
Quantum Zermelo problem for general energy resource bounds
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A solution to the quantum Zermelo problem for control Hamiltonians with general energy resource
bounds is provided. Interestingly, the energy resource of the control Hamiltonian and the control
time define a pair of conjugate variables that minimize the energy-time uncertainty relation. The
resulting control protocol is applied to a single qubit as well as to a two-interacting qubit system
represented by a Heisenberg spin dimer. For this low-dimensional systems, it is found that physically
realizable control Hamiltonians exist only for certain, quantized, energy resources.

I. INTRODUCTION

On a fundamental level, nature requires a quantum
description rather than a classical one [1]. Nonetheless,
quantum-classical correspondence arguments are still in
fashion because of their usefulness to understand and ex-
plain the behavior of quantum systems [2], and also to
devise new strategies to tackle quantum problems, as it
is the case of optimal control strategies [3–7]. In gen-
eral, control scenarios are related either with the way of
constructing a so-called control Hamiltonian or with the
procedure aimed at getting an appropriate initial ansatz
that, with time, evolves into the desired final quantum
state.

From the mathematical point of view, any problem in
Quantum Mechanics essentially consists in a more o less
complete and precise construction of a unitary opera-
tor Û(t, t0), parametrically dependent on t, to represent
the time evolution of the system between its energeti-
cally available mechanical states at t0 and t. In the last
years much attention has been devoted to the problem of
finding optimal unitary operators, Û(tf , ti), which lead
a given initial state |ψi〉, at ti, to another different, but
previously fixed, final state |ψf 〉, at tf , in the shortest
possible time, ∆T = tf − ti, under some constraining
conditions. Since finding the optimal unitary operator
is equivalent to finding an optimal Hamiltonian, two dif-
ferent routes can be explored. On the one hand, if the
constraint implies a bound in the energy resource, then
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the optimal Hamiltonian is going to be time-independent,
and can easily be constructed by noting that the corre-
sponding unitary transformation Û describes the shortest
time-evolution. On the other hand, the constraint might
imply a search for a time-dependent Hamiltonian mini-
mizing the time-evolution, which means that it has to be
determined and characterized by variational approaches
[8].

The latter case is particularly relevant to those situa-
tions where the evolution of the quantum system is either
predetermined or inherently affected by an external field
out of our control (for instance, in problems within the
scope of the quantum technologies). Yet it would be de-
sirable to take the system from one state to another one
that does not correspond to the natural evolution of such
a system. That is, if Û0 describes such a natural evolu-
tion, it is of much interest to devise a method or proto-
col that warrants the evolution from |ψi〉 to |ψf 〉 in the

least time, provided that |ψf 〉 6= Û0|ψi〉. By invoking the
aforementioned quantum-classical correspondence, this is
actually the quantum analog of the well-known classical
Zermelo navigation problem [9, 10].

Brody and Meier [11] have investigated this problem
in the field of quantum processing. More specifically,
assuming that the quantum system is described by a bare
background Hamiltonian, Ĥ0, these authors established
a method to obtain a time-optimal control Hamiltonian,
Ĥc(t), such that its combined action with Ĥ0, i.e.,

Ĥ(t) = Ĥ0 + Ĥc(t), (1)

generates a time-optimal unitary evolution from |ψi〉 to
|ψf 〉. The protocol devised by these authors thus includes
three key elements:

(i) A time-independent, bare background Hamilto-

nian, Ĥ0, which describes the natural evolution of
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the quantum system.

(ii) A time-dependent control Ĥc(t) satisfying at any
time the energy resource bound

tr
(
Ĥ2
c (t)

)
= 1. (2)

(iii) The background Hamiltonian Ĥ0 is not energeti-
cally dominant, i.e.,

tr
(
Ĥ2

0

)
< tr

(
Ĥ2
c (t)

)
. (3)

These features thus define the quantum counterpart of
the classical Zermelo navigation problem [9, 10].

Moved by the possibility to apply the above ideas to
more general quantum problems, here we present a fur-
ther development of the quantum Zermelo navigation
problem, which provides a protocol that can be easily
adapted to different physical scenarios. In this regard,
we have focused on a series of guidelines, which stress
the physics behind this approach with a limited abstract
conceptualization of the problem. That is, we have tried
to answer questions such as whether it is possible to build
a control Hamiltonian without entering too much formal
aspects, but just well known theory. And, if so, we also
wanted to know how it looks like and whether it works
optimally. Interestingly, by proceeding this way, we have
been able to reach a general form for the condition speci-
fied by (2), where the l.h.s. equals to a general constant k,
which, in turn, is related to the minimum time necessary
to take the system from the initial to the final quantum
state that we wish, circumventing the unwanted effects
of the bare Hamiltonian. Accordingly, a general proto-
col is presented to determine Ĥc, which here we have
tested with a series of well-known quantum systems, such
as the harmonic oscillator, entanglement swapping with
Bell states, or spin-flip in a Heisenberg dimer. It is worth
stressing that, in all cases, although the least time is go-
ing to depend on the system Hamiltonian, the condition
itself is totally independent of it, which we associate with
the fact that the evolution of the quantum state keeps a
one-to-one analogy with the geometrical evolution along
a meridian joining both states on the Bloch’s sphere, as
already pointed out by Brody et al. [12].

The work is organized as follows. The theory is pre-
sented, developed and discussed in the next section. To
be self-contained, a brief account on the classical Zermelo
problem as well as on the Brody and Meier approach is
provided, which serves to contextualize the present work.
Afterwards, in Sec. II, we present our approach, which
also includes a discussion on the adiabaticity of the so-
lution of the quantum Zermelo problem. In Sec. III, we
develop the applications mentioned above, showing how
the least-time condition arises in each case. Finally, a
series of concluding remarks are exposed in Sec. IV.

II. THEORY

A. Classical Zermelo problem

The classical Zermelo navigation problem can be
stated as follows. Given the actual position of a ship,
x> = (x1, x2), on the surface of an unlimited sea and un-
dergoing the local action of a current and/or wind, char-
acterized by a position-dependent vector field, w>(x) =
(w1(x), w2(x)), one expects to find the optimal control
velocity, v> = vû> = v(u1, u2), that should constantly
act on the ship so that it reaches its destination in the
least time. Here, û is a unit vector in the direction of v
and v denotes its modulus.

As it was noticed by Zermelo [9] and Carathéodory [10]
in the early 1930’s, the solution to this problem can be
obtained by constructing the geometrical form of the in-
dicatrix that allows to obtain the Hamiltonian function
and, from it, all extremal curves of the problem. Accord-
ingly, the absolute velocity of the ship, namely v = ẋ/F ,
must satisfy the equation

ẋ

F
−w(x) = vu, (4)

where ẋ is the derivative of the coordinates with respect
to an arbitrary evolution parameter. The time employed
by the ship in its full journey is calculated from the in-
tegral of the F -function with respect to the arbitrary
parameter along the extremal curve. Hence, F becomes
the basic function of this variational problem.

Equation (4) allows us to determine the F -function as
a positive root of the equation[

ẋ

F
−w(x)

]> [
ẋ

F
−w(x)

]
= v2, (5)

whenever such a root exists. Equation (5) is the indica-
trix of the classical Zermelo navigation problem, which
describes a circle of radius v with center at w(x). The
set of points satisfying the circle condition correspond to
the end points of the vector ẋ/F . As seen below, in the
quantum analog for this problem, Brody and Meier [11]
found the solution by determining the geodesics of the
Randers metric derived from the form of the F -function.

B. Quantum Zermelo approach

While searching for a quantum speed limit to quan-
tum information processing, Russell and Stepney found
a tight connection between such processes and the classi-
cal Zermelo navigation problem [13], later on extended to
a method to determine optimal times involved in the im-
plementation of quantum gates [14]. Shortly after, Brody
et al. [12] also reached a similar conclusion, namely that
there is a direct quantum counterpart for the Zermelo
navigation problem. To this end, consider some initial
and final quantum states, |ψi〉 and |ψf 〉, respectively, for
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a given physical system, which is being acted by a time-
independent background Hamiltonian Ĥ0. The quantum
Zermelo problem consists in finding a control Hamilto-
nian, Ĥc(t), such that the total Hamiltonian (1) describes
a unitary transformation leading from |ψi〉 to |ψf 〉 in
the least time. Notice that, by invoking to the classical
analog, the classical vector field describing the wind or
current corresponds, in the quantum counterpart, to the
unitary operator generated by Ĥ0. Furthermore, in this
quantum problem, it is assumed that the energy associ-
ated with the transformation from ψi to ψf is not only
limited, but it has also to be totally consumed at the end
of the process. Thus, the speed evolution generated by
the control Hamiltonian, Ĥc(t), is related to the energy

variance of Ĥc(t), according to the Anandan-Aharonov
relation [15]. Over the full process, the speed evolution
takes the maximum attainable value and it is fixed.

Based on such constraints, one aims to built an optimal
unitary transformation that satisfies them all. Accord-
ingly, consider the time-evolution of the unitary operator,
Û(t, ti), governed by the Schrödinger equation, which in
the Heisenberg representation reads as

i
dÛ(t, ti)

dt
= Ĥ(t)Û(t, ti)

=
[
Ĥ0 + Ĥc(t)

]
Û(t, ti), (6)

with ~ = 1 (in natural units). The time-evolution

operator Û(t, ti) is required to satisfy the initial con-

dition Û(ti, ti) ≡ I (I denotes the identity operator)

as well as the unitarity condition Û†(t, ti)Û(t, ti) =

Û(t, ti)Û
†(t, ti) = I, which ensures the norm preserva-

tion along the whole evolution.

For simplicity and convenience, considering the total
time lasted in the evolution of the system, ∆T = tf − ti,
with ti ≤ t ≤ tf , and then defining the dimensionless
evolution parameter s = (t− ti)/∆T , the time-evolution

operator can be recast as Û(t, ti) = Û∆T (s), and its time-

derivative as dÛ(t, ti)/dt = (1/∆T )dÛ∆T (s)/ds [16]. Us-
ing the above notation and multiplying Eq. (6) from the

right by Û†∆T (t, ti) we get

i

∆T

dÛ∆T (s)

ds
Û†∆T (s)− Ĥ0 = Ĥc(s), (7)

which strongly resembles the classical Eq. (4), with ∆T
playing the role of F .

In order to further stress the quantum-classical anal-
ogy, Eq. (7) is now multiplied by itself. Then, the trace
over the full resulting evolution equation gives rise to the
equation

tr
(
X̂(s)X̂(s)

)
− 2∆T tr

(
Ĥ0X̂(s)

)
+ (∆T )2 tr

(
Ĥ2

0

)
= (∆T )2 tr

(
Ĥ2
c (s)

)
= k(∆T )2, (8)

with

X̂(s) = i
dÛ∆T (s)

ds
Û†∆T (s) (9)

arising from the constraint on the energy resource bound [see condition (ii) above], and k being an arbitrary constant
(in [11], this constant amounts to 1). Equation (8) can thus be seen as the quantum counterpart of Eq. (5). Solving
for ∆T [11], we finally find

∆T{X̂(s)} =
−tr
(
X̂(s)Ĥ0

)
+

√[
tr
(
X̂(s)Ĥ0

)]2
+
[
k − tr

(
Ĥ2

0

)]
tr
(
X̂(s)X̂(s)

)
k − tr

(
Ĥ2

0

) , (10)

which constitutes the so-called Finslerian norm of X̂(s)
[17–19]. As it can readily be noticed, the positivity of
∆T in Eq. (10) is ensured irrespective of the value of

tr
(
Ĥ2

0 (t)
)

against k. Note that, although in [11] Brody

and Meier considered that k should be larger (with k = 1,
in their case), as specified by the above condition (iii),
later on, in [12], they pointed out that the condition can
be actually relaxed in the quantum context due to the
compactness of the manifold of pure states.

The question now is whether one can approach the
same problem from a more physical viewpoint, that is,

from a more familiar quantum formulation, which, in
turn, might serve also to confer more generality to the
process. The answer is affirmative, as we show now
by considering notions already existing within the time-
dependent perturbation theory [16], which is also closer
to treatments typically considered in the theory of open
quantum systems [20]. To see that, let us introduce the

unitary time-evolution operator, Û0(t, ti), corresponding

to Ĥ0, solution to the equation

i
dÛ0(t, ti)

dt
= Ĥ0Û0(t, ti), (11)
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with initial condition Û0(ti, ti) ≡ I. The solution is well
known,

Û0(t, ti) = e−iĤ0(t−ti). (12)

Now, in order to determine Û(t, ti), we consider the sep-
arable ansatz

Û(t, ti) = Û0(t, ti)Ûc(t, ti), (13)

where the time-evolution operator Ûc(t, ti) is required
to be unitary and satisfying the unitarity condition
Û†c (t, ti)Ûc(t, ti) = I. This constraint, in turn, implies

that Û(t, ti) also satisfies the unitarity condition, as it
can easily be shown.

In order to determine Ûc(t, ti), we now proceed as fol-
lows. First, we substitute Eq. (13) into Eq. (6), and then

make the Û†0 (t, ti) to act on the left of the resulting ex-
pression, which renders the equation

i
dÛc(t, ti)

dt
= Û†0 (t, ti)Ĥc(t)Û0(t, ti)Ûc(t, ti), (14)

with initial condition Ûc(ti, ti) ≡ I, and where we have
made use of Eq. (11) to simplify it. Now, as it can be

noticed, on the r.h.s., Ûc is acted by the control Hamil-
tonian operator in the interaction picture [21],

Ĥ ′c(t) = Û†0 (t, ti)Ĥc(t)Û0(t, ti)

= eiĤ0(t−ti)Ĥc(t)e
−iĤ0(t−ti). (15)

Since the control Hamiltonian Ĥc is to be determined, we
can make a guess on the particular functional form for
its interaction picture, namely that Ĥ ′c corresponds to

Ĥc at ti, so that it becomes time-independent. Although
this might look counterintuitive, if we recall the picture
provided by Brody et al. [12] of the evolution along the
Bloch sphere when going from one state to the other,
the above condition (15), with Ĥ ′c(t) = Ĥc(ti), can be
considered to be equivalent to continuing the journey on
the back of the sphere, from the final state to the initial
one. That is, the condition for a proper control requires
evolution along a meridian, and no other curve, in order
to ensure the equivalence of the two journeys.

Therefore, even if the above condition seems to be a
strong constraint, still it is rather reasonable and con-
venient, since it allows us to recast Eq. (15) with a
functional form analogous to that found for the time-
evolution operator associated with the bare Hamiltonian,
Eq. (11), i.e.,

i
dÛc(t, ti)

dt
= Ĥc(ti)Ûc(t, ti), (16)

with solution

Ûc(t, ti) = e−iĤc(ti)(t−ti). (17)

Accordingly, the full Hamiltonian for the quantum Zer-
melo problem acquires the final form

Ĥ(t) = Ĥ0 + e−iĤ0(t−ti)Ĥc(ti)e
iĤ0(t−ti), (18)

which corresponds to Eq. (1) in [11].
Next, let us see some properties that follow from the

above relationship between Ĥc(t) and Ĥc(ti). Consider
the relation

Ĥc(t) = e−iĤ0(t−ti)Ĥc(ti)e
iĤ0(t−ti), (19)

it readily follows that, if tr
(
Ĥ2
c (ti)

)
is constant, then the

same holds for tr
(
Ĥ2
c (t)

)
, since

tr
(
Ĥ2
c (t)

)
= tr

(
Ĥ2
c (ti)

)
= k, (20)

which is satisfied at any time t. Thus, according to (20),

dtr
(
Ĥ2
c

)
/dt = 0 also at any time. Now, differentiation

of Eq. (19) with respect to t leads to

dĤc(t)

dt
= −i

[
Ĥ0, Ĥc(t)

]
, (21)

which is a solution to the variational problem,

δ
∫ 1

0

[
∆T{X̂(s)}

]2
ds = 0, with ∆T{X̂(s)} the same as

given in Eq. (10) and firstly derived by Brody and Meier
[11]. Equation (21) gives the co-adjoint motion and hence
it should be solved together with Eq. (18). Besides,

from Eq. (21), we also find that tr
(
dĤc(t)/dt

)
= 0 and

dtr
(
Ĥ2
c

)
/dt = 2tr

(
Ĥc(t)dĤc(t)/dt

)
= 0 by using cyclic

permutation when tracing. Physically, these vanishing
values imply that the “velocity” of the transition pro-
cess remains constant during the whole process, as it is
assumed in the problem by definition.

From the above formulation, it is now clear that
Eq. (21) together with Eq. (6), with Ĥc(t) as given by

(19), and Û(t, ti) computed from (13), (12) and (17),
provide the fundamental solution to the quantum Zer-
melo problem [11, 12]. Furthermore, we have seen that

the condition tr
(
Ĥ2
c (ti)

)
= k arises as a consequence of

Eqs. (19) and (21) [22, 23] and generalizes the result in
Ref. [11].

C. Transition between two specific quantum states

According to the above results, time optimization in
the quantum Zermelo approach is fully determined by the
construction of the control Hamiltonian Ĥc(ti) provided

the bound condition tr(Ĥ2
c (ti)) = k is satisfied, since

both the bare Hamiltonian Ĥ0 and the initial and final
states, |ψi〉 and |ψf 〉, are given. In order to understand
the dynamical transition from |ψi〉 and |ψf 〉, and hence to
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introduce a protocol to optimize the time lasted in such a
transition, let us consider the state reached by |ψi〉 after
a time t under free evolution, i.e., under the action of the
bare background Hamiltonian. The wave function of this
state is given by

|ψ(t)〉 = Û(t, ti)|ψi〉. (22)

Taking into account Eq. (13), we can introduce the in-
termediate state

|ψ′(t)〉 ≡ Û†0 (t, ti)|ψ(t)〉 = Ûc(t, ti)|ψi〉. (23)

Differentiating this state and its complex conjugate part-
ner with respect to time, and then substituting the cor-
responding results into Eq. (16) (and the corresponding
complex conjugate equation), leads to

i
d|ψ′(t)〉
dt

= Ĥc(ti)|ψ′(t)〉, (24a)

−id〈ψ
′(t)|
dt

= 〈ψ′(t)|Ĥc(ti). (24b)

Now, if |ψi〉 is normalized, then |ψ′(t)〉 is also normal-
ized, as it can readily be inferred from (23). Moreover,
if we assume that the control Hamiltonian generates a
state vector that is orthogonal to the original one (in
compliance with the fact that it has to counterbalance
the effect of the “blowing wind” accounted for the bare
Hamiltonian), then from (24) we have

〈ψ′(t)|d|ψ
′(t)〉
dt

=
d〈ψ′(t)|
dt

|ψ′(t)〉 = 0. (25)

In order to satisfy both conditions, normalization and
orthogonality, also from (24) we notice that Ĥc(ti) has
to display the following functional form [24],

Ĥc(ti) = i

[
d|ψ′(t)〉
dt

〈ψ′(t)| − |ψ′(t)〉d〈ψ
′(t)|
dt

]
, (26)

where the r.h.s. shows an explicit dependence on time,
although the Hamiltonian is time-independent. Rather
than an inconsistency, this is just an effect associated
with the fact that this Hamiltonian has to counterbalance
at every time the effect produced by Ĥ0, although the net
action is time-independent, as will be shown below.

Notice that the conditions on |ψ′(t)〉 and its

time-derivative imply that Ĥc(ti) is traceless, i.e.,

tr
(
Ĥc(ti)

)
= 0. Moreover, since the variance of the en-

ergy is related to the speed of the quantum evolution
[15], it can be shown that the orthogonality condition
(25) ensures the maximum speed evolution condition for
the control Hamiltonian, since it makes the variance of

this Hamiltonian, given by the expression(
∆Ĥc(ti)

)2

= 〈ψ′(t)|Ĥ2
c (ti)|ψ′(t)〉

−
(
〈ψ′(t)|Ĥc(ti)|ψ′(t)〉

)2

=
d〈ψ′(t)|
dt

(I− |ψ′(t)〉〈ψ′(t)|) d|ψ
′(t)〉
dt

=

∥∥∥∥dψ′(t)dt

∥∥∥∥2

, (27)

to reach its maximum value. Actually, we have that

2
(

∆Ĥc(ti)
)2

= tr(Ĥ2
c (ti)) = k, (28)

which is a consequence of the fact that the control Hamil-
tonian is traceless [12, 23].

From Eqs. (27) and (28), we find the following relation∥∥∥∥dψ′(t)dt

∥∥∥∥2

=
k

2
. (29)

At any time, this relation is satisfied by the ansatz

|ψ′(t)〉 = cos
[√

k/2(t− ti)
]
|ψ′(ti)〉

+
sin
[√

k/2(t− ti)
]

√
k/2

d|ψ′(ti)〉
dt

, (30)

with time-derivative given by

d|ψ′(t)〉
dt

= −
√
k/2 sin

[√
k/2(t− ti)

]
|ψ′(ti)〉

+ cos
[√

k/2(t− ti)
] d|ψ′(ti)〉

dt
. (31)

This ansatz, in turn, satisfies the above normalization
and orthogonality conditions. Notice here that the ex-
pression d|ψ′(ti)〉/dt has to be understood as the time-
derivative of |ψ′(t)〉 evaluated at t = ti.

In order to further simplify the approach, the above
expressions (30) and (31), in terms of the general time-
evolved state vector |ψ′(t)〉, can be recast in terms of
the initial and final state vectors, |ψi〉 and |ψf 〉, thus
providing an also simpler functional form for the control
Hamiltonian (26). To this end, notice that, by virtue of
Eq. (23), at ti we have |ψ′(ti)〉 = |ψi〉. Similarly, at tf
we find

Û†0 (tf , ti)|ψf 〉 = Ûc(tf , ti)|ψi〉 = |ψ′(tf )〉 = |ψ′f 〉. (32)

In order to remove any common support between |ψ′f 〉
and |ψi〉, we need to find the orthonormal form for the
former, which is obtained by applying a Gram-Schmidt
orthogonalizing process. Accordingly, the orthonormal
form is found to be

|ψ̄′f 〉 = (I− |ψi〉〈ψi|) |ψ′f 〉

=
sin
(√

k/2∆T
)

√
k/2

d|ψ′(ti)〉
dt

, (33)
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where Eq. (30) has been used, with t = tf . Next, we
normalize |ψ̄′f 〉:

| ¯̄ψ′f 〉 =
1∥∥∥ψ̄′f∥∥∥ |ψ̄′f 〉

=
(I− |ψi〉〈ψi|) Û†0 (tf , ti)|ψf 〉√

1−
(
〈ψf |Û0(tf , ti)|ψi〉

)2

=
1√
k/2

d|ψ′(ti)〉
dt

. (34)

It can be noticed from Eq. (34) that the calculation of

| ¯̄ψ′f 〉 only includes |ψi〉, |ψf 〉, Ĥ0, and the time interval
∆T .

The ansatz (30) and its time-derivative, Eq. (31), can
now be recast in terms of the orthonormal state vectors
|ψi〉 and | ¯̄ψ′f 〉, which read as

|ψ′(t)〉 = cos
[√

k/2(t− ti)
]
|ψi〉

+ sin
[√

k/2(t− ti)
]
| ¯̄ψ′f 〉, (35a)

d|ψ′(t)〉
dt

= −
√
k/2 sin

(√
k/2(t− ti)

)
|ψi〉

+
√
k/2 cos

(√
k/2(t− ti)

)
| ¯̄ψ′f 〉, (35b)

respectively.

In order to finally obtain the functional form of the
control Hamiltonian, we substitute Eqs. (35) into (26),
leading to

Ĥc(ti) = i
√
k/2

[
| ¯̄ψ′f 〉〈ψi| − |ψi〉〈 ¯̄ψ′f |

]
, (36)

which is the initial optimal control Hamiltonian. With

the aid of Eq. (35a) in the case t = tf , | ¯̄ψ′f 〉 can be recast

in terms of |ψ′f 〉 = |ψ′(tf )〉. If the corresponding expres-

sion is then substituted into Eq. (36), we shall obtain

Ĥc(ti) = i

√
k/2

sin
(√

k/2∆T
) [|ψ′f 〉〈ψi| − |ψi〉〈ψ′f |] , (37)

which is time-independent, as it was stressed above.
This is precisely the expression reported by Brody et
al. [12] for Ĥc in the particular case k = 1/2. It can

be shown now that the variance of Ĥc(ti) for any |ψ′(t)〉
effectively remains constant in time, that is, ∆Ĥc(ti) =√
〈ψ′(t)|Ĥ2

c (ti)|ψ′(t)〉 =
√
k/2.

The expression of the optimal control Hamiltonian (36)
can be written in diagonal form, as

Ĥc(ti) =
1√
2

(
|ψi〉 − i| ¯̄ψ′f 〉, |ψi〉+ i| ¯̄ψ′f 〉

)(−√k/2 0

0
√
k/2

)
1√
2

(
〈ψi|+ i〈 ¯̄ψ′f |
〈ψi| − i〈 ¯̄ψ′f |

)
. (38)

With this expression at hand, Eq. (17) takes the explicit form

Ûc(t, ti)
1√
2

(
|ψi〉 − i| ¯̄ψ′f 〉, |ψi〉+ i| ¯̄ψ′f 〉

)(
ei
√
k/2(t−ti) 0

0 e−i
√
k/2(t−ti)

)
1√
2

(
〈ψi|+ i〈 ¯̄ψ′f |
〈ψi| − i〈 ¯̄ψ′f |

)
. (39)

The time interval ∆T is then evaluated by considering
the transformation indicated in Eq. (32), i.e., the time-

operator Ûc(tf , ti) that takes |ψi〉 to |ψ′f 〉 in the shortest
time. As it can be noticed in the above expression, the
initial state vector |ψi〉 and the intermediate one |ψ′f 〉
are directly related by a phase factor, with its argument
providing a measure of their angular distance. This an-
gle arises from the overlapping integral between the final
states led by the total Hamiltonian H, on the one hand,
and the bare Hamiltonian H0, on the other hand, and
reads as

φ ≡ cos−1
(
〈ψi|Û†0 (tf , ti)|ψf 〉

)
= ∆T∆Ĥc(ti)

=
√
k/2∆T, (40)

in compliance with what is stated in the literature on the
geometry of the state vector evolution [15, 25].

From the above discussion, we then extract as a con-
clusion that, in order to make the state vector to evolve in
the shortest time from |ψi〉 to |ψf 〉 when there is the influ-

ence of a background Hamiltonian Ĥ0, we need to deter-
mine the time-optimal unitary transformation, Û(tf , ti),
which includes the following steps:

1. Given Ĥ0, |ψi〉, |ψf 〉 and k (the energy bound),
compute the time interval ∆T recursively by
means of Eq. (40), and the unitary transformation

Û0(tf , ti) by means of Eq. (12).

2. With |ψi〉, |ψf 〉, and Û0(tf , ti), compute | ¯̄ψ′f 〉 by

means of Eq. (34).

3. Compute Ûc(tf , ti) using |ψi〉, | ¯̄ψ′f 〉, k, and ∆T ,

according to Eq. (39).
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4. Using Û0(tf , ti) and Ûc(tf , ti), compute the time-
optimal quantum Zermelo unitary transformation,
Û(tf , ti), according to Eq. (13).

This protocol will ensure that the unitary transformation
Û(tf , ti) transforms |ψi〉 into |ψf 〉 in the least time.

Before we move to the practical examples, let us briefly
comment on the adiabaticity of the quantum Zermelo
Hamiltonian. At a fundamental level, it would be in-
teresting to establish a direct connection between the
quantum Zermelo navigation problem and Optimal Con-
trol Theory [26], where adiabaticity plays a key role as a
technique to reach the target by its continuous monitor-
ing over long times. As it is shown below, the Zermelo
navigation problem belongs, by construction, to a differ-
ent type of optimization scheme, reminiscence of opti-
mal control schemes related to the classical isoperimetric
problem [27], and therefore adiabaticity does not arise
naturally.

As it can be noticed from the above discussion, Eq. (13)

is the solution of Eq. (6), where Û0(t, ti) and Ûc(t, ti)
are given by Eqs. (12) and (17), respectively. There-
fore, unless Eq. (21) is zero, then according to the Baker-
Campbell-Hausdorff formula:

Û(t, ti) 6= e−i[Ĥ0+Ĥc(ti)](t−ti). (41)

This result implies that the solution to the quantum Zer-
melo navigation problem does not define an adiabatic

process in general. To see this, let {φj(ti)}Nj=1 denote the

orthonormal set of eigenfunctions of Ĥ(ti) and {hj}Nj=1

the corresponding set of eigenvalues, with N being the
dimension of the space. The eigenvalues hj are time-

independent, since tr
(
dĤ(t)/dt

)
= tr

(
dĤc(t)/dt

)
= 0,

as proven above. Now, the action of Û(t, ti) on an eigen-
function |φk(ti)〉 with eigenvalue hk gives

U(t, ti)φj(ti) 6= φj(t), (42)

and therefore we conclude that 〈ψ(ti)|φk(ti)〉 6=
〈ψ(t)|φk(t)〉. That is, if the system is initially represented
by the wave function |ψ(ti)〉 =

∑
k ck(ti)|φk(ti)〉 where

ck(ti) = 〈φk(ti)|ψ(ti)〉, then the probability that the sys-
tem is in the stationary state |φk(t)〉 at any time t is not
constant, i.e., d

dt |〈ψ(t)|φk(t)〉|2 6= 0. This result proves
that the dynamical transformation governed by Eq. (6)

taking Û(t, ti) as that given in Eq. (13) does not satisfy
the adiabatic theorem of quantum mechanics [16, 28, 29].

III. APPLICATIONS

A. Harmonic oscillator

We shall start the application of the protocol above de-
scribed with the paradigmatic harmonic oscillator acted
by an external field. In particular, we are going to con-
sider a two-level transition, which for simplicity is going

to be considered to be the ground and the first excited
one, which can be denoted as

|0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
, (43)

respectively. Let us consider the transition from the
ground state to the excited one, so that |ψi〉 = |0〉 and
|ψf 〉 = |1〉. Of course, these states are under the action
of the harmonic oscillator Hamiltonian,

Ĥ0 = ~ω
(
â†â+

1

2

)
, (44)

with frequency ω. So, in principle, if the system is iso-
lated, their only time-dependence is in terms of a phase
factor; if they form a linear superposition, there will be a
periodic transition from one to the other, with frequency
equal to the oscillator frequency, since Ω = (E1−E0)/~ =
ω. Besides, it is interesting to note that the creation and
annihilation operators included in (44), in terms of the
states (43), can be written as

â = |0〉〈1| =
(

0 1
0 0

)
, â† = |1〉〈0| =

(
0 0
1 0

)
. (45)

The minimum control time is ∆T = π/
√

2k and the
control Hamiltonian in (37) can be written as

Ĥc(ti) = i

√
k

2

[
e−3πi~ω/2

√
2kâ† − e3πi~ω/2

√
2kâ
]

= i

√
k

2
cos

(
3π~ω
2
√

2k

)(
â† − â

)
+

√
k

2
sin

(
3π~ω
2
√

2k

)(
â† + â

)
. (46)

In order this Hamiltonian to be assimilated by a standard
external driving force, one needs to check the following
condition

Ĥc(ti) = −
√

~
2ω

(
â† + â

)
E0, (47)

where E0 is the amplitude of the external electric driving
field. A simple inspection allows us to realize that the
above equation is fulfilled only if cos(3π~ω/2

√
2k) = 0,

which leads to the conclusion

k =
(3/2~ω)2

2(n+ 1/2)2
=

ε2f
2(n+ 1/2)2

, (48)

with n ∈ Z.
Therefore, given a frequency ω, the maximum k is

given by

k = 2ε2f , (49)

which corresponds to the minimum control time

∆T =
π

2|εf |
. (50)
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As it will be seen below, these results are in compliance
with those for the Heisenberg spin dimer, thus paving the
way to intuitively consider that there might an underly-
ing common pattern for any quantum system in the form
of k that provides a physical (implementable) control.

B. Entanglement swapping

Let us now consider entanglement swapping with max-
imally entangled states of a Bell basis [30–32], where the
two entangled qubits are assumed to be spatially distant,
a paradigm with special interest in quantum informa-
tion and quantum computation [33, 34]. More specifi-
cally, here we consider two spins, σ̂(1) and σ̂(2), interact-
ing via anisotropic time-independent Jj-couplings, with
(j = x, y, z), under the effect of local, uniform and con-
trollable magnetic fields B(i)(t), with (i = 1, 2), pointing
along the z-direction. Thus, we choose to consider the
following two-qubit Heisenberg Hamiltonian [23],

Ĥ = −
∑
j

Jj σ̂
(1)
j σ̂

(2)
j +

2∑
i=1

B(i)σ̂(i)
z , (51)

to be the quantum Zermelo Hamiltonian Ĥ(t). Here, we

use the tensor products σ̂
(1)
j = σ̂j ⊗ I and σ̂

(2)
j = I⊗ σ̂j ,

with I being the unit operator of dimension 2 × 2, and

σ̂
(i)
j the Pauli matrices [16].

A simpler ansatz for Ĥ was already reported in [35],
where only a fixed coupling, J , was considered. Here, we
are going to associate the first term in (51) with the non-
controlled, time-independent background Hamiltonian,
Ĥ0, and the second term with the time-dependent con-
trol Hamiltonian, Ĥc(t), satisfying the energy resource

bound, tr
(
Ĥ2
c (t)

)
= k. In this case, the computational

basis set is provided by the factorizable state vectors∣∣00〉 =

(
1
0

)
⊗
(

1
0

)
=
(
1 0 0 0

)>
, (52a)

∣∣01〉 =

(
1
0

)
⊗
(

0
1

)
=
(
0 1 0 0

)>
, (52b)

∣∣10〉 =

(
0
1

)
⊗
(

1
0

)
=
(
0 0 1 0

)>
, (52c)

∣∣11〉 =

(
0
1

)
⊗
(

0
1

)
=
(
0 0 0 1

)>
. (52d)

In this basis, Ĥ0 reads as [23]

Ĥ0 =

−Jz 0 0 −J−
0 Jz −J+ 0
0 −J+ Jz 0
−J− 0 0 −Jz

 , (53)

where J± = Jx ± Jy. The diagonal form for Ĥ0 is

Ĥ0 = −(Jz + J−)|Φ+〉〈Φ+| − (Jz − J−)|Φ−〉〈Φ−|
+(Jz − J+)|Φ+〉〈Φ+|+ (Jz + J+)|Φ−〉〈Φ−|,

(54)

which allows us to rearrange the above basis set in terms
of the Bell basis of maximally entangled states, namely

|Φ+〉 =
1√
2

(|00〉+ |11〉) , (55a)

|Φ−〉 =
1√
2

(|00〉 − |11〉) , (55b)

|Φ+〉 =
1√
2

(|01〉+ |10〉) , (55c)

|Φ−〉 =
1√
2

(|01〉 − |10〉) . (55d)

Now the question is how to reach one of these basis vec-
tors from another of them, for instance, the |ψf 〉 = |Φ−〉
state from the |ψi〉 = |Φ+〉 state, in the shortest time
using the optimal-time Zermelo unitary transformation,
Eq. (13).

The first term of the unitary time transformation
Eq. (13), namely, Û0(t, ti) is easily obtained from the

spectral decomposition of Ĥ0 given in Eq. (54),

Û0(t, ti) = ei(Jz+J−)∆t|Φ+〉〈Φ+|
+ei(Jz−J−)∆t|Φ−〉〈Φ−|
+e−i(Jz−J+)∆t|Φ+〉〈Φ+|
+e−i(Jz+J+)∆t|Φ−〉〈Φ−|, (56)

with ∆t = t − ti. The calculation of the second term
of Eq. (13), Ûc(t), is a bit more subtle. As men-
tioned above, we are interested in the transformation of
|Φ+〉 into |Φ−〉 via the unitary transformation |Φ−〉 =

Û0(t, ti)Ûc(t, ti)|Φ+〉 in the shortest time possible. As

explained above, in the previous section, Ûc(t, ti) trans-

forms |Φ+〉 into Û†0 (t, ti)|Φ−〉 = |Φ′−〉 (see Eq. (23)). Ac-
cordingly, in the present case, |Φ′−〉 = |Φ−〉 exp(i(Jz −
J−)∆t), where we have made use of (56). The interme-
diate state |Φ′−〉 satisfies the relations 〈Φ′−|Φ′−〉 = 1, and

〈Φ′−|Φ+〉 = 0, hence Ĥc(ti) will have the functional form

Ĥc(ti) = i
√
k/2

(
|Φ′−m〉〈Φ+| − |Φ+〉〈Φ′−m|

)
= i
√
k/2

[
ei(Jz−J−)∆T |Φ−〉〈Φ+|

−e−i(Jz−J−)∆T |Φ+〉〈Φ−|
]
, (57)

where as noted before, ∆T = tf − ti, is the minimum
time interval to be determined, and |Φ′−m〉 = |Φ′−〉 for
∆t = ∆T .

The next task consists in transforming the Ĥc(t) form

specified in the second term of Eq. (51) into the Ĥc(ti)
form of Eq. (57), as it was also done in the case of the
Harmonic oscillator. In the basis set (52), the control

Hamiltonian Ĥc(t) reads as

Ĥc(t) =

B+ 0 0 0
0 B− 0 0
0 0 −B− 0
0 0 0 −B+

 , (58)
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where B± = B(1) ± B(2) (the time-dependence in B(1)

and B(2) has been dropped for simplicity). As it can be

noticed tr
(
Ĥc(t)

)
= 0, but tr

(
H2
c (t)

)
is not constant in

time, because the Ĥc(t) form in Eq. (58) does not involve
time-unitarity. Hence, next we have to transform the
Ĥc(t) in Eq. (58) into the form given by Eq. (19) with an

appropriated choice of Ĥc(ti), according to Eq. (36). The
projection of Hc(ti) given by Eq. (36) onto the subspace

spanned by |ψi〉 and | ¯̄ψ′f 〉 results in two vanishing diag-
onal elements and two off-diagonal elements with zero
real part, where their imaginary part is equal to

√
k/2.

Analogously, we project the Ĥc(t) from Eq. (57) onto
the subspace spanned by |Φ+〉 and |Φ′−m〉. In this new
representation, we have

〈Φ+|Ĥc(t)|Φ+〉 = 〈Φ′−m|Ĥc(t)|Φ′−m〉 = 0, (59)

whereas

〈Φ′−m|Ĥc(t)|Φ+〉 = B+e
i(Jz−J−)∆T

= B+ [cos [(Jz − J−)∆T ]

+ i sin [(Jz − J−)∆T ]] , (60)

where, effectively, we notice

Re〈Φ′−m|Ĥc(t)|Φ+〉 = B+ cos [(Jz − J−)∆T ] = 0,

(61a)

Im〈Φ′−m|Ĥc(t)|Φ+〉 = B+ sin [(Jz − J−)∆T ] =
√
k/2.

(61b)

On the other hand, from Eq. (40),

cos−1
(
〈Φ+|Φ′−m〉

)
= π/2 = ∆T

√
k/2, (62)

which renders

∆T =
π√
k/2

. (63)

Substituting the value ∆T into the real part, we have√
k/2 = Jz − J−, while if the substitution is made into

the imaginary part, then B+ =
√
k/2, since B+ 6= 0.

Furthermore, the control variable B+ decouples from the
others, namely B+ = B0+ cos[2(µt + ν)], where B0+, µ
and ν are time-independent constants. Taking µ = ν =
0, B0+ = Jz−J− =

√
k/2 and ∆T = (π/2)(Jz−J−)−1 =

(π/2)(B0+)−1, we reach the final form for Ĥc(ti), which
reads as

Ĥc(ti) = B0+ (|Φ−〉〈Φ+|+ |Φ+〉〈Φ−|)
= B0+ (|Ψ+〉〈Ψ+| − |Ψ−〉〈Ψ−|)

=
B0+

2
(σ̂z ⊗ I + I⊗ σ̂z)

=
B0+

2

(
σ̂(1)
z + σ̂(2)

z

)
, (64)

where |Ψ+〉 = (|Φ+〉 + |Φ−〉)/
√

2 and |Ψ−〉 = (|Φ+〉 −
|Φ−〉)/

√
2. With this, the corresponding unitary trans-

formation is given by

Ûc(t, ti) = e−iB0+∆t|Ψ+〉〈Ψ+|+ eiB0+∆t|Ψ−〉〈Ψ−|. (65)
Finally, using Eqs. (56) and (65), we obtain the time-
optimal quantum Zermelo unitary transformation that
leads the Bell basis vector |Φ+〉 into |Φ−〉, namely

|Φ−〉 = Ûz(t, ti)|Φ+〉 = Û0(t, ti)Ûc(t, ti)|Φ+〉

=
1

2

[
ei(Jz+J−)∆t|Φ+〉

[
e−iB0+∆t + eiB0+∆t

]
+ei(Jz−J−)∆t|Φ−〉

[
e−iB0+∆t − eiB0+∆t

]]
,

(66)

with 0 ≤ ∆t ≤ ∆T . As it can be noticed, once the
journey is complete, i.e., ∆t = ∆T , the Bell state |Φ−〉
is reached.

It is worth noting that in the basis set (55), the quan-
tum Zermelo Hamiltonian acquires the form

Ĥz(ti) = Ĥ0 + Ĥc(ti)

= −(Jz + J−)|Φ+〉〈Φ+| − (Jz − J−)|Φ−〉〈Φ−|+ (Jz − J+)|Φ+〉〈Φ+|+ (Jz + J+)|Φ−〉〈Φ−|
+B0+ [|Φ−〉〈Φ+|+ |Φ+〉〈Φ−|]

=
(
|Φ+〉, |Φ−〉, |Φ+〉, |Φ−〉

)−(Jz + J−) B0+ 0 0
B0+ −(Jz − J−) 0 0

0 0 (Jz − J+) 0
0 0 0 (Jz + J+)



〈Φ+|
〈Φ−|
〈Φ+|
〈Φ−|

 . (67)

This Hamiltonian has been obtained using Ĥ0 and Ĥc(ti)
as given by Eqs. (54) and (64), respectively. Notice that
B0+ = (Jz − J−), as it has been proven and explained
above. The eigenvectors (67) can also be computed and

read as

v>1 =
1

N1
(α− β, 1, 0, 0), (68a)

v>2 =
1

N2
(α+ β, 1, 0, 0), (68b)

v>3 = (0, 0, 1, 0), (68c)

v>4 = (0, 0, 0, 1), (68d)
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where α = −J−/B0+ and β =
√
α2 + 1, while N1 =√

(α− β)2 + 1 and N2 =
√

(α+ β)2 + 1 are norm fac-
tors. The corresponding eigenvalues are

h(1)
z = −Jz −B0+β, (69a)

h(2)
z = −Jz +B0+β, (69b)

h(3)
z = Jz − J+, (69c)

h(4)
z = Jz + J+, (69d)

Thus in the quantum Zermelo Hamiltonian, the set of
eigenvalues and eigenvectors are time-independent as ex-
pected.

C. Spin-flip in a Heisenberg dimer

In Sec. III B we have assumed the functional form of
a Zeeman coupling for the control Hamiltonian, even
though the algorithm presented in Sec. II does not as-
sume any particular form for this Hamiltonian. One may
then wonder what would be the resulting control Hamil-
tonian if its form is not imposed a priori.

Let us thus consider that the initial and final states,
|ψi〉 and |ψf 〉, respectively, are orthonormal. It is then
easy to notice that Eq. (40) reads as

∆T =
π√
2k
, (70)

i.e., the time needed to reach a target state is inversely
proportional to the square root of k. Actually, since k
is related to energy, this relation is just a reminiscence
of the time-energy uncertainty relation: the larger the
amount of energy put into play to optimally guide the
vector state to its final destination, the shortest the time
employed in the journey, and vice versa. Now, given ∆T ,
it is then easy to find a general expression for the control
Hamiltonian Hc(ti), as seen in Sec. II,

Hc(ti) = i

√
k

2

(
eπiεf/

√
2k|ψf 〉〈ψi|

−|ψi〉〈ψf |e−πiεf/
√

2k
)
, (71)

where εf is the energy of the final state ψf .
To gain some insight into the structure of the above

control Hamiltonian, we pick up the particular case con-
sidered in the previous section, viz., the case where ini-
tial and final states are maximally entangled Bell states.
Thus, with the choice |ψi〉 = |Φ+〉 and |ψf 〉 = |Φ−〉, and
hence εf = −Jz + J−, we have

|Φ+〉〈Φ−| =
1

4

(
σ̂(1)
z + σ̂(2)

z

)
− i

4
(σ̂x ⊗ σ̂y + σ̂y ⊗ σ̂x) ,

(72a)

|Φ−〉〈Φ+| =
1

4

(
σ̂(1)
z + σ̂(2)

z

)
+
i

4
(σ̂x ⊗ σ̂y + σ̂y ⊗ σ̂x) .

(72b)

Substituting these expressions into the control Hamilto-
nian (71), we finally obtain

Hc(ti) =
1

2

√
k

2

[
sin

(
εf

π√
2k

)
(σ̂(1)
z + σ̂(2)

z )

− cos

(
εf

π√
2k

)
(σ̂x ⊗ σ̂y + σ̂y ⊗ σ̂x)

]
.

(73)

From Eq. (73), it is clear that the control Hamiltonian
adopts the form of a Zeeman coupling for some partic-
ular k-values, and hence it can be implemented in the
laboratory. More specifically, this is the case when the
condition

k =
ε2f

2 (n+ 1/2)
2 =

(Jz − J−)2

2 (n+ 1/2)
2 , (74)

is satisfied, with n ∈ Z. Accordingly, given Jz, the max-
imum k-value is determined from the relation

k = 2ε2f = 2(Jz − J−)2, (75)

which corresponds to the minimum control time,

∆T =
π

2|εf |
=

π

2|Jz − J−|
, (76)

as it follows from (70).

D. The Cu(II) acetate molecular complex

As a realistic application of the time-optimal quantum
Zermelo navigation, we consider the copper(II) acetate
monohydrate. This complex corresponds to an atiferro-
magnetic coupled Heisenberg spin dimer with effective
spins S1 = S2 = 1/2. As such, this system can be cast
in the form of an interacting two-qubit described by a
Heisenberg spin dimer as in the previous section. Our
goal is to find the optimal time for the transition be-
tween two maximally entangled (Bell) states to occur for
a physically implementable control Hamiltonian in the
form of a Zeeman-coupling.

The crystal structure of copper(II) acetate mono-
hidrate, Cu2(O2CCH3)4·2H2O, has been determined by
X-ray powder diffraction [36] and refined by neutron
diffraction at room temperature [37]. The crystal is
formed by well-defined and separated molecular entities,
as displayed in Fig. 1. This complex has a paddle-wheel
centrosymmetric structure with two equivalent Cu(II)

centers at 2.6143Ȧ.
Abragam and Bleaney [38] (see p. 503) provide a de-

tailed analysis of the magnetic interaction in this classical
Cu(II) dinuclear antiferromagnetic complex by assum-
ing the following magnetic Hamiltonian for the isolated
dimer of identical spins

Ĥ = gzµBHz

[
Ŝ(1)
z + Ŝ(2)

z

]
+ JxŜ

(1)
x Ŝ(2)

x

+JyŜ
(1)
y Ŝ(2)

y + JzŜ
(1)
z Ŝ(2)

z , (77)
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FIG. 1. Schematic picture of the paddle-wheel centrosymmet-
ric molecular complex Cu2(O2CCH3)4·2H2O, for the crystal
structure of copper(II) acetate monohidrate.

where gz corresponds to the z component of the g tensor
of the magnetic centers having the same principal axes
(x, y, z), and Hz represents the external magnetic field
directed along one of these principal axes (taken here as
the z-axis). It can then be shown that for this molecular
complex, the experimental values of the parameters of
the spin Hamiltonian in (77) take the following values:
gz = 2.43, Jx = 297.793 cm−1, Jy = 297.753 cm−1,
and Jz = 298.453 cm−1. To cast these values in the
Heisenberg spin Hamiltonian for the dimer given in (51),
we have to take into account the relation between Pauli
matrices σ̂

(i)
j and the corresponding spin operators Ŝ

(i)
j .

In this case, these Ji values have to be divided by −4 and

B(i) = g
(i)
z µBH

(i)
z /4 in SI units. Then, with the choice of

|ψi〉 = |Φ+〉 and |ψf 〉 = |Φ−〉, and hence εf = −Jz + J−,
the maximum value of k compatible with a Zeeman-type
coupling of the form in (77) is k = 2ε2f = 2(Jz − J−)2 ∼
2Jz, and the minimum control time corresponds to ∆T ∼
0.2 ps.

IV. CONCLUSIONS

Given the actual position of a classical particle under
the action of a given time-independent force-field, there
exists an optimal control velocity that, acting constantly
on the particle, allows it to reach another position of in-
terest in the least possible time. This problem, known as
Zermelo navigation problem [9, 10], can be recast in the
realm of quantum mechanics by simply substituting the
classical particle by a quantum state. In this context, a
time-independent Hamiltonian plays the role of the un-
derlying classical force-field, and a time-dependent con-
trol Hamiltonian with constant energy resource bound
is analogous to the control velocity in the classical nav-
igation problem. A first solution to the above quantum
Zermelo problem was put forth by Russell and Stepney
[13, 14] and Brody et al. [11, 12] for a particular energy
resource bounds. Here we have extended this result for
general energy resource bounds.

From a fundamental point of view, the solution to the
quantum Zermelo problem defines a pair of conjugate
variables, viz., the energy resource bound and the control

time, that minimize the energy-time uncertainty. While
the time-energy uncertainty relation still arouses contro-
versy, in the last decades there has been several attempts
towards its explanation. This effort has led to the in-
terpretation of the time-energy uncertainty relation as a
so-called quantum speed limit, i.e., the ultimate bound
imposed by quantum mechanics on the minimal evolu-
tion time between two distinguishable states of a system
(see, for instance, the discussion in Refs. [12], in direct
connection to the quantum Zermelo navigation problem,
or the more recent one [39], as well as references therein).
Therefore, the solution to the quantum Zermelo problem
attains the quantum speed limit for any energy resource
bound.

In the above respect, however, we have proven that
the solution of the quantum navigation problem does not
always lead to physically implementable control Hamil-
tonians. For a single qubit and two interacting qubits,
we have shown that energy resources leading to physically
implementable control Hamiltonians are not any one, but
follow a well defined mathematical pattern. Specifically,
for orthogonal initial and target states, the resource en-
ergy bound of physically implementable control Hamil-
tonians does obey a quantization rule that depends, ex-
clusively, on the energy of the target state.

As a realistic application of the time-optimal quan-
tum Zermelo navigation, we have shown results for an
acetate molecular complex. The magnetic behavior of
copper(II) acetate monohydrate corresponds to an anti-
ferromagnetic (S1 = S2 = 1/2) coupled spin dimer. As
such, this system can be cast in the form of an inter-
acting two-qubit described by a dimer Heisenberg spin
chain. Employing available experimental data, we have
evaluated the optimal time for the transition between two
maximally entangled (Bell) states to occur. For a physi-
cally implementable control Hamiltonian in the form of a
Zeeman-coupling, this time is of the order of a few fem-
toseconds.

Finally, we have also shown that the evolution gov-
erned by the Zermelo control Hamiltonian is not adia-
batic in general. That is, for an initial state described by
a superposition of eigenstates of the full (underlying plus
control) Zermelo Hamiltonian, the time evolution gov-
erned by the Schrödinger equation will not keep constant
the population of the system in a given instantaneous
eigenstate of the time-dependent Zermelo Hamiltonian.
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