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Inorgànica i Orgànica, Secció de Qúımica Orgànica, Universitat de Barcelona, Mart́ı i
Franquès, 08028 Barcelona, Spain (ORCID: 0000-0002-0974-4618);
b Mathematisches Institut, Universität Leipzig, PF 100920, 04009 Leipzig, Germany
(ORCID: 0000-0002-0366-1408)

ARTICLE HISTORY

Compiled September 14, 2019

ABSTRACT
The theory of calculus of variations is a mathematical tool which is widely used
in different scientific areas in particular in physics and chemistry. This theory is
strongly related with optimization. In fact the former seeks to optimize an integral
related with some physical magnitude over some space to an extremum by varying a
function of the coordinates. On the other hand reaction paths and potential energy
surfaces, in particular their stationary points, are the basis of many chemical theo-
ries, in particular reactions rate theories. We present a review where it is gathered
together the variational nature of many types of reaction paths: steepest descent,
Newton trajectories, artificial force induced reaction (AFIR) paths, gradient ex-
tremals, and gentlest ascent dynamics (GAD) curves. The variational basis permits
to select the best optimization technique in order to locate important theoretical
objects on a potential energy surface.

KEYWORDS
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1. Introduction

The applicability of the optimization theory is widespread reaching into almost
every activity in which models and numerical information are necessary, see e.g.,
natural sciences, engineering, and mathematics. A short account of these applications
are computational chemistry and branches of numerical analysis like, variational
principles in partial differential equations, and nonlinear equations in ordinary
differential equations within others. The importance of optimization in general is in
this purpose, namely, the way in the selection of the best element under some criteria
from some set of available alternatives.

An important subfield of optimization theory is the calculus of variations. The
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calculus of variations is concerned with the problem of determining maximums or
minimums or, in general, stationary values of functionals by seeking that argument
function in the given domain of admissible functions for which the functional assumes
the stationary value in question. In short, one seeks to optimize a functional over some
space to a stationary value by varying a function of the coordinates.

One of the main problems in theoretical chemistry is to study the mechanisms
associated with the chemical reactions. An important achievement in the development
of models to understand the chemical reaction mechanisms was the introduction of
the following two concepts, namely, potential energy surface (PES) and reaction path
(RP) as a way to describe the molecular system evolution from reactants to products in
geometrical terms. It has been motivated by a continuous mathematical development
on the grounds of the model and computational algorithms to compute an RP and to
locate stationary points of the PES as well.

The basic definition of the RP is a curve located on a PES that monotonically
increases from a stationary point (with the character of a minimum) to a first index
saddle point and from that point it monotonically decreases to a new stationary
point, a minimum. The first index saddle point according to the previous definition
is the highest energy point of the RP. The first and the second minimum are labeled
as reactants and products, respectively, while the first index saddle point is the
transition state (TS). The parametrization of a curve, say by parameter t, satisfying
the above RP requirements, is the reaction coordinate. More concisely, if q is a
coordinate vector of dimension N , then the RP is represented by q(t). Normally, the
parameter arc-length, t = s, of the curve is taken as the reaction coordinate; however,
special values of the PES can also be taken as reaction coordinates.

There exist many types of curves on the PES that satisfy the RP conditions. The
fact is the reason of the variety of RP curves. The curve most widely used as RP
is the so-called intrinsic reaction coordinate (IRC); this curve is the steepest descent
curve in mass weighted coordinates. The IRC is the steepest descent curve joining two
minimums through a TS. Another curve used as RP is the distinguished or driven
coordinate method, or a more recent version, the so-called reduced gradient following
(RGF), also labeled as Newton path or Newton trajectory (NT). Additionally, we have
the gradient extremals (GEs); and finally the gentlest ascent dynamics (GAD).

The RPs are static curves on the PES, which means that only geometric properties
of the PES are taken into account and no dynamic information can be sought from
these pathways. Despite many RPs commonly being geodesic curves on a surface, each
type of the RP curve has different mathematical grounds. Due to this fact each RP has
its own evolution on the PES to reach the first index TS from the minimum. Taking
into account all the features of the RP we present a unification of a variational point
of view of each type of RP above mentioned.

A problem that appears in the differential calculus is to find a point for which
a given functional takes its maximum or minimum value. The theory of calculus of
variations is not only a theory of maximums and minimums but also a theory of
variables and functions which are much more complicated than those which appear
in the standard differential calculus. Basically in this theory the problem consists in
finding a curve, q(t) = (q1(t), . . . , qN (t))T , within a set of curves joining two points on
the N -dimensional space such that a function I(q), depending on these N independent
variables, takes an extreme value, in principle, a maximum or a minimum. Usually,
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the function I(q) is an integral of the form

I(q) =

∫ tf

t0

F (t,q(t),q′(t))dt (1)

where F is a given function which is twice continuous differentiable with respect to its
three arguments, t, q(t) and q′(t) = dq(t)/dt. As noted above, the functions q(t) will
be restricted to the class of admissible functions satisfying the conditions, q(t0) = q0,
q(tf ) = qf , q(t) continuous, and q′(t) piecewise continuous. The requirement that
I(q) be an extremum is that I(q) is stationary with respect to the variation of the
N functions q1(t), . . . , qN (t) considered independently. The necessary condition to be
stationary is that the N Euler equations are satisfied

{Fq} = ∇qF (t,q(t),q′(t))− d

dt
∇q′F (t,q(t),q′(t)) = 0 (2)

where ∇q = (∂/∂q1, . . . , ∂/∂qN )T and the superscript T means transposed. The no-
tation {Fq} represents the Euler operator. The task now is the construction of F for
each type of path.

2. Variational grounds of Intrinsic Reaction Coordinate curves

2.1. The Hamilton-Jacobi Equation for the steepest descent/ascent curves

A steepest-descent/ascent curve is the curve that at each point follows the gradient of
the PES [1]. This curve is variational because it extremalizes the integral functional

I(q) =

∫ tf

t0

F (q(t),q′(t))dt =

∫ tf

t0

√
g(q(t))Tg(q(t))

√
q′(t)Tq′(t)dt = (3)

∫ sf

s0

√
g(q(s))Tg(q(s))ds

where s is the arc-length and the vector g(q) = ∇qV (q). The function F (q,q′) does
not depend explicitly on t and is homogeneous of degree one with respect to the argu-
ment q′(t). Thus the steepest-descent/ascent curve always extremalizes the function
given in Eq. (3) which is the class of functions associated with a Fermat variational
principle [2]. For this reason this curve propagates through the PES according to a
speed law or continuous slowness model related to the inverse of the gradient norm of
the PES, namely, 1/

√
g(q)Tg(q). It travels through the surface by going from a point

of an equipotential line to another point of the next equipotential line by the shortest
path. Thus the steepest-descent/ascent curves extremalizes the function associated
with this special type of Fermat principle.

It is also possible to derive a Hamilton-Jacobi equation for this variational problem
[3]. The integral of Eq.(3) evaluated along a steepest-descent/ascent curve joining two
points, say q0 and q, takes the value Iq0→q(q) = ∆V (q). Using the language of the
Hamilton-Jacobi theory, this function ∆V (q) is called the geodetic distance between
the points q0 and q. In the present case this geodetic distance is the potential energy
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variation between the points q0 and q, ∆V (q) = V (q) − V (q0). Now, the first order
variation in ∆q of the integral functional Iq0→q(q) evaluated through the steepest-
descent/ascent curve joining the points q0 and q is a differential equation

δIq0→q(q) = dV (q) = [∇q′(t)F (q(t),q′(t))]Tdq (4)

evaluated at the point q(t) of the steepest-descent/ascent curve. From this total dif-
ferential equation we have that

∇q′(t)F (q(t),q′(t)) =
q′(t)√

q′(t)Tq′(t)

√
g(q(t))Tg(q(t)) = ∇qV (q(t)) =: y . (5)

Multiplying the last two equalities of Eq.(5) by itself we obtain

yTy

g(q)Tg(q)
= 1 . (6)

Eq.(6) is a first order non-linear partial differential equation in the y = ∇qV (q) taking
the place of the Hamilton-Jacobi equation or eiconal equation in the present variational
problem. This is the Hamilton-Jacobi equation or eiconal equation formulated for the
steepest-descent/ascent path, and in particular for the IRC [3].

We now seek for the functions V (q) that are at least twice continuously differ-
entiable and such that if we set y = ∇qV (q) and ν = V (q) then the equation
1/2(∇qV (q))T (∇qV (q)) − 1/2g(q)Tg(q) = 0 is identically satisfied. We shall con-
sider in the space of q an arbitrary differentiable curve q = q(t) and we substitute
this into y(t) = ∇qV (q(t)) and ν(t) = V (q(t)). It can be proved that the 2N + 1
functions, q(t),y(t), ν(t) are solutions of the system of ordinary differential equations
which reads as follows:

dq

dt
= ±∇qV (q) = ±y, (7a)

dy

dt
= ±[∇qg(q)T ]g(q), (7b)

dν

dt
= ±(∇qV (q))T (∇qV (q)) = ±yTy. (7c)

This system of ordinary differential equations defines a field of curves, namely, the
steepest descent/ascent curves and in particular the IRC [3].

The analysis of the second variation, δ2Iq0→q(q), indicates that the steepest de-
scent/ascent curve that joints two minimums of the PES through a first index saddle
point is the only curve of this type that minimizes the integral functional of Eq. (3).
Thus the IRC is the steepest/descent curve that always satisfies these conditions. How-
ever, the second variation conditions associated with the integral functional of Eq. (3)
do not have the condition of a valley floor of the PES. Thus, if the IRC curve is either
located or not in a valley floor of the PES, in both situations it is a strong minimum
of the functional of Eq. (3), but in the first case it is a minimum energy path whereas
in the second case it is only a (static) reaction path. As an example see Ref. 4, and
compare it with Figure 1. All Figures of the paper are drawn by Mathematica, ver-
sion 11.3. In Figure 1 and all other figures of the present article we have used as a
model PES a modification of the Neria, Fischer and Karplus (NFK) surface [5]. The

4



mathematical expression of this surface is

V (x, y) = c(x2 + y2)2 + xy − 9 exp(−(x− 3)2 − y2)− 9 exp(−(x+ 3)2 − y2) (8)

where the parameter c takes the value of 0.03.

Of course, on a real PES of a molecule, there are features that do not arise in the 2D
case, which can have only minima and saddle points of index one or two. Calculated
PESs for chemical reactions may be significantly more complicated. The mathematical
analysis may hold for 2 or N dimensions. The real-world application on PESs is always
more involved.
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y

Figure 1. Steepest descent (red) and gradient extremal (green) on the modified NFK surface, Eq. (8). The
gradient extremal follows correctly the valley floor what the steepest descent misses to do. It crosses a ridge on

the surface, depicted by the dashed lines of the border between convex and concave regions of the level lines

[4].

The second variation of the function Eq. (3) does not have a relation with the
condition of the Minimum Energy Path (MEP). The gradient curve of the type IRC is
always a reaction path since it transverses in each point of the curve an equipotential
curve thus increasing (decreasing) monotonically the potential energy but it can be or
not be a MEP. The MEP condition depends on the shape of the PES.

2.2. The second variation as a basic tool to locate IRC curves: the utility
of the Weierstrass E-function

The basis of the second order analysis is the comparison between the value of the
integral of Eq. (3) evaluated through a steepest descent/ascent curve and the same
integral functional evaluated using another arbitrary curve joining the same initial
and final points. This difference function is known as the integral over the Weierstrass
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E-function and plays a basic role in the analysis of the second order variation. It is

I(q)− I(q) =

∫ tf

t0

[√
g(q(t))Tg(q(t))

√
q′(t)Tq′(t)− g(q(t))Tq′(t)

]
dt (9)

where q′(t) is the tangent of the arbitrary curve [3]. The minimization of the I(q) −
I(q) function given in Eq. (9) is done iteratively with respect to the parameters that
characterize a given arbitrary q(t) curve connecting the fixed end points q(t0) and
q(tf ) both being stationary points of minimum character of a PES. We will find the
near steepest descent/ascent curve to this q(t) curve. The curve q(t) is assumed to
satisfy the differential equation q′(t) = f(q(t)), where t0 ≤ t ≤ tf and f is a vector of
a vector field. The curve q(t) can be represented as a polygonal line or a chain line
defined in the region of the PES under consideration which connects the minimums,
q(t0) and q(tf ), and it is the vector f = ∆q, being ∆q the difference vector between two
consecutive vertex points of the chain. The minimization of the I(q)−I(q) function has
the effect of transforming the curve q(t) into another curve such that the field vector
f at each point of this new curve coincides as much as possible with the field vector
g(q), which is the field vector of the field of the extremals, the steepest descent/ascent
curves, of the functional given in Eq. (3). This is the ground of the algorithm described
in Ref. [6] to find the steepest descent/ascent curve connecting the minimums of the
PES, q(t0) and q(tf ). The resulting steepest descent/ascent curve is the IRC path.
This assertion is easy to proof.

First, at the convergence of the algorithm we have that the tangent of the converged
curve satisfies the equality, q′(t) = g(q), for t0 ≤ t ≤ tf . Substituting this equality
into the Eq. (9) we obtain I(q)− I(q) = 0.

Second, if we differentiate Eq.(9) with respect to q′ after some rearrangement we
obtain

∇q′(I(q)− I(q)) =

∫ tf

t0

[
q′(t)√

q′(t)Tq′(t)
− g(q(t))√

g(q(t))Tg(q(t))

]
dt√

g(q(t))Tg(q(t))
.

(10)
As mentioned above, the tangent of the converged curve is q′(t) = g(q) for t0 ≤ t ≤ tf .
Substituting it in Eq.(10) we have that ∇q′(I(q) − I(q)) = 0. In other words the
converged curve satisfy the stationary conditions of a steepest descent/ascent curve
given in Eqs.(7) and the proof ends.

Eq. (10) gives us the basic idea to design an algorithm. If at each point of the
current curve q(t) joining the minimums of the PES, q(t0) and q(tf ), we project the
integrand into the subspace spanned by the set of directions orthogonal to the tangent
q′(t) then we have a residuum that is zero when the current curve coincides in all the
points with the steepest ascent/descent curve joining these minimums of the PES. In
a more explicit way[

U− q′(t)q′(t)T

q′(t)Tq′(t)

]
g(q(t))√

g(q(t))Tg(q(t))
= r(t) t0 ≤ t ≤ tf , (11)

where r(t) is the residuum vector at the point q(t) and U is the unit matrix. This is
the basis of many algorithms to locate the IRC curve. The difference between them
is the way to parametrize and to modify the guess of the current curve to make the
residuum vector to the zero vector within some threshold. Here can be cited all the
chain-of-states methods [7] like the widely used Nudged Elastic Band (NEB) [8, 9],
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and the minimization of the Weierstrass E-function [3, 10, 11] where the error is
minimized using a Runge-Kutta technique, the path optimization by a variational
reaction coordinate due to Birkholz and Schlegel [12, 13] and more recently the
geodesic interpolation method [6]. It is worth to note that all these methods locate
the IRC path which is a curve representation of a static reaction path, however, the
category of an MEP is not guaranteed except if the whole IRC path is located on
a deep valley floor. The latter condition is not always satisfied, it depends of the
topography of the PES [14].

2.3. The Potential Energy Surface expressed as Wave Equation

In the introduction to section 2 above, in subsection 2.1, was explained that the steep-
est descent/ascent curves satisfy the Hamilton-Jacobi equation or eikonal equation
(6). The picture associated with this equation is that the descent/ascent curves and
in particular the IRC path are in fact orthogonal trajectories that transverse the set
of contour hypersurfaces, V (q) = ν = constant. Thus it is important to take into
account that the Hamilton-Jacobi equation or the eikonal equation describe a relation
between the contour of a hypersurfacesurface and its orthogonal curves. The steepest
ascent curves emerging from a minimum of a PES in its travel transverse orthogo-
nally at each point with a contour hypersurface. It should be noted that all the points
that belong to a contour hypersurface, say V (q) = ν, possess the same energy differ-
ence with respect to all the points of another contour hypersurface. This picture is
equivalent to the picture of Fermat-Huygens of the propagation of the cone rays. We
note that both pictures, Fermat-Huygens of the propagation, and the Hamilton-Jacobi
theory, are strongly related [2]. In other words the construction of a solution of the
eikonal Eq. (6) as a contour hypersurface with constant potential energy is similar to
the Fermat-Huygens principle for the construction of wave fronts [3]. The question
about the equation that governs the propagation of the “wave” associated with the
steepest ascent curves was treated in former Refs. [16] and [17]. The unique possibility,
the solution to this question, is a second order partial differential equation such that
its associated characteristic equation is the eikonal Eq. (6), which is related with the
PES. We consider the wave equation

∇2
qψ(q, ν)−G(q)

∂2

∂ν2
ψ(q, ν) = 0 (12)

where q = (q1, . . . , qN )T , ∇2
q = ∇Tq∇q = ∂2/∂q2

1, . . . , ∂
2/∂q2

N , and the scalar product

of the gradient G(q) = g(q)Tg(q). In this manner the wave equation (12) is defined
in the space (q, ν) of dimension N + 1 and ν is treated as independent variable.
The function ψ(q, ν) can be seen as an abstract field in any medium with slowness
1/G(q)1/2, which also emerges in the eikonal Eq. (6). The factor 1/G(q)1/2 plays the
role of the “velocity” of the corresponding wave solution. Eq. (12) is an hyperbolic
partial differential equation with non-constant coefficients because G(q) is positive and
changes with respect to the q variables. The solution of an hyperbolic equation is “wave
like”. If a disturbance is done in the initial data of a hyperbolic differential equation,
then not every point of the space feels the disturbance at once. Relative to the fixed
“energy” coordinate, ν, the disturbances have a finite propagation speed. They travel
along the so-called characteristics of the equation. To find here the characteristics, we
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have to treat the quadratic form, which is connected with Eq. (12)

(∇qϕ(q, ν))T (∇qϕ(q, ν))−G(q)

(
∂ϕ(q, ν)

∂ν

)2

= 0 (13)

where ϕ(q, ν) is the characteristic function. The connection between Eqs. (12) and (13)
is briefly exposed as follows [2]. We define a coordinate transformation

ϕ(q, ν) =


ϕ1(q, ν)

...
ϕN (q, ν)
ϕN+1(q, ν)

 =


χ1
...
χN
χN+1

 =

(
χN
χN+1

)
= χ (14)

such that the determinant of the Jacobian of this transformation is not zero in the do-
main of interest, det(∇q,νϕ

T ) 6= 0. In this way Ψ(ϕ1(q, ν), . . . , ϕN+1(q, ν)) = ψ(q, ν).
Instead of q, ν we have introduced a new set of N + 1 independent variables, χ, one of
which is χN+1 = ϕN+1(q, ν) = 0 while the remainder of variables collected in χN are
“interior values” on the manifold defined by χN+1 = 0. Thus given on this manifold
the data or quantities, Ψ(χTN , 0) and ∂Ψ(χTN , 0)/∂χN+1, we construct a function
ψ(q, ν) so that on the manifold χN+1 = 0 this function and its derivatives with
respect to χN+1 coincide with the given functions Ψ(χTN , 0) and ∂Ψ(χTN , 0)/∂χN+1 of
χN , and so that ψ(q, ν) satisfies Eq. (12) on the manifold χN+1 = 0.

All the second derivatives of ψ(q, ν) except ∂2Ψ/∂χ2
N+1 are uniquely determined

by the data or quantities on χN+1 = 0 by differentiating the quantities Ψ(χTN , 0)
and ∂Ψ(χTN , 0)/∂χN+1 with respect to interior variables, χN . Now we need to know
whether Eq. (12) and the data on χN+1 = 0 determine the quantity ∂2Ψ/∂χ2

N+1 along
the manifold χN+1 = 0. In terms of the variables χ where χN+1 = ϕN+1(q, ν), Eq. (12)
using the chain rule takes the form

∂2Ψ

∂χ2
N+1

Q(ϕN+1) + · · · = 0 (15)

where the dots in Eq. (15) stand for expressions which are known form the data of the
manifold, in other words, they only contain first derivatives of Ψ with respect to χ, the
second derivatives with respect to χN and the crossed second derivatives between χN
and χN+1. The coefficient Q(ϕN+1) is the left hand side part of the equality Eq. (13)
with ϕ = ϕN+1. If the quadratic form Q(ϕN+1) does not vanish at every point of the
manifold χN+1 = 0 then the second derivative ∂2Ψ/∂χ2

N+1 is uniquely determined in
all the points of this manifold. Otherwise Eq.(12) represents an additional restriction
of the data of the manifold. In this case Q(ϕN+1) = 0 is called characteristic condition
being satisfied on the manifold χN+1 = 0 with the values Ψ and ∇χΨ given by the
data. The function ϕN+1(q, ν) does not need to satisfy the equation Q(ϕN+1) = 0
everywhere, however, it must satisfy the characteristic conditions, Q(ϕN+1) = 0, on
the manifold χN+1 = ϕN+1(q, ν) = 0.

A solution of Eq. (13) or that is the same Q(ϕN+1) = 0 is obtained by taking
ϕN+1(q, ν) = ϕ(q, ν) = V (q)− ν = 0 recovering the eikonal equation (6). The wave-
front of Eq. (12) develops along its characteristic manifold in the (N+1) space, which
is described by the equipotential hypersurface with V (q) = ν. We can conclude that

8



the progression of the solution of the wave Eq. (12) is regulated by the eikonal Eq. (6),
a first order partial differential equation. It is the Hamilton-Jacobi equation of the
steepest ascent/descent curves in particular the IRC path. Thus we conclude that the
characteristic solution of the hyperbolic second-order partial differential equation (12)
with initial value or Cauchy data defined on a manifold, where in terms of χ this
manifold can be (χTN , χN+1 = 0) being χN+1 = ϕN+1(q, ν) = V (q) − ν = 0, can be
seen as the basic ground of the model PES widely used in Chemistry. [16, 17]

As noted above the characteristic manifold which is described by the equipotential
hypersurface plays a role as “wave front”, that is, surfaces across which solutions
of Eq. (12) suffer discontinuities of the second derivatives. Such “wave front” occur as
frontier beyond which there is no excitation at ν. Now let us assume Eq. (12) and again
ϕN+1(q, ν) = ϕ(q, ν) = V (q) − ν = 0. Let ψ(q, ν) a function in the N -dimensional
q-space taking ν as a parameter. We deal with a solution ψ(q, ν) of Eq. (12) with a
hypersurface of discontinuity V (q) = ν which depends on ν and moves through the q-
space. According to that explained in Subsection 2.1 every equipotential hypersurface
is generated by the family of curves or rays, of ordinary differential equations Eqs. (7).
From Eq. (7c) we have that dν/dt = G(q) and the ray equation takes now the form
[18]

dq

dν
=

1

G(q)
∇qV (q) . (16)

Thus, in the N -dimensional q-space these rays or curves traverse the wave fronts
V (q) = ν and we have(

dq

dν

)T
∇qV (q) =

(∇qV (q))T (∇qV (q))

G(q)
= 1 . (17)

The vector dq/dν is that characterizes the ray or curve transversing the wave front
V (q) = ν. On the other hand, since G(q) > 0 this fact ensures the hyperbolicity of
Eq.(12). In this situation we can say that the curve or ray direction and the tangent
plane to the wave front are conjugate to the ellipsoid [16]

(∇qV (q))T (∇qV (q))

G(q)
= rT r = 1 (18)

where r = ∇qV (q)G(q)−1/2.
A final remark concerns Huyghens’ construction of wavefronts. We consider a wave-

front V (q) = ν satisfying the eikonal Eq. (6). The spherical waves about the point q0

may be denoted by σ(q,q0) = ν. If the front at ν = 0 coincides with a prescribed
surface Σ0, then Huyghens’ construction produces a wavefront at ν as follows: around
each point q0 of Σ0 we consider the spherical wavefront σ(q,q0) = ν, and for fixed
positive ν we form the envelope of all these spheres in q-space, letting q0 range over
the surface Σ0. This leads to the surface V (q) = ν containing the desired wave front.
In more detail: at ν the wavefront is given by the envelope of the spheres of radius
1/
√
G(q), whose centers are the points of the wavefront at ν = 0 [2, 3, 16, 17]. It is a

possible imagination how a PES evolves.
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3. Gradient Extremals

The gradient extremal was proposed as a reaction path some time ago, studied and
analyzed several times [15, 19–32]. Its definition can be described assuming that we
are on a “valley ground” (or a ridge) of the PES by an extremalization of the gradient

norm,
√

g(q)Tg(q), with respect to q within the equipotential hypersurface, V (q) =
ν = const, compare Figure 1. The mathematical formulation of this model consists in
the extremalization of the integral functional

I(q) =

∫ t

t0

{1

2
g(q(t′))Tg(q(t′))− λ(t′)[V (q(t′))− ν]}dt′ . (19)

The curve that extremalizes the integral functional of Eq. (19) is the gradient extremal
and satisfies at each point the equation,

H(q(t))g(q(t)) = λ(t)g(q(t)) (20)

where H(q) = ∇q∇TqV (q) is the Hessian matrix. We note that in Eq.(20) λ plays the
rule of an eigenvalue whereas the gradient g(q) plays the role of an eigenvector. This
eigenvalue equation can also be written as

f(q(t)) =

[
U− g(q(t))g(q(t))T

g(q(t))Tg(q(t))

]
H(q(t))g(q(t)) = 0 (21)

where U is the unit matrix. The gradient extremal satisfies in each point the condi-
tion f(q(t)) = 0, but not each point of a PES satisfies this condition. For this reason
the gradient extremals do not cover the whole PES, in contrast to the steepest de-
scent/ascent curves. Gradient extremals are the curves on which the steepest descent
lines of a potential energy surface have zero curvature [28]. Thus f(q(t)) = 0 given
in Eq. (21) determines the gradient external implicitly. In this case the initial and fi-
nal point of the curve cannot be prescribed arbitrarily, if the problem should have a
solution. The tangent of this curve is computed by solving the equation[

U− g(q(t))g(q(t))T

g(q(t))Tg(q(t))

]
C(q(t))dq(t)/dt = 0 (22)

where the square matrix

C(q(t)) = 〈F(q(t))g(q(t))〉+ H(q(t))2 − g(q(t))TH(q(t))g(q(t))

g(q(t))Tg(q(t))
H(q(t)) (23)

and F(q(t)) is the third energy derivative tensor with respect to q and the
〈F(q(t))g(q(t))〉 symbol is used to indicate a square matrix that is a contracted product
of a three-index array with a vector yielding a two-index array. The Eq.(22) can be de-
rived either from the implicit function theorem, df(q(t))/dt = [∇qf(q(t))T ]dq(t)/dt =
0, [28] or by standard perturbation theory applied on the eigenvalue Eq. (20) [15].
Eq.(22) is computationally expensive to evaluate, it needs thirds derivatives of the
energy. In addition, sometimes the gradient extremal does not evolve through the re-
action valley if it exists. For these reasons gradient extremals are generally not used
to study reaction mechanisms.
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The sufficient conditions for a minimum can be rationalized. If the gradient ex-
tremal curve starts at a minimum of the PES and ends at a first-index stationary
point satisfying at each point the condition, det(W(q(t))TC(q(t))W(q(t))) > 0, where
W(q(t)) is the matrix that contains the set of N − 1 orthonormalized vectors which
are all orthogonals to the current gradient vector g(q(t)), then the extremal curve
achieves the condition of a minimal curve. However, if the gradient extremal has a
turning point or a bifurcation point, then from this point to the end point may be
hold det(W(q(t))TC(q(t))W(q(t))) < 0, and the curve looses its minimum character.
If det(W(q(t))TC(q(t))W(q(t))) < 0 from the turning point to the end point, then
other curves exist, not necessarily a gradient extremal, joining the same initial and
final point so that the integral of Eq.(19) takes a lower value.

An important behavior of the gradient extremal is the following. The adjoint matrix
of the Hessian, A, satisfies the relation

AH = det(H) U . (24)

If we multiply Eq.(20) from the left first by A(q(t)) and second by g(q(t))T , we get
after applying Eq.(24), the expression

µ(q(t)) =
g(q(t))TA(q(t))g(q(t))

g(q(t))Tg(q(t))
(25)

where µ(q(t)) is equal to det(H(q(t))) but eliminating λ(q(t)) since it is an eigenvalue
of H(q(t)). Let us assume that a gradient extremal touches at its turning point an
isopotential energy surface, V (q)− ν = 0, of a full PES. On the others points of this
gradient extremal, it crosses transversally a family of isopotential energy surfaces. We
can assume that the gradient extremal after the turning point fulfills µ(q(t)) > 0. This
fact indicates that the curve is now crossing a family of isopotential energy surfaces
that are pseudo-convex, and vice versa are pseudo-concave [5]. Finally, if along the
gradient extremal µ(q(t)) changes the sign then there is a valley-ridge inflection (VRI)
point.

4. Newton Trajectory: the new version of the Distinguished Coordinate
Path

The Newton Trajectory (NT) or Reduced Gradient Following (RGF) is characterized
by a curve on the PES such that at each point of the curve the gradient vector points
into a constant direction [33, 34]. This can be seen in another way, the NT or RGF
curve crosses the steepest descent curve at each point so that at the same point the
tangent of this curve has the same direction as the constant direction of the prescribed
RGF direction. Some NTs are given in Figure 2.

The distinguished reaction coordinate, or its new reformulation, the NT, is a model
curve which is often used to locate transition states. The curve can be used as repre-
sentation of a reaction path, again if no turning point emerges. The variational nature
of the curves was studied in Ref. [35]. It corresponds to a problem where the functional
only depends on the coordinates and the parameter that characterizes the curve

I(qv) =

∫ qrc

q0rc

V (q′rc,qv)dq
′
rc (26)
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Figure 2. Newton Trajectories on the modified NFK surface, Eq. (8). A set of NTs is concentrated near

a small gorge at (2, −2). All NTs deviate somewhat from the valley floor, compare Figure 1, and all NTs

have turning points, on this somewhat strange surface. Such a point emerges if an NT touches a level line in
tangential direction. The blue NTs are the still ’best’ for a connection between Min and SP1.

where the qv-vector is the coordinate vector q without the qrc component. This func-
tional is of the type F (t,q(t)) where the tangent does not appear explicitly. It can be
shown [35] that the curve which extremalizes the functional integral of Eq.(26) is the
curve which satisfies the Branin equation

q′(t) =
dq(t)

dt
= ±A(q(t))g(q(t)) (27)

where A(q(t)) is the adjoint matrix of the Hessian matrix, H(q(t)), and the parameter
t plays the role of qrc. If det(A(q(t))) is positive definite along the whole NT curve
joining two minimums of the PES, then this curve is a reaction path and it falls in
the category of a minimum energy path (MEP), because for this model curve both
reaction path and MEP formulation coincide. In addition, it is shown in Ref. [35] that
the second variation of the integral functional given in Eq.(26) is positive definite if
the NT curve satisfies the inequality µ(q(t)) > 0, where µ(q(t)) is that defined in
Eq.(25), which is noting more than the MEP requirement. Thus, for the NT model
coincides the minimum variational condition with the MEP condition. However, if the
NT has a turning point or a valley-ridged inflection point (VRI), then the minimum
variational character is lost and the reaction path and the MEP conditions are not
satisfied [35]. Finally, we say that an NT can start at any point of the PES with the
gradient direction there.

4.1. The Newton Trajectory is a tool for Mechanochemistry. Search of
the optimal pulling force as a minimization problem

An important area under development is the mechanochemistry [36]. It studies the
effect of an external force to a molecular system. According to the IUPAC terminology,
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one defines a mechanochemical reaction as “a chemical reaction that is induced by
mechanical energy”. The question about how an external force couples to various
reaction mechanisms is normally answered by the most accepted and widely used
model consisting in a first-order perturbation on the associated PES of the unperturbed
molecular system due to a stress or pulling force, f ,

Vf (q) = V (q)− qT f . (28)

The potential Vf (q) can be seen as an effective PES. Since the direction of the external
force, l = f/||f ||, stays constant it does not depend on the position. Due to this external
force, the stationary points are located at different positions on the effective potential
with respect to the unperturbed potential, V (q), where it holds ∇qV (q) = g(q) = 0.
The stationary points on the effective potential have to satisfy the analogous condition,
∇qVf (q) = 0, depicting new and displaced stationary points. Thus it follows for the
new stationary points of Eq. (28),

∇qVf (q) = g(q)− f = 0 . (29)

One searches a point where the gradient of the original PES, g(q), has to be equal to
the mechanochemical force, f , being the force that induces the chemical process. If the
mechanical stress in a defined direction is f = F l with a fixed unit vector, l, then it
is l = g(q)/‖g(q)‖ and F = ‖g(q)‖ is the magnitude. We also use the alternate form
for the solution of Eq. (29) by the projector equation

[U− llT ]g(q) = 0 . (30)

Where U is the unit matrix. The equation has to hold unattached from the uncom-
fortable norm,‖g(q)‖, and it means nothing else than that the vectors g(q) and l are
parallel. If the force, F = ‖f‖, is so high that the transition state disappears in a
shoulder, then the mechanochemical task is fulfilled: The pulling force enforced the
chemical reaction, and the reaction barrier breaks down. It is the barrier breakdown
point (BBP). This holds for the very simple model ansatz of Eq. (28). We treat the
fixed direction, l, but different forces, F . For point-to-point changes of the amount
of the force, F , we should get the path which follows the ”force displaced station-
ary points” (FDSPs) [37]. Now if q is a point of the FDSPs curve then we can set
q = q(t) being t the parameter that characterizes this curve for increasing forces, F .
It is like the Branin equation, Eq. (27). Now, we differentiate the projector Eq. (30)
with respect to t, and we obtain

[U− llT ]H(q(t))
dq(t)

dt
= 0 . (31)

This is an expression for the tangent of the FDSPs curve. It is the basic expression
of the reduced gradient following curve (RGF), or NT, derived many years ago [38]
[39] from the projector equation. For higher dimensions of the PES, this equation
is better to track numerically than the Branin equation (27). Walking on the path of
FDSPs or NT one has to increase the norm of the force, F , beginning at the stationary
points. There is a part of the pathway from the minimum uphill and a part from the
transition state downhill. If the force increases further and further, the two parts meet.
Here the norm of the gradient has its maximum. Let us assume that the curve is on
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a straight valley path, then one eigenvector of the Hessian points along the path, and
at the meeting point of the lower and the upper part of the FDSPs we find out that
the corresponding eigenvalue of the Hessian is zero. There the barrier of the former
original PES disappears. Regarding the effective PES, ∇qVf (q), with the maximal
force, the transition state and the reactant minimum coalesce, thus both disappear,
and the pulling force realizes the reaction. The meeting point is a “catastrophe point”
[37, 40, 41]; it is a word of the well-known theory of Thom [26, 42]. We proposed to
name it more chemical: barrier breakdown point (BBP). Its necessary mathematical
formula is [43]

Det(H(q)) = 0 . (32)

There is an optimal pulling direction which is given by the NT which in a point, q, of
the curve satisfies

H(q)g(q) = 0,
g(q) 6= 0 .

(33)

The point is known as optimal BBP [44]. Note that the point also belongs to a
gradient extremal. Thus on an optimal BBP, a gradient extremal and an NT coincide.
In Ref. [45] is reported an algorithm to locate optimal BBPs on a PES. The algorithm
is based in the location of the point q where the square function, σ(q), takes the value
zero. This is down using a non-linear least square minimization algorithm [46]. The
sigma function is defined in the following way

σ(q) =
g(q)TH(q)2g(q)

g(q)Tg(q)
= s(q)T s(q) (34)

where s(q) = H(q)g(q)||g(q)||−1. The function σ(q) is a sum of squares of nonlinear
functions, s(q); thus, it is a non-negative function. It is clear that a minimum qmin of
the function σ(q) for which σ(qmin) = 0 is a desired solution since this can only arises
if qmin satisfies s(qmin) = 0, which is the optimal BBP condition given in Eq. (33). As
noted above the problem to find qmin for which σ(qmin) = 0, defined in Eq. (34), falls
in the class of non-linear least square minimization problems. In this type of problems,
the derivatives of σ(q) with respect to q are given

∇qσ(q) = 2[∇qs(q)T ]s(q) = 2J(q)s(q) (35)

and

∇q∇Tqσ(q) = 2J(q)J(q)T + 2

N∑
i=1

si(q)[∇q∇Tqsi(q)] (36)

where si(q) is the ith-element of the s(q) vector and J(q) = ∇qs(q)T is the N × N
Jacobian matrix, thus an element of this matrix has the form, Jij(q) = ∂sj(q)/∂qi,
for i, j = 1, . . . , N . By differentiation of s(q), with respect to q, the Jacobi matrix,
J(q), has the form

J(q) = [∇qs(q)T ] =

[(
U− g(q)g(q)T

g(q)Tg(q)

)
H(q)2 + 〈T(q)g(q)〉

]
||g(q)||−1 . (37)
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Here 〈T(q)g(q)〉 is the matrix of the contraction of the gradient vector and the tensor
of the third energy derivatives with respect to the coordinates, q. With this definitions
one can find the minimum using the formulas of Eqs. (35) and (36) in conjunction with
the Newton method. Since we are interested in the zero of the s(q) vector in the least
square sense, the set of elements {si(q)}Ni=1 are small. This suggests that the second
term of Eq. (36) can be neglected. We get the approximate expression for the second
derivatives of the σ-function

∇q∇Tqσ(q) ≈ 2J(q)J(q)T . (38)

In this way, the first and approximate second derivatives of the σ-function can be
determined by using only s(q) and J(q), Eqs. (35) and (36), respectively. When the
second derivative is approximated as given by Eq. (36), the basic Newton method
becomes the Gauss-Newton method or the generalized least squares method [46]. To
improve this, we use the restricted step algorithm. In the ith-iteration, the modified
Gauss-Newton

[J(i)J(i)T − ν(i)U]∆q(i) = −J(i)s(i), ν(i) ≤ 0 ,

q(i+1) = q(i) + α(i)∆q(i) (39)

where J(i) = J(q(i)), s(i) = s(q(i)), and α(i) is a parameter. The parameter α(i) is

selected in the way that if
√

∆q(i)T∆q(i) ≤ R(i) then α(i) = 1, otherwise α(i) =

R(i)/
√

∆q(i)T∆q(i). The radius R(i) is a given positive parameter for the current
iteration and updated at each iteration. In practice the set of Eqs.(39) is solved using
the rational function optimization algorithm, that through a diagonalization process
one solves this system of equations [47, 48].

4.2. A comparison of Newton Trajectories with AFIR

Maeda et al. proposed the artificial force induced reaction (AFIR) method [49–52].
They change the PES by an artificial, external force of the following kind

Veff (r) = V (r) + α

∑N
i<j

(
Ri +Rj
rij

)p
rij∑N

k<l

(
Rk +Rl
rkl

)p . (40)

α is a numeric factor which here plays the role of the amount F in Subsection 4.1,
Ri and Rj are covalent radii of atoms i and j. The vector r with the components rij
contains the distances between the corresponding atoms i and j. The dimension of all

rij is maximally M = N(N−1)
2 for a molecule with N atoms. It is possible to include a

lower number of distances only [53, 54]. Of course, all rij > 0. The force, f, itself has
the components with numbers i, j

fij =

(
Ri +Rj
rij

)p
∑N

k<l

(
Rk +Rl
rkl

)p , (41)
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and the effective PES is

Veff (r) = V (r) + α f(r)T · r , (42)

thus the force, f, acts on the current point, r. Eq. (41) means that the larger distances
nearly disappear in the extra force for p > 2 but only the smallest distances make a
contribution to the resulting direction of the force. So, the small distances of H-atom
bonds should not be used in f [49]. Of course, if the extra force moves all stationary
points of the PES out of their former places then can a minimum and an SP coalesce,
and a former barrier can disappear (at a BBP for α=αmax), and so a new valley
opens for a contact between former distant minimums. Thus, one can use the ansatz
to detect reaction valleys [50, 53–56]. To that purpose, α has to be larger than αmax.

One can use Eq. (40) with a continuous change of α for the FDSPs. Usually one
starts at a known minimum with α = 0. Like for NTs, continuous increase of the
strength of the force, α, will move the stationary points of the effective new PES.
Maeda et al. only look for an increase of the force [52–55]. We have to improve
the method by two alternating pieces of the curve of new stationary points. An
increase and a decrease of the parameter fully describe the curve between two original
stationary points over a BBP [44]. The maximal α determines the BBP. It is not an
approximation of the original SP of the PES. The BBP is usually anywhere between
the initial minimum and the next SP, see some instructive discussions in Ref. [44]
for NTs. At the stationary point which we search for the parameter α has again to
converge to zero.

In this subsection we compare the ansatz with the NT theory. We will find a station-
ary point on a PES, V (r), by successive moved stationary points on the new effective
surfaces. For illustration we draw these points on the original PES. The dimension of
the PES, as well as of the search vector, f , is less or equal M . To simplify the study,
we reduce the dimension to the shortfalling case M = 2, which is not possible if a real
molecule is treated. We name r12 = x, and r13 = y and put Ri = Rj = 1/2. Usually
under AFIR, the exponent is p = 6. Eq.(40) then reads

Veff (x, y) = V (x, y) + α

1
x6 x+ 1

y6 y
1
x6 + 1

y6
. (43)

With the force vector

f =
( 1
x6 ,

1
y6 )T

1
x6 + 1

y6
(44)

Eq.(43) becomes

Veff (x, y) = V (x, y) + α (x, y) · f (45)

with a scalar product between the force and the current point. It looks like the analo-
gous definition of the Newton trajectory [33, 34] but with the difference that the force
is not a constant direction. We will study more deeply the connection to NTs.
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First, we say that the denominator of Eqs.(41) or (44) is a kind of normalization,
but the vector, f, is shorter than one. It is a linear interpolation direction using all M
directions. It makes that the sum of all components of the f-vector is one. The value
of the norm will be less than one. The length of f differs in comparison to NTs.

For a further simplification, we cancel this normalization. One can imagine that the
different vector length can be compensated by a changing factor α of the ansatz. Thus
we treat only the vector for the force

f̃ = (
1

x6
,

1

y6
)T , (46)

and so we get

Ṽeff (x, y) = V (x, y) + α (x, y) · f̃ = V (x, y) + α (
1

x5
+

1

y5
) . (47)

Search for a stationary point needs derivations

0 = ∇x,yV (x, y)− α (
5

x6
,

5

y6
)T = ∇x,yV (x, y)− 5α f̃ . (48)

If we still scale −5α = α̃ we get really the ansatz like the one of an NT that the
gradient has to be equal to the current α̃f̃ . However we know that f̃ is not constant.
Thus, the solution curve for the moving stationary points for different factors α will
not be an NT. A corresponding case was discussed in Ref. [57]. The theory of NTs
cannot fully be applied. But we can search for the stationary points of the effective
PES with different values for the α parameter. It is done in Figure 3 for the modified
NFK surface. The calculations are done with the correct ansatz of the force, Eq.(44),
and the parameter α variates between 0 and different values at the three BBPs. For
every calculation of a new AFIR point, we use the former result as the guess value of
the optimization. So we get the curve of moved stationary points, point by point. Of
course, for every value α we get another effective PES. The corresponding stationary
point is drawn as the AFIR point on the original PES.

The magenta points start at the minimum, and they go with negative values of α
up to -10 at the BBP (green point). The start direction is strongly the y direction
because the modified NFK surface has at the minimum two very different values for x
and y. It is an artificial particularity of this surface which does not fit the intention of
the ansatz Eq. (40). Nevertheless, the calculation of AFIR points in the given direction
works well. With decreasing amounts of the parameter after the BBP, the curve at
least correctly finds the SP. A special property of this curve is the existence of a turning
point. Here the curve touches parallel a level line of the PES.

The pink points also start at the minimum, and the go into the contrary direction
with positive values of α up to 5 at the BBP. First we have increasing values of the
parameter up to the BBP, then decreasing values, and after a minimum of α at 1.5
the curve leaves the reactant minimum and it get lost in the PES mountains.

The black points start at the SP, and they go with negative values of α up to -4 at
the BBP. With decreasing amounts of the parameter after the BBP, the curve finds
the quasi shoulder of the PES near (2,-2).

At the minimum, two curves have the correct contrary directions with different sign
of the parameter. However, at the SP two curves meet with the same sign: minus. It

17



0 1 2 3

-2

-1

0

1

x

y

Figure 3. AFIR points to force of Eq. (44) on the modified NFK surface, Eq. (8). Green points are the BBPs

with maximal α values. Pink and magenta points start at the minimum, but the black points are initialized
at the SP. Through some black points we have drawn the corresponding NTs (in blue) to the search direction

there, for a comparison.

may come from the nonlinear character of the AFIR force.
Clearly, the AFIR points do not describe an NT. However, they follow an analogous

rule: they start at stationary points and follow their way up to a BBP. On this piece
of the curve, the norm of the gradient of the surface increases. At the BBP, there one
will reach a maximum. The effective PES has here a shoulder. If one further increases
the parameter, α, then the calculation of the stationary point of the corresponding
effective PES stagnates here, or it jumps across the PES to a strange other solution. A
small jump over the BBP for the next initial guess, and the decrease of the parameter
then opens the way to the second piece of the curve. This works equally like for
NTs. (However the calculation of NTs is easier because one uses a predictor-corrector
method along the tangent of the curve [25], compare Eq. (31) above.)

Note that here the connection of the SP and the quasi-shoulder by an AFIR curve
goes somewhat strange over the PES, in comparison of the other curves studied, for
example the GE, or the steepest descent.

The first variational structure of Maeda’s et al. model written with the distance
coordinates r, is of the type

g(r)− α ϕ(r) = 0 (49)

where g(r) is the gradient of the PES, α is now the Lagrange multiplier and ϕ(r) is
the derivative ∇r(f(r)T · r).

If we assume that ϕ(r) 6= 0 we can write(
U− ϕ(r)ϕ(r)T

ϕ(r)Tϕ(r)

)
g(r) = 0 (50)
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Figure 4. AFIR curves (brown) to Eq. (50) on the modified NFK surface, Eq. (8). Added are the optimized

points of Figure 3.

where U is the unit matrix. Now the task is to derive the implicit tangent from this
expression. However, the problem in Maeda’s et al. model, ansatz Eq.(40), is the quite
complicated expression of ϕ(r), being difficult to write in an explicit form. But in the
simplified case of M = 2, we can use Eq.(50) for a numeric search of a solution of the
AFIR curves. We employ a Mathematica contour plot in Figure 4 for the zero contour
of the square of the norm of the left hand side. The point by point optimized AFIR
points of Figure 3 are added. They fit well the resulting curves. The non-linearity of
the AFIR force and its non-constancy lead to 10 curves starting at the SP, quite more
than the two for an NT to a given search direction. But of course, the NTs have at
least a quite greater variability because around a stationary point all (constant) search
directions are possible. The NTs form a dense net of curves on the PES. (And the NTs
are a linear ansatz, thus easier than the AFIR method.)

Nevertheless, the AFIR method has been used several times in the study of PESs
associate to real chemical problems, see e.g. the review [61]. In an example, if the
number of atoms that are considered in the fragment generation is 6, and the number
of AFIR paths computed is 18 and the value of the model collision energy parameter
adopted to α (in kJ/mol) is 153, then the number of gradient calculations required is
6687, and the number of Hessian calculations required is 792.

5. Gentlest Ascent Dynamics

In 2011, E and Zhou [58] proposed the so-called Gentlest Ascent Dynamics (GAD)
method that reformulates the procedure of uphill walking from a minimum basin
through a set of ordinary differential equations whose solutions converge to first index
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saddle points [14, 59, 60, 62–64, 66]. The set of equations that governs the GAD is

dq

dt
= −

[
U− 2

vvT

vTv

]
g(q), (51a)

dv

dt
= −

[
U− vvT

vTv

]
H(q)

v

(vTv)1/2
, (51b)

where U is the unit matrix, H(q) is the Hessian matrix, v is a normalized vector and
t is the parameter that characterizes the curve. Eq. (51a) means that the gradient is
used by two different components, one in the ascent direction of the v-vector subspace
and the second in the descend direction of the set of directions perpendicular to the v-
vector. Eq. (51b) defines the update of the ascent direction represented by the v-vector.
The right hand side of Eq.(51b) ensures that the v-vector converges to an eigenvector
associated with the smallest eigenvalue of H(q), and we have to ensure that the v-
vector should be normalized in every step. We note that at the starting point the norm
of the v(t0)-vector should be equal to 1. The GAD algorithm can be seen as a Zermelo
like navigation model on the PES to reach TSs in some optimal way, see [14, 64, 66].
The Zermelo navigation model is an example of a Mayer-Bolza problem of calculus of
variations [65]. For this reason GAD falls as an example of optimal control problem
into a type of variational problem where the v-vector plays the role of the control
vector. Briefly, the Zermelo navigation problem attempts to answear the following
question. In the open sea where the wind distribution is represented by a vector field
depending of the position, a ship moves with constant velocity with respect to the
air. How must the ship be controled in order to come from a starting point to a given
goal in the shortest time? This problem can be reduced to a Mayer-Bolza variational
problem since it is formulated writing a Lagrangian functional

L(q(t),q′(t), λ(t)) = F (q(t),q′(t)) + λ(t)r(q(t),q′(t))

where the basic function, F (q(t),q′(t)), is linear with respect to the velocity of the ship,
q′(t) the main variational argument, whereas the restriction function, r(q(t),q′(t)),
is not linear with this argument and λ(t) is the Lagrange multiplier depending on
t. The Mayer-Bolza problem is in essence this type of Lagrangian functional since
always it can be formulated in this way. It is easy to check that the Hamilton-Jacobi
equation corresponding to this Lagrangian functional only depends on the nature of
the restriction function and not on the basic function. From this explanation of the
Zermelo navigation problem we can establish the next set of equivalences: sea with
PES, wind distribution with gradient distribution, ship with geometry of a molecule,
starting point with reactant minimum, goal with transition state, and shortest time
with minimum of the path length on the PES. With this set of equivalences the GAD
method can be formulated as a Zermelo navigation problem. In Figure 5 we show three
different GAD curves to three different control vectors, v.

The GAD method, as mentioned above, can be formulated as a Mayer-Bolza prob-
lem of the calculus of variations related to the solution of a problem of optimal control
theory [14, 64, 66]. In the present context this problem can be formulated as follows:
determine the vector function q(t) of dimension N , satisfying the Eq.(51a) with initial
condition q0 = q(t0) and determine the control vector function, v(t), of dimension
N , restricted to the normalization relation, v(t)Tv(t) = 1, in such a way that the
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Figure 5. Three curves in cyan color along the gentlest ascent dynamics on the modified NFK surface, Eq. (8).

The GAD curves differ in the initial control vector, v, the gradient there, but they converge to the same saddle
point. The blue curves are NTs from Fig. 3 for comparison.

functional

I(q(t)) = t− t0 (52)

assumes an extremal value with the boundary condition, g(q(tf )) = 0, being satisfied
at t = tf . It can be proved that this variational problem defined in this way has an
associated Hamiltonian [14, 66]. The Hamiltonian has the following form,

2H(q,y) = (2vTg(q))2(yTy)− (1 + yTg(q))2 = 0 (53)

where y is the co-vector of q. Note that the y vector plays the equivalent role like the
y vector of Eqs. (7) with respect to q, thus in the present case it is also a co-vector.
The Hamilton equations of Eq. (53) are the Eqs.(51) taking into account that the y-
vector is related with the v-vector through the relation, ωv = (2(g(q))Tv)y, where
ω = 1+(g(q))Ty. Note that from these two relations it holds (g(q))Ty = 1 and ω = 2
along the curve. The study of the second-variation of this variational problem shows
that Eqs.(51) stationarize Eq.(52) but do not neither maximize nor minimize it [66].

6. Conclusion and future work

The mathematical analysis of different reaction path models, some of them widely
used in computational chemistry, shows that in different manners these model curves
have variational nature. The fact opens the possibility to propose new curves in order
to solve new physical problems. The Calculus of Variations can be used to find the
adequate formulation of the problem. An example is the AFIR method of Subsection
4.2 where the variational ansatz opens the possibility to construct solution curves.
Another interesting example is the Gentlest Ascent Dynamics discussed in Section 5,
where the optimal control theory, an extension of the Theory of Calculus of Variations,
plays a central role in the derivation of the equations governing these curves. Thus
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many other curve models proposed using optimal control can be derived for particular
subjects or physical problems [14].
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