[∇xf (φ,x,w)−H (x)w] . (12)

To delimit the function f(φ,x,w), we should organize that if the control vector,
w, is associated with the uphill direction of the evolution of the curve, then
the general expression should be one that minimizes the potential energy in the
subspace orthogonal to the w-vector and maximizes it along the w direction,
like in the GAD case. An interesting special case is

ẋ = −g(x) + φ(wTg(x))w . (13)

Here it is f(φ,x,w) = φ(wTg(x)) with φ is greater than one. Taking φ = 2 we
obtain the standard GAD model. The behavior of this kind of curves given in
Eq.(13) is reported in Ref. 8. Notice that if one takes f(φ,x,w) = φ being φ a
positive constant and changing −g(x) by g(x) we obtain the original Zermelo
problem, namely, ẋ = g(x) + φw, where as before it is wTw = 1. It is easy
to prove that in this case the expression for ẇ coincides with that given in
Eq.(2). This possibility has not been yet investigated as a possible curve model
to locate transition states, as well as for the representation of reaction paths.

3 The Variational Nature of others Reaction Paths

The reaction path concept is based on the definition of a curve located on the
PES, which is monotonely increasing in the potential energy from the reactant
minimum to the SP and monotonely decreasing from this point downhill to the
product minimum. Many geodesic curves satisfy the definition, and for this
reason, there is a large set of curves proposed as a model of the reaction path.
The most widely used curves for this purpose are the steepest descent26–28, the
gradient extremals29–32, and the distinguished reaction coordinate33, and in its
newer version, the Newton trajectory (NT)34,35.

The steepest-descent/ascent curve is the curve that at each point follows
the gradient of the PES. This curve is variational and extremalizes the integral
functional13,14

I(x) =

∫ t

t0

F (x, ẋ) =

∫ t

t0

√
gTg
√
ẋT ẋdt′ =

∫ s

s0

√
gTgds′ , (14)

where s is the arc length and, F (x, ẋ), is a functional homogeneous of degree
one with respect to the argument ẋ. The second variation indicates that the
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steepest-descent/ascent curve that joints two minimums of the PES through an
SP only minimizes the integral functional of Eq.(14). The special curve, the
so-called intrinsic reaction coordinate (IRC)26,27, always satisfies the reaction
path definition, but the second variation13 does not imply that the curve is
fully located in a deep valley; see a counter example elsewhere36. The second
variation is not related to the Minimum Energy Path (MEP) condition. The
gradient curve of the type IRC is always a reaction path but it can be or not
be a MEP. This depends on the shape of the PES8.

Another type of curve is the so-called gradient extremal (GE)37. A GE
curve was proposed as a reaction path some time ago29,30. Its definition can be
described assuming first that we are on a “valley ground” of the PES with respect
to the variations of x within the equipotential hypersurface, V (x) = ν = const.
The functional integral to be extremalized is

I(x) =
1

2

∫ t

t0

g (x(t′))Tg (x(t′))− λ(t′)[V (x(t′))− ν(t′)]dt′ . (15)

The curve that extremalizes the integral functional of Eq.(15) corresponds to
the curve that also satisfies at each point the eigenvalue equation

H(x(t)) g(x(t)) = λ(t)g(x(t)) . (16)

This curve is the GE. In Eq.(16) the λ is the eigenvalue and the gradient g is the
corresponding eigenvector. The demonstration of the variational nature of this
type of curves was formulated in Ref. 17 (see also references therein). Within
the theory of the calculus of variations, the GE problem is classified as a Bolza
variational problem which is related to a Lagrangian multipliers problem21,38.
As mentioned above the GE curve extremalizes the integral functional given
in Eq.(15), and in its evolution it transverses the set of equipotential surfaces,
V (x)−ν = 0. From a variational point of view it is important to consider that
if the GE curve joins two minimums of the PES and if it does not have on this
subarc turning points, then this GE curve describes a reaction path belonging
to the category of the MEP17. A GE curve joining two minimums of the PES
minimizes the integral functional of Eq.(15) if and only if it does not have on
this subarc turning points. Otherwise other arbitrary curves joining the same
two minimums lower the value of the integral functional of Eq.(15)17. We con-
clude that GE curves which join two minimums of the PES and which do not
have turning points in between, minimize the functional given in Eq.(15), and
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satisfy the reaction path definition and the MEP requirement. In this case, the
model of GE curves has a direct relation between variationality, reaction path
and MEP definition. Unfortunately, the GE curves do not cover all the PES;
in other words, a GE curve does not exist at the most points of the PES. Addi-
tionally, there can be parts of a reaction valley of a PES where no continuous
GE exists39,40.

The distinguished reaction coordinate33, or its new reformulation, the NT34,35,
is a model curve which is often used to locate SPs. The curve can be used as
representation of a reaction path, again if no turning point emerges. The varia-
tional nature of the curves was studied in Ref. 16. It corresponds to a problem
where the functional only depends on the arguments, coordinates, and the pa-
rameter that characterizes the curve

I(xv) =

∫ xrc

x0
rc

V (xv, x
′
rc)dx

′
rc , (17)

where the xv-vector is the coordinate vector x without the xrc component. It
can be shown16,41 that the curve which extremalizes the functional integral of
Eq.(17) is the curve which satisfies the Branin equation42

ẋ =
dx

dt
= ±A(x)g(x) , (18)

where A(x) is the adjoint matrix of the Hessian matrix, H(x),41 and the pa-
rameter t plays the role of xrc. If det(A(x)) is positive definite along the whole
NT curve joining two minimums of the PES, then this curve is a reaction path
and it has the MEP category, because for this model curve both reaction path
and MEP formulation coincide. In addition, in Ref. 16, it is shown that the
second variation of the integral functional given in Eq.(17) is positive definite
if the NT curve satisfies the inequality g(x)TA(x)g(x) > 0 which is noting
more than the MEP requirement. Thus, for the NT model coincides the min-
imum variational condition with the MEP condition. However, if the NT has
a turning point or a valley-ridged inflection point (VRI), then the minimum
variational character is lost16 and the reaction path and the MEP conditions
are not satisfied. An NT curve can start at any point of the PES.
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4 The Branching of a Reaction Path:
Valley-Ridge-Inflection Points

The analysis of PESs remains an important basis for classifying and under-
standing the reasons of the mechanisms of chemical reactions as well as their
dynamics. It is associated to the concept of the reaction path or to the def-
inition of the minimum energy path on a PES. The chemical reaction may
be composed by a number of elementary processes characterizing the mech-
anism of the reaction. Reaction path bifurcations are omnipresent on PESs;
they happen at VRI points already on the PES of very small molecules like
H2O

43, H2S, H2Se, H2CO
44, HCN45,46, the ethyl cation47, H3CO, C2H5F

48,
and many others. The importance of VRI points for the chemical reactivity is
described in the reviews of Ess et al.49,50 and Refs. 51,52. The intrinsic reaction
coordinate (IRC) is a type of a reaction path which is widely used. However,
in “skew”, non-symmetric cases this curve usually does not meet a VRI point
being nearby53,54. As mentioned in Section 3, there is a variety of types of
curves that can be used as reaction path models, (a former ansatz was coor-
dinate driving) which can be used in many cases to characterize the reaction
path16,34. Sometimes the GE curves17,29–31,55,56 also appear to form a suitable
ansatz for such purposes. Certain NTs describe the valley or cirque structures
of a PES, as well as their complements of ridges or cliffs (for the definition of
such structures see Ref. 57. The structures are related to important chemical
properties of the PES of the reaction under study16,52. The use of NTs opens
the possibility to find and to study VRI points and, in succession, the bifurca-
tion points or the branching points of reaction channels, because the reaction
channel-branching is related to the existence of a special class of points of the
PES, the VRI points58,59. A VRI point is that point in the configuration space
where, orthogonally to the gradient, at least one main curvature of the PES
becomes zero60. This definition implies that the gradient vector is orthogonal
to an eigenvector of the Hessian matrix where its eigenvalue is zero. Thus,
at least one PES-direction orthogonally to the gradient is flat. Usually, VRI
points represent nonstationary points of the PES. Note that the VRI points are
independent of the RP curve model used. They are related to the nature of the
PES topography. Normally the VRI points are not related to the branching
point of the reaction path curve except for NT curves16,59. So to say, a geomet-
rical indicator of a VRI point is the bifurcation of a singular NT.
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Figure 2: A modified BQC-PES with three minimums and two saddle points of index one.
The green line corresponds to the condition Det(H(x)) = 0. It indicates a change of
the sign of an eigenvalue. The dashed line is the convexity border of the PES, namely,
Det[ST (x)H(x)S(x)] = 0, where the matrix, S(x), is formed by the set of all orthonormal-
ized vectors all of them are orthogonal to the g(x) vector. The fat line corresponds to a
singular NT curve which crosses the VRI point.

The IRC curve is mathematically expressed through an autonomous system
of differential equations for the tangent vector describing its evolution13. Its
solution is unique; due to this fact no bifurcations can occur before reaching
the next stationary point after the SP. No branching of PES valleys will be
truly described or located by using the IRC curve as an RP type model60,61. It
orthogonally traverses the family of levels, the equipotential energy surfaces13.
Hirsch and Quapp36 gave an example of a two-dimensional PES where the IRC
is going over a skew ridge, however, it does not follow the valley ground nearby,
which is here characterized by a GE. The IRC or any other SD curve does not
take into account the curvature of the traversed contours in its evolution. In
other words it does not give information on the valley floor or ridge character of
its pathway. After a change of levels from convex to concave form the IRC curve
ceases to be a valley pathway and is actually a merely RP. An early visualization
of such an unstable minimum energy path was given by Mezey in Ref. 62, see
also Ref. 63. As explained, the IRC curve traverses in its evolution a family
of equipotential energy surfaces. At any point of an SD curve we can define
a tangential plane to the equipotential energy surface orthogonally traversed
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by the SD curve at the point, and the normal of the tangential plane is the
gradient vector of the point. All direction vectors contained in the tangential
plane are orthogonal to the gradient vector. If at least one of these direction
vectors is connected with the curvature zero then we say that the steepest
descent curve crosses aValley-Ridge transition (VRT) point. The curve leaves
a valley and enters a ridge region of the PES or vice-versa. The VRT points
are the border between valley- and ridge-regions. The concept of a VRT point
is much more general than the VRI point concept. In fact a VRI point is a
special case of a VRT point. In the general VRT situation, the gradient vector
is not orthogonal to the set of eigenvectors of the Hessian matrix. This is the
most general behavior. The zero curvature of the PES along the level line or
equipotential energy surface at the VRT point comes from a suitable linear
combination of the eigenvectors with their eigenvalues of the Hessian matrix.
A manifold of points with these features exist on a PES. They are border points
between quasi-convex valley regions and ridges. NTs there have a turning point.
So to say, a turning point of an NT is the geometrical indicator of a VRT point,
see Ref. 41. An example is given in Fig.2. This modified BQC-PES is near to
the original reported in Ref. 17. Its equations is

V (x, y) = 1000/3(y3 − 3yx2)− 30(y + 3x) + 250((y + 0.7/4)4 + x4) . (19)
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