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Abstract

A mechanochemical reaction is a reaction induced by mechanical energy. A general

accepted model for this type of reactions consists in a first order perturbation on the

associated potential energy surface (PES) of the unperturbed molecular system due

to mechanical stress or pulling force. Within this theoretical framework, the so-called

optimal barrier breakdown points or optimal bond breaking points (BBPs) are critical

points of the unperturbed PES where the Hessian matrix has a zero eigenvector that
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coincides with the gradient vector. Optimal BBPs are ’catastrophe points’ that are par-

ticularly important because its associated gradient indicates how to optimally harness

tensile forces to induce reactions by transforming a chemical reaction into a barrierless

process. Building on a previous method based on a nonlinear least squares minimiza-

tion to locate BBPs (Bofill et al., J. Chem. Phys. 2017, 147, 152710-10), we propose

a new algorithm to locate BBPs of any molecular system based on the Gauss-Newton

method combined with the Barnes update for the nonsymmetric Jacobian matrix, which

is shown to be more appropriate than the Broyden update. The efficiency of the new

method is demonstrated for a multidimensional model PES and two medium size molec-

ular systems of interest in enzymatic catalysis and mechanochemistry.

1 Introduction

One of the main problems in theoretical chemistry is to study the mechanisms of chemical

transformations. An important achievement in the development of models to understand

the mechanisms associated with any chemical transformation was the introduction of the

following concepts, namely, potential energy surface (PES) and reaction path (RP) as a way

to describe the molecular system evolution from reactants to products in geometrical terms

and the stationary points of the PES with respect to the coordinates, namely, transition

states (TS) or first order saddle points (SP) and minima. In the last years, another type

of points has increased its importance to explain some features of the chemical reactivity,

namely, the valley-ridged inflection points (VRI) related with the bifurcations of the RP. The

VRIs are points of the PES with different mathematical characteristics to those associated

with stationary points. Finally, another type of points of the PES has recently turned out

to be crucial in the theory that rationalizes the chemical transformations under mechanical

forces, the so-called mechanochemistry.1–12 From a conceptual point of view, the phenomenon

of mechanical activation can be understood on the basis of the fact that the PES of a given

reactive system changes when this system is subjected to tensile stress. As a result of these
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force-induced changes of the PES, the barriers between the minima and the saddle points

change.13 When a mechanical force is applied to a molecular system, the reactivity is either

enhanced or suppressed.14 This is explained using the PES model by the modification of the

barrier that separates two minima due to the magnitude and direction of the mechanical

force. The easiest case is when the direction of the applied force, f is constant. The modified

PES or force-transformed PES,15 labeled as, Vf (x) is given by

Vf (x) = V (x)− fT (x− x0) (1)

where V (x) is the original potential, T means transposed, (x−x0) is the displacement vector

and x0 is an anchor or reference point. The dimension of the vectors is N . If we expand up

to second order the Taylor expansion around x0 the original potential, that is

V (x) = V (x0) + g(x0)T (x− x0) + 1/2(x− x0)TH(x0)(x− x0) +O(||x− x0||2)

where g(x0) and H(x0) are the gradient and the Hessian of V (x) at x0, respectively, and

||x− x0|| = [(x− x0)T (x− x0)]1/2. Substituting this expansion in Eq. 1 we have

Vf (x) = V (x0) + (g(x0)− f)T (x− x0) + 1/2(x− x0)TH(x0)(x− x0) +O(||x− x0||2)

thus in this model the perturbation due to external constant force only affects to first order in

x−x0 with respect to the original PES. Regarding this expression we see that the stationary

points of the Vf (x) occur when g(x) = f . Because the force is constant in direction, we can

write f = F l, where l is a fixed unit vector and F the magnitude. Due to the structure of

the force vector, in the stationary points of Vf (x) the relation ||g(x)|| − F = 0 holds, and g

is parallel to l. The sequence of points which satisfy the relation that the gradient points to

a constant direction, describes a curve, the so-called Newton Trajectory (NT). The tangent
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of this curve is governed by the Branin formula16

dx

dt
= ±A(x)g(x) = ±A(x)l||g(x)|| (2)

where A(x) is the adjoint matrix of the Hessian matrix, H(x) of the original PES, V (x)

and t is the parameter that characterizes the curve. The Branin expression, Eq. 2, is a way

to construct the Force Displacement Stationary Points (FDSP).13,14 To see this we compute

how the force-transformed PES, Eq. 1, changes through the NT

dVf (x)

dt
= (g(x)− f)T (

dx

dt
) = ±(||g(x)|| − F )(lTA(x)l)||g(x)|| (3)

where in its derivation, Eqs. 1 and 2, the directional derivative has been used. Regarding

Eq. 3, it holds dVf (x)/dt = 0 at point x, in the next situations:

(1 ) when the magnitude of the applied force, F , is equal to the gradient norm, ||g(x)||, of

the original potential, V (x), or

(2 ) when lTA(x)l = 0, or

(3 ) when in the point x the original PES, V (x), is stationary thus ||g(x)|| = 0.

The second situation occurs if the point x belongs to the valley-ridge-inflection manifold of

the original PES.17,18 When this condition is fulfilled, the magnitude of the applied external

force is irrelevant to make dVf (x)/dt = 0 since it depends on the original PES. The NT

which goes through a VRI point in its evolution is a singular NT and this type of NT plays

an important role in mechanochemistry.12

The third condition is an artefact which comes in by the inserted dx/dt which is zero

at the stationary points of the original PES. On the effective PES the stationary points are

moved out of their original positions.
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According to the previous requirement (1 ) the magnitude of the external force to be

applied depends on the behavior of ||g(x)|| through the NT curve. For this reason it is

important to analyze this norm by considering its variation or slope on the corresponding

NT
d||g(x)||

dt
= ±Det(H(x))||g(x)|| (4)

where in its derivation the directional derivative concept has been used, Eq. 2, and the

relation A(x)H(x) = IDet(H(x)) where I is the unit matrix. The slope is zero in the

stationary points and the points where Det(H(x)) = 0 of the original PES. It is important

to analyze the variation of ||g(x)|| around the manifold of points where Det(H(x)) = 0. Let

us assume that x0 denotes a point of this manifold. If the NT transverses this manifold

through this point, then we have

||g(x(t))|| = ||g(x(t0))||+ 1/2
d2||g(x(t))||

dt2

∣∣∣∣∣
t=t0

(t− t0)2 +O((t− t0)3) (5)

where x(t0) = x0. Note that d||g(x(t))||/dt|t=t0 = 0 according to Eq. 4 sinceDet(H(x0)) = 0.

Using Eq. (B4) of reference 19 and using as the tangent vector the Branin expression, Eq. 2,

we have
d2||g(x(t))||

dt2

∣∣∣∣∣
t=t0

= µ2
j(e

T
j 〈F(x0)〉j ej)(e

T
j l)||g(x0)||2 (6)

where ej is the normalized eigenvector of the matrices A(x0) and H(x0) with eigenvalues

µj and 0, respectively. The eigenvalue µj is the unique eigenvalue of A(x0) different from

zero. The matrix 〈F(x0)〉j results from the contraction of the third derivative tensor of the

potential energy V (x) with respect to the coordinates with the eigenvector ej. Assuming that

we find the first manifold of points that satisfy Det(H(x)) = 0 for all the NTs that emerge

from the same minimum and go to the same SP, then it holds the value of eTj 〈F(x)〉j ej < 0,

and the NT with ej = l is the one which presents the higher decrease of ||g(x)|| after the

manifold is transversed. This NT in this point coincides with a Gradient Extremal (GE).13
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The proof is trivial, since ej = l and l is the normalized gradient. This implies that the

gradient is an eigenvector of the A(x) matrix and in turn an eigenvector of the corresponding

Hessian matrix, being this the requirement that a point belongs to a GE. The fact shows the

importance of this manifold in the mechanochemistry theory based on Eq. 1. At the points

belonging to the manifold Det(H(x)) = 0 the bond breaking point (BBP) emerges.7,13 At

the latter type of points, the gradient norm along an NT reaches a turning point, and the

effective PES, Vf (x), presents a shoulder on the FDSP path. Within the manifold of BBPs

of a given PES, there is an optimal BBP and also the NT that goes through this point.13

This BBP defines the lowest force in magnitude and the corresponding pulling direction that

should be applied to a molecular system in order to mechanically promote a given chemical

transformation by making it barrierless. The optimal BBP satisfies the equation13

H(x)g(x) = 0 (7)

where g(x) 6= 0. Eq. 7 tell us that the optimal BBP is also a point of a GE where the

eigenvalue of the Hessian matrix is zero. It is the point where Eq. 6 takes the value for

ej = l.

The purpose of the present study is to present another efficient algorithm to locate the

point where Eq. 7 is satisfied. The present study is organized as follows: in Section 2 a

new version of the Gauss-Newton method is presented. In Subsection 2.1 the mathematical

ground of the algorithm is reported. In Subsection 2.2 it is detailed how to improve the

Gauss-Newton method through the restricted step technique. The Subsections 2.3 and 2.4

expose in some detail the basis of the derivation of the Barnes update for a non-symmetric

Jacobian as it occurs in the present algorithm. The behavior and performance of the al-

gorithm is shown using some mechanochemical examples in Section 3. Finally, Section 4

concludes the paper.
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2 An Algorithm based on the Restricted Gauss-Newton

Method

2.1 Basic Formulas and Evaluation of the Displacement Vector

The problem of locating optimal BBPs is equivalent to finding the point of coordinates such

that the eigenvalue problem,H(x)g(x) ‖g(x)‖−1 = (g(x)TH(x)g(x) ‖g(x)‖−2)g(x) ‖g(x)‖−1,

has in this point the eigenvalue zero, g(x)TH(x)g(x) = 0. For this purpose if we define the

function19

σ(x) =
gT (x)H2(x)g(x)

gT (x)g(x)
= sT (x)s(x) , (8)

then to find the optimal BBPs merely consists in locating the point such that the above

function takes the minimum value, which is zero, since it is a sum of nonlinear least square

functions. In other words, the σ(x)-function is by definition the scalar product of the vector,

s(x) = H(x)g(x) ‖g(x)‖−1, by itself and reaches its minimum value, the zero value, at the

point where s(x) = H(x)g(x) ‖g(x)‖−1 = 0 which is just the condition of an optimal BBP

given in Eq. 7. We recall that g(x) ‖g(x)‖−1 6= 0 at the slope of the PES, thus the σ(x)-

function is never zero outside a stationary point except if at this point the corresponding

Hessian matrix has at least one zero eigenvalue. Thus the original problem has been trans-

formed into finding the point where σ(x) = 0. Since the σ(x)-function is continuous and

differentiable with respect to x we can expand it around x up to second order in a Taylor

expansion

σ(x′) = σ(x) + (x′ − x)T∇xσ(x)|x +
1

2
(x′ − x)T∇x∇T

xσ(x)|x(x′ − x) +O(||x′ − x||3) . (9)
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According to Eq. 8 the derivatives that appear in Eq. 9 with respect to x have the form

∇xσ(x) = 2 [∇xs
T (x) ]s(x) = 2J(x)s(x)

and

∇x∇T
xσ(x) = 2J(x)JT (x) + 2

N∑
i=1

si(x) [∇x∇T
xsi(x) ]

where si(x) is the i-th component of the s(x) vector and J(x) = [∇xs1(x)| · · · |∇xsN(x) ].

The J(x) is the N × N Jacobian matrix. Since s(x) approaches the zero vector at the de-

sired point where the σ(x)-function is close to zero, then normally the components si(x) for

i = 1, · · · , N are small. This suggests that a good approximation to ∇x∇T
xσ(x) might be

obtained by neglecting the final terms of this matrix to result in ∇x∇T
xσ(x) ≈ 2J(x)JT (x).

This is equivalent to making a linear approximation to each component of the s(x)-vector.

In this manner using the two elements necessary to compute the gradient, ∇xσ(x), namely,

s(x) and J(x), are also enough to evaluate the approximate Hessian matrix of this func-

tion. The expression for ∇x∇T
xσ(x) J(x) has been reported in Ref. 19. When the second

derivative is approximated, the basic Newton method becomes the Gauss-Newton method

or the generalized least squares method.20 Note that the Gauss-Newton method can fail or

can converge slowly. The convergence of the Gauss-Newton algorithm is largely improved if

at each iteration the restricted step technique is used.

In the previous algorithm to locate optimal BBPs the restricted step was evaluated em-

ploying the rational function optimization technique.21–24 However, the main problem of the

rational function optimization technique used to evaluate the restricted step is that the com-

puted displacement vector, ∆x = x′− x, violates the imposed restriction on its length. The

length of the displacement vector is sometimes larger or shorter with respect to the required

length. For this reason the displacement vector should be scaled. This scaled vector is not

the optimal one since the restricted step technique consists in finding the stationary point of

minimal energy in a subspace which is generated by the intersection of the PES expanded

8



up to second order in ∆x and a sphere of a given radius centered in the point x. This radius

is known as trust radius.20

The problem has been treated several times, and now we propose to solve it by diagonal-

ization of a non-symmetric matrix. The restricted step technique in the present case can be

formulated as follows: given the σ(x′)-function centered at the point x and expanded until

second order in ∆x, find the stationary points located in the intersection of this function with

a sphere centered at the point x of radius r. This problem is solved through the Lagrange

multipliers method, that now reads

L(∆x, λ) = ∆σ(2)(∆x)− λ(∆xT∆x− r2) =

∆xTJ(x)JT (x)∆x + 2∆xTJ(x)s(x)− λ(∆xT∆x− r2)
(10)

where ∆σ(2)(∆x) = ∆xTJ(x)JT (x)∆x+ 2∆xTJ(x)s(x) ≈ σ(x+ ∆x)−σ(x) = σ(x′)−σ(x).

Differentiating L(∆x, λ) with respect to ∆x and λ yields the equations

 a) J(x)JT (x)∆x + J(x)s(x)− λ∆x = 0

b) ∆xT∆x− r2 = 0 .
(11)

Note that λ is a function of x, however, this dependence will be omitted to make the notation

short. It can be shown that from the set of tuples, {(λk,∆xk)}max
k=min, solutions of Eqs. 11,

if λmax > λi > λj > λmin then ∆σ(2)(∆xmax) > ∆σ(2)(∆xi) > ∆σ(2)(∆xj) > ∆σ(2)(∆xmin).

The proof of these inequalities is given in Appendix A. The smallest λ, labeled as λmin, is

needed in order to minimize the value of the quadratic approximation of the σ(x) function

around the point x. From Eqs. 10 and 11 we have that

∆σ(2)(∆xi) = λir
2 + ∆xT

i J(x)s(x) . (12)

So in place of the original minimization we can solve the Lagrange Eqs. 11 for λmin. The

Lagrange equations 11 can be reduced to a quadratic eigenvalue problem.25,26 For the deriva-
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tion let us assume that λ does not belong to the set of eigenvalues of the matrix J(x)JT (x),

thus from Eq. 11.a

∆x = −[J(x)JT (x)− λI]−1J(x)s(x) . (13)

Taking into account the normalization condition for ∆x, Eq. 11.b we get the secular function

f(λ) = sT (x)JT (x)[J(x)JT (x)− λI]−2J(x)s(x)− r2 (14)

of which the zeros are to be computed. Now, if we define t(x) = [J(x)JT (x)−λI]−2J(x)s(x)

so that [J(x)JT (x)−λI]2t(x) = J(x)s(x) then instead of solving the secular function, Eq. 14,

we have to solve the system

 a) [J(x)JT (x)− λI]2t(x) = J(x)s(x)

b) sT (x)JT (x)t(x)− r2 = 0 .
(15)

Eq. 15.b can be formulated as r−2sT (x)JT (x)t(x) = 1. Using the factor 1 in Eq. 15.a, we

get the quadratic eigenvalue problem,

{[J(x)JT (x)− λI]2 − r−2J(x)s(x)sT (x)JT (x)}t(x) = 0 (16)

Note that the restriction that λ does not belong to the set of eigenvalues of matrix J(x)JT (x)

is no longer necessary. Of course, we must face the fact that the set of solutions for λ has

been extended by these manipulations, because two equations cannot be formulated as a sin-

gle one without consequences. These consequences are exposed in some detail in Appendix

B and are taken into account in the proposed algorithm.

The quadratic eigenvalue problem, Eq. 16, can be reduced to an ordinary eigenvalue

problem by properly chosen transformations. With the definition
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p(x) = [J(x)JT (x)− λI]t(x), the following equations can be established

 a) J(x)JT (x)t(x)− p(x) = λt(x)

b) J(x)JT (x)p(x)− r−2J(x)s(x)sT (x)JT (x)t(x) = λp(x) .
(17)

In matrix terms this leads to J(x)JT (x) −I

−r−2J(x)s(x)sT (x)JT (x) J(x)JT (x)


 t(x)

p(x)

 = λ

 t(x)

p(x)

 . (18)

Thus we have transformed the original quadratic eigenvalue problem into an equivalent linear

one that can be solved with traditional techniques. Let us denote the real solutions of Eq. 18

by the triples, {(λi, tTi (x),pT
i (x))}i=1,..,N , where λi are given in increasing order. This set of

triples has the full set of solutions Eq. 14 and λ1 = λmin, is the desired solution of Eq. 11.

Now, substituting the real triple, (λmin, t
T
min(x),pT

min(x)), in Eq. 17.b we see that,

∆xmin = −[J(x)JT (x)− λminI]
−1J(x)s(x) = −pmin(x)[sT (x)JT (x)tmin(x)]−1r2 . (19)

If we multiply this equation from the left by [J(x)JT (x) − λminI]
−1 and using Eq. 17.a we

obtain, [J(x)JT (x)− λminI]
−1∆xmin = −tmin(x)[sT (x)JT (x)tmin(x)]−1r2. Now, multiplying

the latest equation from the left by sT (x)JT (x) and taking into account Eq. 13 we have,

∆xT
min∆xmin = r2, as expected. Note that this result can be applied to any real triple

and it is Eq. 19, that transforms the vectors tTi (x) and pT
i (x) of the i-th triple to the ∆xi

vector that belongs to the (λi,∆xi)-tuple solution of Eq. 11, that is particularly important

for the algorithm. Now, we treat the case that λi belongs to an eigenvalue of the the matrix

J(x)JT (x) . Let us assume that ti(x) is the eigenvector; then, from Eq. 17.a we obtain that

pi(x) = 0. Now from Eq. 17.b we see that sT (x)JT (x)ti(x) = 0 and the triple has the form

(λi, t
T
i (x),0T ). The application of Eq. 19 to this triple gives an undetermined ∆x vector.

For this reason the triples formed by λ’s that belong to the eigenvalue spectra of J(x)JT (x)
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matrix are not solutions of Eq. 11, see also Appendix B. Now, we study the origin of the

complex solutions. Let λi and λi+1 be two consecutive eigenvalues of the matrix J(x)JT (x)

such that λJi < λJi+1 but they are not solutions of Eq. 18. Now if in the interval (λJi , λ
J
i+1) the

secular function, f(λ) given in Eq. 14, is greater than zero then there exists a complex tuple

and the corresponding conjugate, which are both solutions of Eq. 18. The non-symmetric

eigenvalue problem of Eq. 18 always has at least two real tuples, and their λ’s correspond to

the lowest, λmin, and the highest, λmax values.

The proof of this assertion is the following. As shown above any real tuple solution of

Eq. 18 is solution of Eq.14 excepting if, let us say λi = λJi , an eigenvalue of J(x)JT (x)

matrix, is solution of Eq. 14. Now let us take a r2 value, then assuming that J(x)s(x) 6= 0

the f(λ) increases monotonically from −r2 to ∞ as λ increases from −∞ to λJ1 , the lowest

eigenvalue of J(x)JT (x) matrix. Thus we have to find a unique value of λ in this interval,

λmin < λJ1 , for which f(λmin) = 0. In a similar manner the f(λ) decreases monotonically

from ∞ to −r2 as λ increases from λJN , the highest eigenvalue of J(x)JT (x), to ∞. Thus we

have to find a unique value of λ in this interval, λmax > λJN , for which f(λmax) = 0. This

concludes the proof.

Finally, if the solution of Eq. 18 has 2N real tuples then from the above results it is easy

to proof the corollary about the existence of the next interlace, λmin < λJ1 < λ2 < λ3 < λJ2 <

λ4 < · · · < λ2N−3 < λJN−1 < λ2N−2 < λ2N−1 < λJN < λmax, between the 2N real tuples and

the eigenvalues of the J(x)TJ(x), where min = λ1 and max = λ2N .

2.2 Restricted Step Characterization and Trust Radius Update

Many optimization algorithms are based on truncating the Taylor series of the objective

function to be minimized, but this truncated function does not have a minimizing point. In

other words, σ(x + ∆x) ≈ σ(x) + ∆σ(2)(∆x) and regarding the region about the central

point x in which the quadratic expansion is adequate, the σ(x) + ∆σ(2)(∆x) function does

not have a minimum point. A way to solve this problem is to assume a region Rx centered
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at the point x in which the function σ(x) + ∆σ(2)(∆x) agrees with σ(x+ ∆x) in some sense.

Then one chooses x′ = x + ∆x such that ∆x minimizes ∆σ(2)(∆x) for all x′ = x + ∆x in

Rx-region. This is the basis of the restricted step method.20 The trust radius is the param-

eter that characterizes the Rx-region centered at the point x.

The region Rx is normally limited by a sphere, Rx = {x′ : (x′−x)T (x′−x) = ∆xT∆x ≤

r2}, and to seek for the solution ∆x of the problem

min
∆x

∆σ(2)(∆x) subject to ∆xT∆x ≤ r2 (20)

where the equality is nothing more that Eq. 10 solved through Eqs. 18 and 19, and by

standard Gauss-Newton for the inequality if the resulting ∆x satisfies that ∆xT∆x < r2.

Now emerges the question of how the radius r of sphere Rx shall be chosen. The radius r

should take into account certain measure of agreement at each step between ∆σ(2)(∆x) and

σ(x + ∆x)− σ(x). The ratio

ratio =
σ(x + ∆x)− σ(x)

∆σ(2)(∆x)
(21)

gives a measure of accuracy for which ∆σ(2)(∆x) approximates σ(x + ∆x) − σ(x). Thus

when ratio is the unity or near to it, it indicates the best accuracy. Following Fletcher20

an algorithm can be stated that changes r adaptively and attempts to maintain a certain

degree of agreement measured by ratio, whilst keeping r as large as possible. The algorithm

used in the present context at each iteration has the following form:

1 ) given x and r, compute J(x) and s(x);

2 ) solve Eq. 20 first by Gauss-Newton, ∆x = −(J(x)JT (x))−1J(x)s(x),

and if ∆Tx∆x > r2 then solve Eq. 18 and through Eq. 19 obtain the adequate ∆x;

3 ) compute σ(x + ∆x) and hence ratio from Eq. 21 using Eq. 12;
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4 ) if ratio < 0.25 the new r takes the value ||∆x||/4,

if ratio > 0.75 and ||∆x|| = r then the new r takes the value 2r,

otherwise the value of the new r is the same of the current step;

5 ) if r ≤ 0 set x′ = x else x′ = x + ∆x.

One can prove that the constant numbers used, namely, 0.0, 0.25, 0.75, 2.0 are arbitrary and

the algorithm is quite insensitive to their change.20

2.3 The Barnes Update Formula for the Jacobian Matrix

The main disadvantage of the present algorithm based on the Gauss-Newton method is the

calculation of the vector s(x) and the matrix J(x). As explained in the subsection 2.1,

the vector and the matrix are essential to compute the required gradient and Hessian of

the σ(x) function at each step or iteration of the algorithm. However, as proved in Ref.

19 its computation involves first, second and third derivatives of the PES with respect to

the coordinates. Clearly they are very expensive from a computational point of view, in

particular the matrix J(x) where third derivatives are needed. Thus a way to update the

matrix J(x) at each step is necessary to make the algorithm efficient. The matrix J(x) is

not symmetric thus standard procedures of updating, like the popular Broyden-Fletcher-

Goldfarb-Shanno (BFGS)20 proposed for symmetric cases can not be used in the present

case. For this reason in Ref. 19 the Broyden formula27 was employed to update the J(x)

matrix at each iteration. As will be shown below, the Broyden formula is a simplification of

the Barnes formula28 and the latter has some properties that the former does not have and

these differences can be important to improve the algorithm.

In this and the next subsection we use a d-vector rather than ∆x to make the notation

short. Let us define the pair of differences y(k) = s(k+1)−s(k) and d(k) = ∆xk = x(k+1)−x(k),

for k = 1, . . . , n, where s(k) = s(x(k)) = H(x(k))g(x(k))||g(x(k))||−1 and n indicates the

iteration-n. Then a matrix J(k+1) can be calculated, where J(n+1) = J(x(n+1)), which satisfies
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the hereditary condition

J(n+1)Td(k) = y(k), k = 1, . . . , n. (22)

Since J(k) does not relate d(k) and y(k) correctly, thus J(k+1) is chosen so that it does correctly

relate this pair of differences, J(k+1)Td(k) = y(k) being the quasi-Newton condition. One

possibility is to have

J(k+1) = J(k) + C(k) . (23)

C(k) is a matrix, which to avoid carrying over too much information from iteration to itera-

tion, is calculated from the quantities d(k), y(k) and J(k). One can see the updating technique

as a perturbation to the current J(k) matrix by C(k) to satisfy both the current quasi-Newton

condition and the hereditary condition, Eq. 22. Taking into account this premise, to obtain

an explicit form for C(k) we substitute Eq. 23 into the quasi-Newton condition giving

C(k)Td(k) = J(k+1)Td(k) − J(k)Td(k) = y(k) − J(k)Td(k) . (24)

One simple solution for this expression is readily seen to be

C(k)T =
y(k)v(k)T

v(k)Td(k)
− J(k)Td(k)w(k)T

w(k)Td(k)
(25)

where v(k) and w(k) are two non-zero arbitrary vectors except that neither should be or-

thogonal to d(k). The numerators in Eq. 25 are matrices with a rank one. Thus C(k) has a

rank one or two depending upon the choice of v(k) and w(k). However, there is evidently still

a considerable amount of flexibility in the choice of C(k). Using the hereditary condition,

Eq. 22, we have

C(k)Td(j) = J(k+1)Td(j) − J(k)Td(j) = 0 , j = 1, . . . , k − 1 . (26)
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With C(k) given by Eq. 25 it therefore follows that

v(k)Td(k) = w(k)Td(k) = 0 , j = 1, . . . , k − 1 . (27)

Thus choose J(k+1) so as not to change the information in J(k) relevant to these directions,

j = 1, ..., k− 1. The choice v(k) = w(k), a vector which is orthogonal to d(1),d(2), . . . ,d(k−1),

ensures that the updated matrix satisfies both the quasi-Newton condition and a hereditary

property. Thus the resulting update formula is

J(k+1) = J(k) +
w(k)(y(k) − J(k)Td(k))T

w(k)Td(k)
. (28)

This formula was proposed for the first time by Barnes.28 Note that the vector w(k) is the

component of d(k) orthogonal to d(1),d(2), . . . ,d(k−1). We recall that N is the dimension of

the problem, thus in the N+1 iteration the resulting difference pair y(N+1), d(N+1) yields too

much information to determine JN+2. However, using Eq. 28 and making w(N+1) orthogonal

to d(2),d(3), . . . ,d(N) ensures that J(N+2)Td(j) = y(j) for j = 2, . . . , N+1. The difference pair

y(1), d(1) is dropped out and replaced by y(N+1), d(N+1). In this manner for any k > N an

approximate matrix J(k+1) can be calculated which satisfies J(k+1)Td(j) = y(j) for the most

recent N difference pairs.

The Broyden update28 is derived from the Barnes formula, Eq. 28, by taking w(k) = d(k).

This election clearly destroys the hereditary property, Eq. 22, and from this termination

in step N + 1 for the case that the vector s(x) is linear. Also some invariant properties

preserved in Barnes update formula are lost in the Broyden formula. This makes the use

of Barnes formula more attractive for the present type of problem. The price to be paid is

the orthonormalization of the space generated by the displacement vectors at each step to

compute the w(k) vector.
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2.4 Orthonormalization of the Displacement Vectors

Eq. 28 represents a modification of the matrix J(k) by a rank one update. A useful repre-

sentation that helps to understand this update is based on the definition of the matrices

Y(k) = [y(1)| . . . |y(k)] and D(k) = [d(1)| . . . |d(k)] whose columns contain the most recent N

(or k if k ≤ N) difference pairs y(k) = s(k+1)−s(k) and d(k) = x(k+1)−x(k). If we assume that

these two matrices have full rank (min (k,N)) then the representation J(k+1)T = Y(k)D+(k)

satisfies Eq. 22 and is equivalent to the use of Eq. 28 when the vector w(k) is the component

of d(k) orthogonal to the set {d(j)}k−1
j=1 where k ≤ N . Thus we only need a way to compute at

each step the corresponding w(k) vector orthogonal to the current iterative subspace of dis-

placement vectors needed in the Barnes update formula, Eq. 28. For this reason we describe

a stable algorithm for this purpose. The matrix D+(k) denotes the full rank generalized

inverse of D(k) having the form D+(k) = (D(k)TD(k))−1D(k)T . The dimension of the matrix

D+(k) is k × N . Thus using Eq. 28 one needs only a way to update the D+(k−1) matrix to

D+(k), and in this computation the w(k) vector is obtained. This is done using a procedure

proposed by Fletcher29 that is now briefly described for the purpose of being applied in the

present context. Another procedure is due to Ben-Israel.30 It is also an iterative procedure

but we will not discuss it here.

We define a projection matrixP(k−1) asD(k−1)D+(k−1) whereD+(k−1)D(k−1) = I(k−1)×(k−1)

being I(k−1)×(k−1) the unit matrix of dimension (k−1)×(k−1) since D+(k−1) is the "general-

ized inverse" of D(k−1) as noted previously. Now, D(k−1) is a matrix of dimension N× (k−1)

whereas D+(k−1) has dimension (k − 1) × N . Normally the orthogonalization of a vec-

tor, say v, with respect to the set of vectors, {d(j)}k−1
j=1 , can be achieved by computing

Q(k−1)v = v − P(k−1)v = v −D(k−1)D+(k−1)v. Following Fletcher,29 we give an expression

showing how to update the "generalized inverse" D+(k−1) when a column is added to D(k−1)

matrix. In other words, we are going from D+(k−1) to D+(k) when D(k−1) extends to D(k).

We denote by ei the i-th column vector of a unit matrix. Thus, the j-th element is δji (Kro-
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necker's delta). The relation D+(k−1)D(k−1) = I(k−1)×(k−1) and from this D+(k−1)d(i) = ei for

i = 1, . . . , k − 1, will be used. Let D(k−1) and D+(k−1) be the current matrices and d(k) the

new vector that extends D(k−1) to D(k) = [D(k−1)|d(k)]. Then, D+(k) is uniquely determined

by the next conditions:

1 ) D+(k)d(i) = D+(k−1)d(i) = ei for i = 1, . . . , k − 1;

2 ) D+(k)d(k) = ek;

3 ) D+(k)z = 0 for any vector z orthogonal to {d(i)}ki=1.

An expression that satisfies these three conditions is

D+(k) =

D+(k−1)

0T

+

−D+(k−1)d(k)

1

 w(k)T

w(k)Td(k)
(29)

where w(k) is the component of d(k) orthogonal to the columns of D(k−1) matrix, {d(i)}k−1
i=1 ,

which is written as w(k) = d(k) −D(k−1)D+(k−1)d(k) = Q(k−1)d(k) and 0 is the zero vector of

dimension N . This w(k) vector is the one that appears in the Barnes update formula, Eq. 28.

In fact the w(k)T/(w(k)Td(k)) vector of Eq. 28 is the k-th row of the D+(k) matrix, the added

row that has transformed the D+(k−1) matrix to the D+(k) matrix. This row is also labeled

as d+(k)T . The ||w(k)||2 is a measure of the linearly dependent character of the set of vectors

{d(i)}ki=1. If it is close to zero, it implies that this set of vectors is nearly linearly dependent.

Now we consider the case that D+(k), D(k), and d(k) are given, and that D+(k−1) and

D(k−1) are required. This consideration is important when k > N , since as explained previ-

ously the oldest vector of the set {d(k)}Nk=1 should be substituted by the newest one. We see

that D(k−1) = D(k)− [O(k−1)|d(k)] where O(k−1) is the zero matrix of dimension N × (k− 1).

Using Eq. 29 the k-th row of D+(k) matrix, that is d+(k)T , is just w(k)T/w(k)Td(k) as noted
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above thus the last equation can be rearranged in the form

D+(k−1)

0T

 = D+(k) − u(k)d+(k)T . (30)

Now the rows of D+(k−1) are linear combinations of the columns of D(k−1), and d+(k) is

orthogonal to all of these. Hence multiplying this equation by d+(k) on the right gives

u(k) =
D+(k)d+(k)

d+(k)Td+(k)
(31)

so that D+(k−1) is now determined completely and the formula for contracting the basis is

established. These formulae enable the basis set {d(j)}kj=1 to be varied at will.

In summary, using Barnes update formula, Eq. 28, if the iteration, say k, is lower than

N then we have to use Eq. 29 to compute the current w(k) vector and the extended D+(k+1)

matrix. Also, the D(k) matrix should be extended by a column to obtain D(k+1). If k > N

then first we have to use Eq. 30 to eliminate the corresponding row of the current D+ matrix

and the column of the D matrix, both of dimension N × N , and second, we have to use

Eq. 29 to compute the new row of the D+ matrix, the actual w(k) vector and to replace

the column of the D matrix. Finally, the algorithm has an important property detailed in

Appendix C.

3 Examples and Performance of the Algorithm

In this section, we will present the results of the algorithm applied to a toy model (Frenkel-

Kontorova) and to two different and relevant medium size molecular systems. These two

molecular systems are the ring opening of a Benzocyclobutene derivative and the Chorismate

Mutase rearrangement.
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3.1 The Frenkel-Kontorova model

We use a Frenkel-Kontorova model as the first example.31–35 It is a simple, yet non-trivial,

model. One often divides in solid-state physics a set of particles into a one-dimensional

subsystem of interacting elements, and the remaining part as a substrate. The latter acts

by a potential on the extracted subsystem. In chemistry, the Frenkel-Kontorova chain is to

a certain degree similar to a linear chain-like alkane elongation.36

N equal atoms or ions may be described by the vector of coordinates x = (x1, .., ..., xN).

The positions xi are on an axis. The coordinates of all particles satisfy xi<xi+1. They are

sorted in a fixed order. We search for a movement of the full chain along the x-axis. The

potential energy surface (PES) of the model is

V (x) = v
N∑
i=1

[1− cos(2πxi
as

)] +
N−1∑
i=1

k

2
[xi+1 − xi − ao]2 . (32)

We calculate the case N = 10. For simplicity we use here the ratio ao/as = 1 thus we

exclude a misfit of the chain and the substrate.33 The parameter ao is the average spacing of

the chain, but as is the periodicity of the substrate potential. We usually put the factor at

the sinusoidal potential, v=1. Then the spring constant, k, is also the ratio of the strength.

of the sinusoidal potential to that of the spring potential. Here we also simplify k = 1

throughout. All quantities referred to are dimensionless.

Because we have no misfit, the ground state of the chain is the sitting of every atom

in one well of the substrate. The lowest eigenvalue of the Hessian matrix of the PES is

then 1, and the corresponding eigenvector of the first normal mode is purely translational.31

This movement leaves the chain unchanged, it only vibrates ’collectively’ in the bowls of the

substrate, every atom in its own bowl.

However, on the PES such a ’collective’ unified movement of the chain is not the direction

to a low energy path through the PES mountains. In contrast, it leads to a SP of index

four, where all atoms are raised to the tops of the substrate, compare Figs.14 and 15 of
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ref. 35. This SP4 has a very high energy. Consequently, a Newton trajectory (NT) with

search direction (1,1,...,1,1)T does not lead to the known lowest energy path over consecutive

SPs of index one, these SPs being kinks or anti-kinks of the chain.33–35 Note that kinks are

stretched structures, but anti-kinks are compressed structures of the chain.

Paying attention to this, we start our test with an NT along a pulling direction that

does not involve all atoms: (1,1,1,1,0,0,..,0)T and obtain a corresponding BBP1111 on the NT

profile. This guess is at (1.795, 7.942, 13.973, 19.879, 25.53, 31.568, 37.757, 44.005, 50.274,

56.553). We use it for the initial structure for the Barnes algorithm. It converges after 21

iterations to the optimal BBP, at energy 3.05,

BBPopt=(2.04, 7.606, 13.26, 19.182, 25.285, 31.484, 37.729, 43.995, 50.271, 56.552).

The structures of the chain along the 21 steps of the optimization are represented in an SI-file

by an animation: FKm10DanimateBarnesBBP.gif. One can additionally use the gradient

vector with norm 1.88 at the optimal BBP for the optimal force normalized direction

fopt=(0.86, 0.47, 0.2, 0.08, 0.03, 0.01, 0.004, 0.002, 0.001, 0.0003) (*)

for the search direction of an ’optimal’ NT. The energy profile of this NT is shown in Fig. 1.

It performs a nice ascent to the first floor of the anti-kink SPs over the (red) optimal BBP.

However, this NT does not demonstrate the correct minimum energy path. At the end, it

deviates uphill and finds an SP of index 2 on the second floor of combined kink and anti-kink

structures. For such a combined structure to be possible the chain has to have a length of

at least 10 atoms.

In comparison to the Barnes update, a calculation with the long known Broyden update

needs 30 iterations, to converge to the same optimal BBP.

The optimal BBP structure of the chain is depicted in Fig. 2. The SPs of index 1 are

anti-kinks sitting on the tops of the substrate. The first one is on top 3, the next SPs of

index one are the SPs of the tops 4 to 7 = N − 3 . After some turning points (TP), the NT

here deviates from the MEP and increases uphill to the second floor. (Every NT connects

SPs of an index difference of one,37 so one cannot know the further direction of an NT from
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Figure 1: Energy profile over the NT to the optimal direction. Chain with 10 particles and
misfit parameter 1. Optimal BBP red, Minima black, SP1 green, and SP2 pink.

a given SP1: it can go downhill to the next minimum or uphill to an SP2.) The gallery of

the SP1 and intermediate minima in between is already shown in Fig.16 of ref. 35.

0 10 20 30 40 50
x

Figure 2: Optimal BBP of the chain with 10 particles and no misfit as result of the Barnes
program. (The cos-fringes are the substrate potential. For better guiding of the imagination,
we have shifted corresponding moved atoms of the chain on places of the substrate potential;
the chain itself is a straight line. The spring potential between the atoms is not depicted
here.)

In Table 1 we still compare the energy of the optimal BBP with the first BBPs of other

NTs.

3.2 The Benzocyclobutene ring opening

The first real chemical example is devoted to the conrotatory electrocyclic ring opening

of cis-1,2-dimethyl-benzocyclobutene to yield a E,Z-diene. This transformation was stud-

ied by us in a previous paper on the so-called gentlest-ascent-dynamics-conjugate-directions
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Table 1: Comparison of BBPs

Direction Energy
(1,1,1,1,1,1,1,1,1,1)T 10.077
(1,1,1,1,0,0,0,0,0,0)T 4.239
fopt, see (*) 3.047

(GAD-CD) transition state search algorithm38 and will be named bcb in the following. The

computational details for the bcb reaction are analogous to those presented below for the

chorismate to prephenate reaction. The BBP of the bcb reaction will be located using the

algorithm herein presented and also the algorithm introduced in Ref. 19, which was based

on a Broyden update. This will allow us to compare the performance of the two algorithms.

The stationary points (namely, reactant, product, and TS) on the bcb reaction were first

determined, and their relative energies were computed, taking reactants as the energy zero.

The structures of the stationary points are depicted in Fig. 3. Also, three geometrical pa-

Figure 3: Structures of minima for reactants and products and of the transition state for the
cis-1,2-dimethyl-benzocyclobutene to E,Z-diene reaction.

rameters which most characterize the bcb transformation are evaluated: the C C distance

for the carbon atoms of the cyclobutene part of the molecule that experience the ring open-

ing process, and the two dihedral angles corresponding to these carbon atoms, the methyl

substituents, and two of the carbon atoms on the benzene ring. For a precise definition of

these dihedrals, we refer the reader to Fig. 6 of Ref. 38. The results are presented in Table
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2, which also shows the energies and geometric parameters for the located BBP.

Table 2: Energies (in au), energies relative to cis-1,2-dimethyl- benzocyclobutene minimum
(in kcal·mol−1), and geometrical parameters (in Å and degrees) of stationary points and
BBP for the bcb reaction at the M06− 2X/def2-SVP level.

Structure Energy ∆E C C distance Dihedral 1 Dihedral 2
bcb −387.791756 0.0 1.586 59.5 −59.7

Transition state −387.715414 47.9 2.333 39.1 −116.6
BBP −387.725221 41.8 2.601 42.2 −129.7

E,Z-diene −387.763148 18.0 3.050 4.9 −170.9

The BBP was determined setting the MNVAR variable to different values to ascertain the

efficiency of the algorithm in these different situations, but the rest of computational param-

eters are identical. The MNVAR = 0 calculation corresponds to the update method of Ref.

19, and values of MNVAR of 5, 10, 20, and 30 were chosen for the Barnes update algorithm.

As can be seen in Table 3, all calculations converge in a relatively small number of iterations

and yield the BBP and the force vector at the BBP. In this particular case the optimal value

for MNVAR is 10. Remarkably, for this value MNVAR the new algorithm, herein presented,

converges much faster than the algorithm employed in Ref. 19. Thus, it can be concluded

that the Barnes update is significantly more efficient than the previously reported algorithm.

It is observed that the BBP of the bcb transformation is located in between the transition

state and the product, E,Z-diene, but much closer both energetically and geometrically to

the transition state.

Table 3: Values of MNVAR, number of iterations needed for convergence, energies (in au)
and force vector norm (in au·bohr−1) at the BBP for the BBP searches carried out for the
bcb reaction.

MNVARa No. of iterations Energy Force vector norm
0 187 −387.723980 0.01491
5 134 −387.722273 0.01285
10 69 −387.725221 0.01471
20 82 −387.726186 0.01448
30 168 −387.724221 0.01417

a MNVAR = 0 corresponds to the algorithm of Ref. 19.

The molecular structure of the BBP and the force vector superimposed on this structure are
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depicted in Fig. 4. The force vector is equal to the gradient at the BBP and represents the

optimal pulling direction to carry out the conversion from cis-1,2-dimethyl-benzocyclobutene

to E,Z-diene in the gas phase.

Figure 4: The molecular structure of the converged BBP for the bcb reaction and the force
vector superimposed on it are shown.

3.3 The Chorismate-Mutase rearrangement

The second real chemical example that we have studied is the intramolecular Claisen rear-

rangement of chorismate to prephenate. This reaction is catalyzed by the chorismate mutase

enzyme and is it part of the synthetic pathway to phenylalanine and tyrosine in bacteria,

fungi, and higher plants.39 Significant controversy about the enzymatic mechanism of this

reaction, one of the few examples of enzyme-catalyzed pericyclic reaction, has arisen. Thus,

it was discussed which of a transition state stabilization by electrostatic interactions in the

enzyme active center, or a near attack conformation effect, was the main factor accounting

for the enzyme catalytic enhancement of the reaction rate constant.40 More recently, entropic

effects have been proposed to be also part of the picture.41
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In the present work, we do not aim at a thorough study of the chorismate to prephen-

ate reaction, but rather we provide a first study of the reaction from the point of view of

mechanochemistry. In particular, we have computed the BBP for prephenate production

by interfacing the BBP-finding algorithm with the TURBOMOLE42,43 electronic structure

package. The M06-2X44 density functional and Ahlrich’s def2-SVP45 basis set were chosen.

An SCF error tolerance of 10−8, a large m5 grid, and weight derivatives were introduced

to improve the accuracy of the gradients and Hessians along the BBP search. Convergence

of the BBP search procedure is achieved when either the maximum component of the σ-

function or the square root of the quotient of the σ- function norm by the number of degrees

of freedom is less than 1.0× 10−3.

 

Figure 5: Structures of minima for reactants and products and of the transition state for the
chorismate to prephenate rearrangement.

First, the stationary points on the gas-phase PES were determined separately. The struc-

tures of the stationary points are presented in Fig. 5. Note that the reaction involves the

rupture of the initial C O bond of chorismate and the formation of a C C bond in prephen-

ate. Thus, we can single out these bond distances as defining the reaction path. The energies

of chorismate, the TS, and prephenate, along with their C O and C C bond distances, and

the energies relative to chorismate, are detailed in Table 4. Chorismate has different conform-

ers in the gas phase, and the conformer determined here is called ’OH-out’ in the literature.46

In this conformer, the OH group is pointing towards one of the oxygens of the CO2 group,

thereby forming an hydrogen bond. Another conformer, called ’OH-in’, has the OH group
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pointing in the opposite direction with respect to the CO2 group, and originates a different

reaction path. Note the evolution of the rearrangement from a short C O distance and

a long C C distance in chorismate, to intermediate distances in the TS, and a long C O

distance and short C C distance in prephenate. The relative energies reported in Table 4

can be compared to those reported in the literature at the B3LYP/6 − 31+G(d, p) level.47

Thus, the ∆E 6= energy is 50.8 kcal·mol−1 at the M06 − 2X/def2-SVP level, and it is 37.5

kcal·mol−1 at the B3LYP/6 − 31+G(d, p) level; and the respective ∆ER energies are 5.2

and −10.5 kcal·mol−1. Despite these differences, note that the aim of the present study

is to determine the mechanochemical behaviour of the system rather than trying to obtain

accurate results for the reaction.

Table 4: Energies (in au), energies relative to chorismate minimum (in kcal·mol−1), and
geometrical parameters (in Å) of stationary points and BBP for the chorismate to prephenate
rearrangement at the M06− 2X/def2-SVP level.

Structure Energy ∆E C O distance C C distance
Chorismate −836.260031 0.0 1.369 5.282
Transition state −836.179151 50.8 1.904 2.283
BBP −836.201071 37.0 2.412 1.896
Prephenate −836.251765 5.2 3.401 1.564

To proceed with the determination of the BBP, an intrinsic reaction coordinate (IRC) path

was calculated starting with the TS geometry and ending in the prephenate product. Then,

the point on the IRC with the largest gradient norm was chosen as the starting point for

the BBP search. Note that this strategy has been shown to be appropriate for the 1, 2-

sigmatropic H-shift rearrangement of cyclopentadiene in Ref. 19. The Cartesian coordinates

of the initial point and of the BBP for the conversion to prephenate are printed in Supporting

Information. The energy at the initial point is −836.210927 au, and the σ-function value is

relatively small, i.e., 0.008130. The algorithm presented in this work was applied with differ-

ent values of MNVAR, where MNVAR corresponds to the number of previous displacement

vectors during their orthogonalization procedure (see Section 2.4). In particular, MNVAR

values of 5, 10, 20, and 30 were defined. Note that the number of degrees of freedom is 72

27



for the chorismate-prephenate 24-atom system.

The number of iterations required to converge to the BBP, the energies and the force vector

norm at the BBP are presented in Table 5. Note that for all calculations, it is always ful-

filled that the square root of the quotient of the sigma-function and the number of degrees of

freedom at the BBP is less than 1.0×10−3, but the norm of the σ- function is always slightly

larger than 1.0 × 10−3 (around 3.0 × 10−3). More precisely, the value of the σ-function is

about 7.0 × 10−5 at the BBP. As can be seen, the number of iterations to converge to the

BBP vary significantly with MNVAR, and the optimal value is MNVAR = 30. This value is

slightly less than half the number of degrees of freedom of the system. A BBP search was

also carried out with the algorithm presented in Ref. 19, but it failed to converge within

the 1000 maximum iteration limit. This farther demonstrates the significantly better perfor-

mance of the new algorithm compared with respect to the original one. The energy, the C O

and C C bond distances, and the relative energy to chorismate for the BBP are shown in

Table 4. Comparing with the stationary points, one can observe that the BBP is located in

between the TS and prephenate, but much closer both energetically and geometrically to the

TS. The molecular structure of the BBP and the force vector superimposed on this structure

are depicted in Fig. 6. The force vector is equal to the gradient at the BBP and represents

the optimal pulling direction to carry out the conversion from prephenate to chorismate in

the gas phase.

Table 5: Values of MNVAR, number of iterations to convergence, energies (in au) and force
vector norm (in au·bohr−1) at the BBP for the BBP searches.

MNVARa No. of iterations Energy Force vector norm
0 -b - -
5 996 −836.202004 0.05126
10 383 −836.201602 0.04949
20 199 −836.201072 0.04937
30 185 −836.202530 0.05016

a MNVAR = 0 corresponds to the algorithm of Ref. 19.
b No convergence was achieved after 1000 iterations.
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Figure 6: The molecular structure of the converged BBP and the force vector superimposed
on it are shown.

4 Conclusion

We have presented a Gaussian-Newton method combined with a Barnes update of a Jacobian

matrix that enables the location of points on the PES where the Hessian matrix has a zero

eigenvalue and the corresponding zero eigenvector coincides with the gradient. The algorithm

has been demonstrated to work efficiently for the Frenkel-Kontorova model PES and the ring

opening of a benzocyclobutene derivative, and the Chorismate Mutase rearrangement. The

critical points located by the algorithm herein presented are particularly important in the

context of mechanochemistry because they coincide with the optimal BBPs of the system.

The gradient in these points indicates how a pulling force should be applied to a molecular

system to render a given chemical transformation barrierless using the smallest possible force.

Therefore, our algorithm will be useful for identifying efficient ways of employing mechanical

stress to enforce chemical reactions.
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5 Appendix A: Consequences of the increasing Order of

the Lagrangian Multipliers

For any tuple, let say i, Eq. 11.a can be multiplied from the left by ∆xT
i . Taking the

expression of Eq. 12 we have ∆σ(2)(∆xi) = λir
2 + ∆xT

i J(x)s(x). Now we want to prove that

if λj > λi then ∆σ(2)(∆xj) > ∆σ(2)(∆xi). For this purpose we first multiply from the left

Eq. 11.a for the i-tuple by ∆xT
j and analogously for the j-tuple by ∆xT

i , respectively. The

difference between the two resulting equations gives

(∆xj −∆xi)
TJ(x)s(x) = −(λj − λi)∆xT

j ∆xi

since ∆xT
j (J(x)JT (x))∆xi = ∆xT

i (J(x)JT (x))∆xj. Now taking this result we have

∆σ(2)(∆xj)−∆σ(2)(∆xi) = (λj − λi)(r2 −∆xT
j ∆xi) .

Any ∆xk vector for k = 1, . . . , N can be written as ∆xk = ruk where uT
kuk = 1, thus

∆σ(2)(∆xj)−∆σ(2)(∆xi) = (λj − λi)r2(1− cos θj,i) (33)

θj,i being the angle formed between the unitary vectors ui and uj. We conclude that

∆σ(2)(∆xj) > ∆σ(2)(∆xi) if λj > λi since (1 − cos θj,i) > 0. Note that the zero case corre-

sponds to the situation that i-tuple and j-tuple are the same. A consequence of this relation

is the following: the difference between ∆σ(2)(∆xmax)−∆σ(2)(∆xmin) can be expressed as

∆σ(2)(∆xmax)−∆σ(2)(∆xmin) =

(∆σ(2)(∆xmax)−∆σ(2)(∆xmax−1)) + (∆σ(2)(∆xmax−1)−∆σ(2)(∆xmax−2)) + . . .

+(∆σ(2)(∆xmin−2)−∆σ(2)(∆xmin−1)) + (∆σ(2)(∆xmin−1)−∆σ(2)(∆xmin)) .
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Substituting in the latest equality Eq. 33, and after some rearrangements we obtain an

interesting expression between the angles θj,i

cos θmax,min =
1

λmax − λmin

max−1∑
k=min

(λk+1 − λk) cos θk+1,k . (34)

Finally, we prove that in the set of tuple-solutions of Eqs. 11 there is no degeneracy. For

this purpose we assume that λi = λj. Then from the relation (∆xj − ∆xi)
TJ(x)s(x) =

−(λj − λi)∆xT
j ∆xi = 0 we conclude that it is satisfied if and only if ∆xj = ∆xi since

J(x)s(x) 6= 0. Thus here the tuples i and j have to be the same tuple.

6 Appendix B: Relation between the solutions of Eqs. 11

and Eq. 16

In this appendix we show that the set of solutions for λ has been extended in Eq. 16 with

respect to Eqs. 11.25,26 As one will see this fact does not have consequences in the proposed

algorithm and they already are taken into account and discussed in Section 2.1.

1. Let us start by assuming that λ and ∆x are the solution of Eqs. 11, then Eq. 16 has

a solution for this λ. We have to consider two cases, the first one is this that λ is

an eigenvalue of J(x)JT (x) and the second case is that λ is not an eigenvalue of this

matrix.

(a) In the first case, let t(x) the eigenvector of the matrix J(x)JT (x) with eigenvalue

λ, then with Eq. 11.a we have −J(x)s(x) = [J(x)JT (x) − λI]∆x implying that

−tT (x)J(x)s(x) = tT (x)[J(x)JT (x) − λI]∆x = 0. From this result follows that

the first term of the left hand side part of Eq. 16, [J(x)JT (x)−λI]2tT (x) = 0, and

the second term, −r−2J(x)s(x)sT (x)JT (x)t(x) = 0. Thus the λ solution of Eq. 11

being aneigenvalue of the matrix J(x)JT (x), with its corresponding eigenvector,
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t(x), satisfies Eq. 16. Notice that in this case the vectors t(x) and J(x)s(x) are

orthogonal.

(b) We consider now the second case where λ is not an eigenvalue of the matrix

J(x)JT (x). From the definition of the vector t(x) given after Eq. 14 we can write,

[J(x)JT (x) − λI]2t(x) = −[J(x)JT (x) − λI]∆x = J(x)s(x), where Eq. 13 as a

solution of Eq. 11.a has been used. Thus the first term of the left hand side of

Eq. 16 is equal to J(x)s(x). Now the second term of the left hand side of Eq. 16 has

the value, −r−2J(x)s(x)sT (x)JT (x)t(x) = −r−2J(x)s(x)sT (x)JT (x)[J(x)JT (x)−

λI]−2J(x)s(x) = −r−2J(x)s(x)∆xT∆x = −J(x)s(x), where the definition of the

vector t(x), Eq. 13 and that ∆x satisfies Eq. 11.b has been used. Thus Eq. 16 is

again satisfied. Consequently from the pair ∆x and the solution λ of Eq. 11, we

always obtain an eigenvalue λ and the corresponding vector, t(x), being solutions

of Eq. 16.

2. Now we treat the reverse situation, λ and t(x) are solutions of Eq. 16. We try to find

a solution of Eq. 11. We have to consider to cases when λ is not an eigenvalue of the

matrix J(x)JT (x) and when it is an eigenvalue.

(a) In the first case since λ is not an eigenvalue of J(x)JT (x) always Eq. 13 exists ob-

taining ∆x and thus Eq. 11.a is satisfied. Now multiplying Eq. 16 from the left by

[J(x)JT (x)−λI]−2, we obtain, t(x) = r−2[J(x)JT (x)−λI]−2J(x)s(x)sT (x)JT (x)t(x).

Since the eigenvector t(x) 6= 0 then the last equality implies that sT (x)JT (x)t(x) 6=

0 and we can write [J(x)JT (x)−λI]−2J(x)s(x) = t(x)(sT (x)JT (x)t(x))−1r2. Mul-

tiplying this equality from the left by sT (x)JT (x) and using Eq. 13 we obtain that

the norm of ∆x is r2, thus Eq. 11.b is satisfied too. This result is also given in

Section 2.1.

(b) In the second case we assume that λ is an eigenvalue of J(x)JT (x). We use a
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spectral decomposition. We define the vector, ∆x̄ = [J(x)JT (x)− λI]+J(x)s(x),

where the pseudoinverse [J(x)JT (x) − λI]+ represents the inverse of the matrix

[J(x)JT (x)−λI] without the eigenvector of the matrix J(x)JT (x) with eigenvalue

λ. To solve in this case Eqs. 11, we have to consider the next distinctions:

(i) First, [J(x)JT (x) − λI]∆x̄ 6= J(x)s(x), thus Eqs. 11 do not have a solution

for this λ. The reason is that the vector J(x)s(x) has a non-null component

in the eigenvector associated with eigenvalue λ.

(ii) Second, [J(x)JT (x)− λI]∆x̄ = J(x)s(x). In this case three subcases appear.

In the first subcase it is ∆x̄T∆x̄ > r2, thus Eqs. 11 do not have a solution

for this λ because the normalization condition r2 is not satisfied. The second

subcase occurs when, ∆x̄T∆x̄ = r2, thus ∆x̄ = ∆x, being the unique solution

of Eqs. 11 for this λ.

(iii) Third, ∆x̄T∆x̄ < r2, and Eqs. 11 have several solutions for this λ. Let

us assume that the eigenvalue λ is l-degenerate being {l(i)}li=1 the set of

this l-degenerate orthonormal vectors. Notice that ∆x̄ is orthogonal to this

set of l-degenerate orthonormal vectors. With this notation we can write

∆x = ∆x̄ + c1l
(1) + · · · + cll

(l), with r2 = ∆xT∆x = ∆x̄T∆x̄ + c2
1 + · · · + c2

l

being solutions of Eqs. 11. This set of solutions constitutes a manifold of

dimension l − 1.

In summary, the solvability of Eqs. 11 for the smallest λmin must satisfy that λmin ≤ λJ1 ,

being λJ1 the smallest eigenvalue of the matrix J(x)JT (x) . We assume that λmin is the

smallest eigenvalue of Eq. 16, with the above results we have the next three cases.

1) If it is λmin < λJ1 then this implies that λmin lies outside the spectrum of J(x)JT (x) and

∆x = [J(x)JT (x)− λminI]
−1J(x)s(x) fulfills Eqs. 11 being the unique solution.

2) If it is λmin = λJ1 then the vector ∆x̄ = [J(x)JT (x) − λminI]
+J(x)s(x) must satisfy

33



the equation [J(x)JT (x) − λminI]∆x̄ = J(x)s(x). If in this case ∆x̄T∆x̄ = r2, then

∆x̄ = ∆x is the unique solution of Eqs. 11.

3) If λmin = λJ1 and ∆x̄ satisfies [J(x)JT (x)− λminI]∆x̄ = J(x)s(x) but ∆x̄T∆x̄ < r2 then

we must find a vector l̄ being a linear combination of the set of eigenvectors, {l(i)}li=1,

corresponding to the l-degenerate eigenvalue λJ1 of the matrix J(x)JT (x) such that

r2 = ∆x̄T∆x̄ + l̄T l̄. Then ∆x = ∆x̄ + l̄ = ∆x̄ + c1l
(1) + · · · + cll

(l) represents one of

the many solutions of Eqs. 11.

7 Appendix C: The Variance-Covariance Matrix obtained

from the Algorithm

An important property of this algorithm is that it provides an approximation to the least

squares variance–covariance matrix. According to Eq. 8 the derivatives that appear in Eq. 9

with respect to x have the form ∇xσ(x) = 2 [∇xs
T (x)]s(x) = 2J(x)s(x) and ∇x∇T

xσ(x) =

2J(x)JT (x) + 2
∑N

i=1 si(x) [∇x∇T
xsi(x)] where si(x) is the ith component of the s(x) vector

and J(x) = [∇xs1(x)| · · · |∇xsN(x)]. It is obvious that if σ(x0) = 0 then s(x0) = 0 thus

the derivatives that appear in Eq. 9 take the values ∇xσ(x)|x=x0 = 0 and ∇x∇T
xσ(x)|x=x0 =

2J(x0)JT (x0). From these results Eq. 9 reduces to σ(x) = (x− x0)T [J(x0)JT (x0) ](x− x0).

Taking the definition of the function σ(x), the latter equality can be written as

σ(x) = Tr [(σ(x)/N)I ] = Tr [s(x)sT (x) ] = Tr [(x− x0)(x− x0)T J(x0)JT (x0) ]

where Tr means trace, I is the identity matrix of dimensionN xN and the cyclic permutation

of trace has been used. Note that Det[J(x0)JT (x0) ] > 0 since the function σ(x) has a

minimum in x0. If we take off the Tr operator we can write

(σ(x)/N)I = (x− x0)(x− x0)T J(x0)JT (x0) .
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Multiplying this equality from the right by [J(x0)JT (x0) ]−1 we obtain the variance-covariance

matrix V

V = N(x− x0)(x− x0)T = [J(x0)JT (x0) ]−1σ(x) . (35)

Thus the V-matrix is a multiple of the inverse matrix of J(x0)JT (x0). The diagonal elements

of V give the variance of the elements of {xi − x0
i }Ni=1 in the maximum probability solution,

x0, whereas the off-diagonal elements give the covariance between xi − x0
i and xj − x0

j .

The {xi}Ni=1 and {x0
i }Ni=1 are the elements of the vectors x and x0, respectively. Thus V

is directly related with the inverse of the matrix J(x0)JT (x0) according to Eq. 35. Using

the notations, definitions and results of Section 2.4 we have that JJT = D+TYTYD+ since

JT = YD+. We recall that the matrices, Y = [y(1)| . . . |y(N)], D = [d(1)| . . . |d(N)] and

D+ = (DTD)−1DT are built if the Barnes update formula, Eq. 28, is used. Note that now

the D matrix has the full dimension N×N where N is the dimension of the full space. Thus

it holds D+ = D−1. The equality (JJT )−1(JJT ) = I = DD+ is fulfilled, where the resolution

of identity has been used. Substituting in the last equality the expression for JJT we have,

(JJT )−1D+TYTYD+ = DD+. Multiplying this expression from the right, first by D, second

by (YTY)−1, third by DT and taking into account that D+TDT = D(DTD)−1DT = I we

obtain (JJT )−1 = D(YTY)−1DT ≈ V, which is the desired result.
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Graphical TOC Entry

Optimal barrier breakdown point of a 10-atomic
Frenkel-Kontorova chain. The optimal external force moves
already here the chain over the first saddle point.
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