
  1 

Analysis of the Valley-Ridge Inflection Points through the 

Partitioning Technique of the Hessian Eigenvalue Equation. 

 

 

 

Josep Maria Bofill,1 Wolfgang Quapp2 

 

1Departament de Química Orgànica, Universitat de Barcelona, Martí i Franquès, 1, 

08028 Barcelona, Spain, Institut de Química Teòrica i Computacional, Universitat de 

Barcelona, (IQTCUB), Martí i Franquès, 1, 08028 Barcelona, Spain. 

2Mathematisches Institut, Universität Leipzig, PF 100920, D-04009 Leipzig, Germany. 

Version: Wednesday, December 12, 2012 

 

 

 

Abstract:  The Valley-Ridge Inflection (VRI) points are related to the branching of a 

reaction valley or reaction channel.  These points are a special class of points of the 

Potential Energy Surface (PES).  They are also special points of the Valley-Ridge 

borderline of the PES.  The nature of the VRI points and their differences with respect 

to the other points of the Valley-Ridge borderline is analyzed using the Löwdin’s 

partitioning technique applied to the eigenvalue equation of the Hessian matrix.  

Eigenvalues and eigenvectors of the Hessian are better imaginable than the former used 

adjoint matrix. 
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Introduction. 

 

 The analysis of PESs remain an important basis for classifying and 

understanding the grounds of the mechanisms of chemical reactions as well as their 

dynamics.  It is associated to the concept of the reaction path (RP) or to the definition of 

the minimum energy path on a PES.  This is an important theoretical tool in the reaction 

theory with a high intuitive power for chemists [1]. The RP is roughly defined [2] as the 

curve, which connects two minima by passing through a first order saddle point (SP), or 

transition state (TS) between them.  The chemical reaction may be composed by a 

number of elementary processes characterizing the mechanism of the reaction.  RP 

bifurcations are omnipresent on PESs; they happen at VRI points already on the PES of 

very small molecules like H2O [3], H2S, H2Se, H2CO [4], HCN [5,6], the ethyl cation 

[7], H3CO, C2H5F [8], and many others.  The importance of VRI points for the chemical 

reactivity is described in the reviews of Ess et al. [9], Bakken et al. [10] and references 

[11,12]. 

 The type of an RP widely used is a mass-weighted steepest descent (SD) curve 

from the SP, the intrinsic reaction coordinate (IRC) [13,14,15,16,17].  However, in 

“skew”, non-symmetric cases the IRC usually does not meet a VRI point being nearby.  

There is a variety of other types of curves that can be used as RP models, and which 
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meet VRIs.  The curves following a constant gradient direction (Newton trajectories 

(NT), a former ansatz was coordinate driving) can be used in many cases to characterize 

the RP [18,19].  Sometimes the gradient extremals (GEs) curves [20,21,22,23,24,25] 

also appear to form a suitable ansatz for such purposes.  Certain Newton trajectories 

describe the valley or cirque structures of a PES, as well as their complements of ridges 

or cliffs (for the definition of such structures see reference [26]).  The structures are 

related to important chemical properties of the PES of the reaction under study [11,12].  

The use of NTs opens the possibility to find and to study VRI points and, in succession, 

bifurcation or branching points of reaction channels, because the reaction channel-

branching is related to the existence of a special class of points of the PES, the VRI 

points [27,28].  A VRI point is that point in the configuration space where, orthogonally 

to the gradient, at least one main curvature of the PES becomes zero [29].  This 

definition implies that the gradient vector is orthogonal to an eigenvector of the Hessian 

matrix where its eigenvalue is zero.  Usually, VRI points represent nonstationary points 

of the PES.  Note that the VRI points are independent of the RP curve model used.  

They are related to the nature of the PES topography.  Normally the VRI points are not 

related to the branching point of the RP curve except for NT curves [19, 28].  So to say, 

a geometrical indicator of a VRI point is the bifurcation of a singular NT. 

However, a more general concept emerges.  For it we go back to the IRC curve 

as an RP model.  This curve is defined by an autonomous system of differential 

equations for the tangent vector describing its evolution [30].  Its solution is unique; due 

to this fact no bifurcations can occur before reaching the next stationary point after the 

SP.  No branching of PES valleys will be truly described or located by using the IRC 

curve as an RP type model [29,31].  It orthogonally traverses the family of levels, the 

equipotential energy surfaces [30].  Hirsch and Quapp [32] gave an example of a two-
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dimensional PES where the IRC is going over a skew ridge, however, it does not find 

the valley ground nearby, which is here characterized by a GE.  The IRC or any other 

SD curve do not take into account the curvature of the traversed contours in their 

evolution, in other words it does not give information on the valley floor or ridge 

character of its pathway.  After a change of levels from convex to concave form the IRC 

curve ceases to be a valley pathway and is actually a merely RP.  An early visualization 

of such an instable minimum energy path was given by Mezey in reference [33], page 

112, Figure II.13, see also [34].  As explained, the IRC curve traverses in its evolution a 

family of equipotential energy surfaces.  At any point of a SD curve we can define a 

tangential plane to the equipotential energy surface orthogonally traversed by the SD 

curve at the point, and the normal of the tangential plane is the gradient vector of the 

point.  All direction vectors contained in the tangential plane are orthogonal to the 

gradient vector.  If at least one of these direction vectors is connected with the curvature 

zero then we say that the SD curve crosses a valley-ridge transition (VRT) point.  The 

curve leaves a valley and enters a ridge region of the PES or vice-versa.  The VRT 

points are the border between valley- and ridge-regions.  The concept of a VRT point is 

much more general than the VRI point concept.  In fact a VRI point is a special case of 

a VRT point.  In the general VRT situation, the gradient vector is not orthogonal to the 

set of eigenvectors of the Hessian matrix.  This is the most general behavior.  The zero 

curvature of the PES along the level line or equipotential energy surface at the VRT 

point comes from a suitable linear combination of the eigenvectors with their 

eigenvalues of the Hessian matrix.  In fact a manifold of points with these features exist 

on a PES.  They are border points between quasi-convex valley regions and ridges.  NTs 

there have a turning point.  So to say, a turning point of an NT is the geometrical 

indicator of a VRT point, see [35].  The VRI points are special VRT points. 
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In this article we analyze the relations between VRT and VRI points using the 

Löwdin’s partitioning technique applied to the Hessian eigenvalue equation [36].  This 

partitioning technique was used to analyze the behavior of the Newton-Raphson 

procedure during the optimization of the Multi-Configurational Wave Function [37] and 

the location of minima and SPs on a PES [38,39,40].  The connection with previous 

formulations based on the adjoint matrix is also reported.  The use of the Hessian itself 

is better imaginable, in contrast to the use of its adjoint matrix in former calculations. 

 

 

 

 

The Matrix Partitioning Theory applied to the Hessian at the VRI point. 

 

Previous Remarks. 

 

 In the treatment of the theory of the VRI and VRT points we use the gradient 

vector of the PES, g, and a set of N-1 linear independent direction vectors, {si}i=1,N-1, 

orthogonal to the gradient vector.  N is the dimension of the PES.  Without loss of 

generality we take the set of N-1 linear independent direction vectors as a set of 

orthonormalized vectors, and we collect them using the rectangular matrix S = [s1 | … | 

sN-1].  The S matrix has the property, STS = IN-1, where IN-1 is the unit matrix of 

dimension N-1.  The superscript T means transpose.  Initially the Hessian matrix at any 

point of the PES, H, is expressed in the set of coordinates where the PES function is 

defined.  Now we assume that g is not the zero vector.  We transform the Hessian 
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matrix into the base formed by the normalized gradient vector and the subset of N-1 

linear independent direction vectors, collected in the S matrix, 
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where r is the normalized gradient vector, r = g / (gTg)1/2, and Hrr = rTHr, HSr = STHr, 

HrS = rTHS, HSS = STHS.  The matrix transformation T has the property that TTT = I 

being I the unit matrix of dimension N.  Note that Hrr is a matrix block of dimension 

one while HSr and HrS are two vectors of dimension N-1.  Finally, HSS is a matrix block 

of dimension (N-1)x(N-1).  The Hrr block matrix is in fact an element of the full Hessian 

matrix TTHT, in other words, (TTHT)11 = Hrr.  A deeper inspection of the vector HSr = 

STHr reveals its entries.  If r is an eigenvector of H, then H r = hr r, hr being its 

eigenvalue, and we have STHr = hr STr = 0N-1, the zero vector of dimension N-1, 

because the S matrix is formed by N-1 vectors orthogonal to r per construction.  If r is 

not an eigenvector, only then the vector HSr can have non-zero entries, at all.  Of course, 

the same holds for HrS
T. 

 The eigenvalue equation of the Hessian matrix in the original coordinates, H aI 

= hI aI, I = 1,N where the set, {hI, aI }I=1,N, are the corresponding eigenpairs, can be 

transformed into the new base vectors, taking the form, 
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where cI = TTaI, and its components are cr
I = rTcI and cS

I = STcI.  At a VRI point the 

Hessian matrix has at least an eigenpair, say J, such that, hJ = 0 and the corresponding 

eigenvector has the structure (TTaJ)T = (cJ)
T = (cr

J, (c
S

J)
T) = (0, (cS

J)
T).  This condition 

of a VRI point implies that det(H) = det(TTHT) = 0 while in a VRT point det(HSS) = 0 

is required only.  In this case we will have that one column (or one row) of the HSS 

matrix is linearly dependent from the others.  There is an sI and there are N-2 sJ vectors 

with 

S
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= !
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#
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with any real numbers λJ.  The λJ are not all equal zero because that would be the case 

of a zero eigenvalue of H, thus it would correspond to a VRI point.  Multiplication of 

equation (3) from the left hand side with S gives, 

Hs
I
= !
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Hs

J
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# .

 (4) 

Because the set {sK}K=1,N-1 is an orthonormal system of vectors, they cannot be 

eigenvectors of H, if equation (4) is fullfiled.  In the contrary case, it would be hI sI = 

ΣJ≠I
N-2 λJ hJ sJ, which is a contradiction, if hI and at least one hJ are not zero.  So, 

equation (4) cannot be fulfilled for eigenvectors of H.  Because H is a symmetric 
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matrix, it has N orthogonal eigenvectors.  Since H has not zero eigenvalues, its 

determinant is not zero. 

From the algebraic point of view, we note that det(HSS) = 0 does also not imply det(H) 

= 0.  The proof is the following.  We assume that we are in a point where Hrr ≠ 0.  First 

we take the Schur factorization [41] on the TTHT matrix,
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where 0N-1 is the zero vector of dimension N-1, and Hrr
-1 = 1 / Hrr.  Second we apply the 

determinant theory to the above equality (5), obtaining, det (H) = det (TTHT) = Hrr det 

(HSS-HSrHrr
-1HrS).  Now we assume that we are in a VRT point, however, not in a VRI 

point.  The Hrr is a matrix element different from zero and det (HSS) = 0.  For a dyadic 

product of two vectors, p and f, we have the relation det (I – pfT) = 1 – fTp, and for a 

non-singular quadratic matrix B we can extend this to det (B – pfT) = det (B) (1 – fTB-

1p) [42].  If we use for the inverse matrix the adjoint matrix, A, divided through the 

determinant, B-1 = A / det (B), we can shorten the det-factor and we get, 

 

det B!pf T( ) = det B( )! f TAp.  (6) 

 

Now let be B = HSS and A = ASS its adjoint matrix.  We treat the limes case that det (B) 

→ 0.  Then also equation (6) holds.  In equation (6) we have to test p = STHr and f = 

pHrr
-1.  Let {wi}i=1,N-1 the set of eigenvectors of HSS.  Without lost of generality let w1 
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the eigenvector with null eigenvalue.  Notice that at least an eigenvalue should be zero 

because det (HSS) = 0.  The ASS has the same eigenvectors, but its eigenvalues are ρ1 ≠ 0 

and ρi = 0 for i = 2,N-1.  Now we put the vector p = STHr = HSr as a function of the 

eigenvectors of HSS, 
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where χi = wi
Tp.  We multiply both sides of equation (7) from the left by ASS and we 

get, 
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because the eigenvalues ρi for i=2,N-1 are zero.  With the result we have fTASSp = 

pTASSp Hrr
-1 = χ1

2ρ1Hrr
-1, and the determinant expression (6) becomes, det (HSS – 

HSrHrr
-1HrS) = - χ1

2ρ1Hrr
-1.  If χ1 ≠ 0, the determinant of the matrix (HSS – HSrHrr

-1HrS) 

is also not zero, and det (H) = det (TTHT) ≠ 0.  In summary in a VRT point det (HSS) = 

0 but det (H) = det (TTHT) = Hrr det (HSS – HSrHrr
-1HrS) = - χ1

2ρ1 ≠ 0. 

In contrast, at a VRI point in addition to det (HSS) = 0 at least an element of the 

HSr vector and by symmetry the corresponding element of the HrS vector should be zero 

obtaining the condition det (H) = det (TTHT) = Hrr det (HSS – HSrHrr
-1HrS) = 0, as 

required in this type of points.  These are the reasons why the condition of a point of the 

PES to be a VRI is much stronger than that to be a VRT point.  Before entering into a 
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more detailed analysis we transform the above eigenvalue equation (2) using the unitary 

transformation, 
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where WSS = [w1| … |wN-1] is the matrix formed by the set of eigenvectors that 

diagonalize the block matrix HSS.  The product is UTU = I because WSS
TWSS = IN-1.  

The set of eigenvectors, which we collected in the matrix WSS, is defined by the base of 

the N-1 linear independent directions S being orthogonal to the gradient vector.  Now 

we transform the eigenpair equation (2) using the unitary matrix U, that is 

UT(TTHT)UUTcI = hIU
TcI.  The structure of the resulting eigenpair equation is 
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where zSr = WSS
T HSr, dS

I = WSS
T cS

I and ZSS = WSS
T HSS WSS = {zi δij}i,j=1,N-1 being zi 

the eigenvalues of the HSS block matrix.  At a VRT point det (HSS) = det (ZSS) = 0 

which means that at least one eigenvector exists there, say wj, whose eigenvalue zj = 0.  

This eigenvector is orthogonal to the gradient vector but is not an eigenvector of the full 

Hessian matrix H.  As explained in the Introduction section, the latter implies that the 

equipotential energy surface has a direction, wj, of zero curvature, zj = 0, but this 

direction does not coincide with an eigenvector, cI, of the full Hessian matrix [29, 31]. 
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The Theory of the Partition Technique applied to the eigenpair equation (10) at the VRI 

point. 

 

We consider the eigenpair equation (10), where the set of eigenvalues of the HSS block 

matrix are in increasing order, z1 ≤ z2 ≤ … ≤ zN-1.  This eigenpair equation can be written 

as a system of two coupled equations, 
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For any hI for which the dS
I components of the eigenvector I are nonvanishing, we can 

write the component cr
I as a function of dS

I, 
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Substituting in equation (11.b) we obtain the next expression 
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The eigenpair solutions of equation (10) or equation (2) are equivalent to the solutions 

of the above partitioned equation (13).  We define the vectorial function or multivalued 

function l(h) as the vector whose elements are the eigenvalues of the matrix L(h) = 

[ZSS-zSr(Hrr-h)-1zrS
T], and the single valued function R(h) = h.  The set of eigenpairs of 

the L(h) matrix is {l(h)i, v(h)i}i=1,N-1, for simplicity in the future we omit the h 
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dependence of vi.  At each h the eigenvalues of L(h) matrix are in increasing order, l(h)1 

≤ l(h)2 ≤ … ≤ l(h)N-1.  The eigenvalues of the eigenpair equation (10) or equation (2) are 

given by the set of hI for which exists a l(hI)i = R(hI) = hI, i = 1,N-1.  The vi eigenvector 

associated to this eigenvalue l(hI)i = hI is the normalized form of the dS
I vector.  

Substituting it in equation (12) we get the whole un-normalized (UTTTaI)
T = (cr

I, (dS
I)

T) 

eigenvector.  The graph of each branch of l(h) as a function of h is given in Figure 1 and 

explained in the next subsection.  The horizontal asymptotes of these branches are the 

eigenvalues zi of the block diagonal matrix ZSS with, 
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In the same way the corresponding set of eigenvectors of L(h) tends to the set of 

eigenvectors of the block matrix HSS, 
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The vertical asymptote is located at the h value that corresponds to the value of Hrr.  

Each branch of l(h) is a nonincreasing function of h and satisfies a noncrossing rule 

with the other branches.  The shape of each branch say, l(h)i, is governed by the block 

coupling matrix, zSr, or the equivalent one, zrS
T, and the corresponding eigenvector, vi.  

As h approaches to the vertical asymptote Hrr, due to the noncrossing rule, only the 

lowest branch of l(h) namely, l(h)1, becomes singular and has the principal part 
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where the last equality holds due to the fact that zrS
T = zSr.  At these values of h the 

eigenvector v1 becomes proportional to the vector zSr and because the eigenvectors are 

orthonormalized, the remainder of the set of eigenvectors does not interact with the 

principal part.  Due to this fact, l(h)i = vi
TL(h)vi ≈ vi

TZSSvi, for i =2,N-1. 

 At the VRI point at least one eigenvalue of the Hessian matrix is zero, there 

must be at least a branch, say l(h)i, such that at h = 0, l(0)i = R(0) = 0 = vi
TZSSvi -Hrr

-

1(vi
TzSr)

2.  At the VRI point as well at least a diagonal element, say j, has the value zero, 

(ZSS)jj = zj = 0, implying that the branch l(h)j tends to zero as h tends to – ∞ and l(h)j+1 

tends to zero as h tends to + ∞.  This behavior is due to both the nonincreasing rule of 

the branches and the existence of a vertical asymptote.  In addition the substitution of 

the corresponding vi eigenvector as a normalized dS
I vector in equation (12) the 

resulting cr
I component should be equal zero, which is the second condition at the VRI 

point as explained in the previous subsection.  These two conditions are satisfied by the 

vi eigenvector if it is, at h = 0, orthogonal to zSr vector since vi ≠ 0N-1 and from its 

structure should be a vector such that the j component is equal one, vi
T = (01, …, 1j, …, 

0N-1).  The latest satisfies that R(0) = l(0)i = vi
TZSS

Dvi = zj = 0, as required.  Notice that 

the subscript i of l(0)i can be j or j+1 depending if Hrr is positive or negative, 

respectively.  Finally, the component j of the vectors zSr and zrS
T should be equal zero 

since in this manner vi
TzSr = 0, as required too.  This ends the general analysis of the 

Hessian matrix at the VRI point using the theory of Löwdin’s Partitioning Technique 

[36]. 

Finally, from this analysis based on the structure of the Hessian matrix, we can say that 

the sufficient condition that a point of the PES is a VRT point is that the determinant of 
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HSS is zero.  The HSS comes from the Hessian matrix of this point projected in the 

subspace spanned by the set of N-1 linear independent directions orthogonal to the 

gradient vector.  On the other hand this condition is necessary but it is not sufficient for 

a VRI point.  The sufficient condition for a VRI point is that in addition to the condition 

that the HSS matrix has at least a null eigenvalue, this null eigenvalue which is an 

element of the ZSS matrix must be decoupled with respect to the Hrr diagonal element. 

 

 

The features of the plot of l(h) of a Hessian matrix at the VRI point. 

 

We assume a VRI point on a five-dimensional surface as a generic example.  In Figure 

1 is shown the l(h) plot as a function of h of the Hessian matrix in this point.  At the 

VRI point holds that at least a horizontal asymptote of the graph coincides with the h 

axis.  This asymptote corresponds to the eigenvalue or eigenvalues of the block Hessian 

matrix, HSS, with the value zero.  A branch should cross the point, h = 0, l(h) = 0, and 

because the straight line R(h) = h also crosses this point, then, according to the 

explanation given in the previous subsection, this implies that the full matrix has at least 

an eigenpair with null eigenvalue.  The shape of each branch is a function of the factor 

(vi
TzSr)

2 being vi the eigenvector associated to the considered branch.  The graph also 

has a unique vertical asymptote at h = Hrr, where Hrr is the element of the one-

dimensional block matrix Hrr.  A general graph is pictured in Figure 1 for the case of a 

negative Hrr.  The block Hessian matrix HSS has a negative eigenvalue, z1, the 

eigenvalue zero, labeled as z2, and two positive eigenvalues, z3 and z4.  The resulting full 

Hessian has two negative eigenvalues, h1 and h2, two positive eigenvalues, h4 and h5, 

and the null eigenvalue, h3.  These values are located where the branches cut the straight 
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line R(h) = h.  The branch l(h)2 as h tends to – ∞ asymptotically approaches to the level 

of the eigenvalue z2 = 0.  However in its evolution as h tends to + ∞ asymptotically 

approaches to the level of the eigenvalue z1.  This decreasing effect starts before the 

branch reaches the point h = 0, l(h) = 0.  Paying attention to the branch l(h)3, as h tends 

to – ∞ this branch asymptotically approaches to the level of the eigenvalue z3 but it 

asymptotically approaches to the level of the eigenvalue z2 when h tends to + ∞.  

During this evolution the branch l(h)3 crosses the point, h = 0, l(h) = 0, which is also a 

point of the straight line, R(h) = h.  Due to this fact this branch is responsible for the full 

Hessian matrix having a null eigenvalue, labeled as h3.  The associated eigenvector of 

the branch l(h)3 at the point, h = 0, l(h) = 0, has the structure, (v3)
T = (0, 1, 0, 0), which 

is orthogonal at this point to the vector, zSr, the block of matrix coupling elements.  This 

orthogonality is the reason why the eigenvector with null eigenvalue of the full Hessian 

matrix is orthogonal to the gradient vector. 

At the value h = Hrr, the eigenvector of the branch l(h)1, v1, is parallel to the 

block coupling vector, zSr.  The value of l(h)1 goes to – ∞ as h approaches to Hrr from 

the left.  In this interval the branch crosses the straight line R(h) = h at the value h = h1.  

Note that h1 < Hrr.  For the remainder of the branches at h ≈ Hrr holds, their 

eigenvectors are orthogonal to the zSr coupling vector, that their values are given by 

vi
TZSSvi for i = 2, 3, 4.  The values of vi

TZSSvi for i = 2, 3, 4 are between z1 and z4, in 

other words, z1 ≤ vi
TZSSvi ≤ z4 thanks to the MiniMax Eigenvalue theorem [43]. 

 In the h interval that goes from Hrr to + ∞ a new branch appears just at h ≈ Hrr 

on the right hand side part.  This new branch is labeled as l(h)5 and its values decrease 

asymptotically from + ∞ to the value of the eigenvalue z4 as h tends to + ∞.  In this 

interval this branch crosses the straight line R(h) = h at the value of h = h5 which is the 

highest eigenvalue of the full Hessian matrix. 
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Connection with previous expressions used to characterize the VRT and VRI points. 

 

 So far the basic element used in the present analysis is the Hessian matrix.  We 

derive its structure at the VRT and VRI points.  From these results the necessary and 

sufficient conditions for a point to be VRT or VRI point have been discussed.  

However, these conditions were derived and analyzed some time ago using the adjoint 

matrix of the Hessian matrix rather than the Hessian itself.  Now we expose the 

equivalence between both views in this subsection.  From the matrix theory and the 

determinant theory it is known that a matrix multiplied by its adjoint matrix is equal to 

the unit matrix times the determinant value of the matrix.  We apply this formula to the 

TTHT matrix, 
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where we applied that TTT = I, the unit matrix of dimension N.  The adjoint matrix A is 

defined as Aji = [(-1)i+j mij]T, where mij is the minor of H obtained by the deletion of the 

ith row and the jth column from H, and taking the determinant.  Note that j and i are 

interchanged in Aji.  In the TTAT matrix we have the element Arr = rTAr.  ArS = rTAS 

and ASr = STAr are vectors of dimension N-1, where due to the symmetry (ASr)
T = ArS 

and ASS = STAS is a block matrix of dimension (N-1)x(N-1).  As noted above, if a point 

is a VRT point then the sufficient condition is det (HSS) = 0.  Using the definition of the 
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adjoint matrix we have, Arr = rTAr = det (HSS) = 0, now since r = g / (gTg)1/2 we finally 

obtain 

 

rTAr =
gTAg

gTg
= 0 .  (18) 

 

Equation (18) was found by Hirsch [31], so it will be labeled as the Hirsch equation.  It 

gives the sufficient condition of a VRT point.  The connection to the previous analysis 

based on the Hessian matrix is now well established.  However, this is a necessary 

condition but not a sufficient one for a point to be a VRI point given in terms of the A 

matrix.  In terms of the adjoint matrix A the sufficient condition of a VRI point can be 

derived as follows.  Using the structure of the Hessian matrix, TTHT at the VRI point 

and the definition of the adjoint matrix, at the VRI point the TTAT matrix has the form 
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 (19) 

 

The reason of this result is due to the decoupling between the diagonal element Hrr and 

the null element of the diagonal ZSS matrix.  According to these results all elements of 

the first column and the first row of the TTAT matrix are zero.  Due to this fact we can 

write the first column or due to the symmetry the first row of this adjoint matrix as (Arr 

ArS) = (rTAr  rTAS) = rTA[r | S] = rTAT = 0T.  Since the T matrix is built by a set of N 

linear independent vectors and using the definition of the r vector we obtain, 

 

Ar =Ag gTg( )
!1 2

= 0 .  (20) 
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Equation (20) gives the necessary and sufficient condition for a point of the PES to be a 

VRI point using the adjoint matrix of the Hessian as a basic element [5].  We conclude 

that it is equivalent for a VRT point to say det(HSS) = 0 means that rTAr = 0, and for a 

VRI point it is equivalent to say that the null or null elements of ZSS matrix are 

decoupled with respect to the diagonal element of Hrr which means that Ar = 0. 

 

 

 

 

Some Numerical Examples. 

 

A Two-Dimensional Case. 

 

 This is the trivial case but it helps to clarify the above conclusions.  The PES is 

given in Cartesian coordinates, V(x), where xT = (x1, x2).  The normalized gradient 

vector is rT = (r1, r2) and its orthogonal normalized direction vector, sT = (s1, s2).  These 

two vectors define the T matrix transformation T = [r | s].  Let us assume that the 

current point is a VRT point, then the transformed Hessian matrix to the r and s base 

vectors is 
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 (21) 
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Due to the symmetry of the Hessian matrix Hrs = Hsr and from this det (H) = -Hrs
2.  If 

the point is a VRI then Hrs = Hsr = 0 and det (H) = 0.  In these conditions the eigenpair 

with the eigenvalue, h = 0, of the Hessian matrix given in equation (21) is cT = (0, 1).  

Transforming the eigenvector back to Cartesian coordinates we obtain aT = cT TT = sT.  

This eigenvector coincides with the normalized direction vector orthogonal to the 

gradient vector.  In this way the eigenvector with null eigenvalue is tangent to the 

equipotential energy curve at the VRI point. 

 A numerical example of a two-dimensional PES is that proposed by Quapp and 

coworkers [31].  The PES is characterized by the following expression 

 

V x( ) =1 2 x
1
x
2

2
! x

2
x
1

2
! 7 4 x

1
+ 2x

2( )+1 30 x
1

4
+ x

2

4( ) .
 (22) 

 

This PES is pictured in Figure 2.  The values are given in arbitrary units.  At the point 

xT = (0, 0) the normalized gradient vector is rT = (-7, 8)(113)-1/2 and the orthogonal 

direction vector is sT = (8, 7)(113)-1/2.  All the elements of the Hessian matrix take the 

value zero, H11 = H22 = H21 = H12 = 0.  Clearly the det (H) = 0 implying that the point 

(0, 0) is a VRI point of this PES.  Taking into account the previous discussion means 

that the s vector is just the eigenvector of null eigenvalue orthogonal to the gradient 

vector.  Furthermore, in this case the normalized gradient vector r is also an eigenvector 

of null eigenvalue.  For the reason this point is a point belonging to a GE curve [20, 21, 

22, 23, 24, 25] of this PES. 

Now we take the point xT = (0.44, -0.80) located on the valley ridge borderline 

indicated as a thin dashed line in Figure 2.  The normalized gradient vector is rT = (-

0.37, 0.93) and the orthogonal direction vector is sT = (0.93, 0.37).  In the [r | s] base 

representation the elements of the Hessian matrix take the values, Hrr = 1.57, Hrs = Hsr 
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= -0.96 and Hss = 0.0.  Due to this Hessian structure this point is a VRT point and the s 

direction vector has null curvature.  The s direction is tangent to the equipotential curve 

at this point.  The equipotential curve has null curvature at this point.  The eigenvectors 

of the Hessian matrix in the Cartesian coordinates are aT
1 = (0.68, 0.73) and aT

2 = (-

0.73, 0.68) and their eigenvalues are h1 = -0.46 and h2 = 2.03 respectively.  Note that 

det(H) ≠ 0 and no eigenvector coincides with the s vector, the direction vector of null 

curvature.  Clearly the point xT = (0.44, -0.80) is a VRT point of the PES given in 

equation (22).  This point is also a point that belongs to the IRC curve joining the SP 

with the minimum.  For the reason this IRC is an RP but achieves the category of 

minimum energy path.  In its evolution from the first order saddle point it leaves a 

valley and enters a ridge and finally again enters the valley of the minimum.  In Figure 

2 this IRC curve is the dotted line.  Note, the crossing of the IRC with the border line 

between valley and ridge, the dashed curve of VRT points, does not indicate where a 

possible RP bifurcation can take place on the PES.  Additionally, there is such a border 

line through every SP where no bifurcation takes place. 

 

 

A Three-Dimensional Chemical Example. 

 

 As a chemical example we report the three dimensional system HCN.  For 

simplicity only, we approximate the coordinates as Cartesians: uncoupled, orthogonal 

coordinates.  The PES function is given in internal coordinates defined by the two bond 

distances, namely, CH and CN, and the bond angle, HCN, labeled by α.  In this case 

equation (1) takes the form, 
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Both matrices are symmetric.  Figure 3 shows a schematic section of some VRT points 

on the PES of HCN obtained at the level RHF/6-31G* using the GAMESS code [44].  

They are approximated by the dashed line.  The picture is a projection into the plane CH 

= 1.125 Å, and for the level lines, all energies are optimized to the corresponding raster 

of the two coordinates CN, and angle α.  There is a VRI point of the dissociation of the 

N-atom from the SP of the isomerization.  The VRI is at the cross of the four branches 

a, b, c, and d of the singular NT through the point.  Further dotted curves are regular 

NTs, like the curve e.  At their turning points are cross-symbols: these are the VRT 

points.  There is the border between the branches a, and b, however, not between a, and 

d, because the VRI point is of a mixed character.  It is not a usual ''pitchfork'' 

bifurcation.  The branches b and c are valley pathways, however, a, and d are on the 

ridge.  The ''southern'' NTs increase in energy from the SP and lead anywhere into the 

PES mountains to an SP of index two.  They do not have a turning point.  Branches b 

and c, (or, not shown, NTs on the right hand side, and over them) may serve as an RP 

model of the dissociation of the N-atom from the HCN minimum. 

At each point of the NT depicted by e we compute the eigenvalues and the eigenvectors 

of the corresponding Hessian matrix to find a VRT point.  The VRT is at the point qT = 

(qCH, qCN, qα) = (1.297, 1.090, 94.7).  The bond distances are given in Å and the bond 

angle in degrees.  At this point the Hessian matrix in internal coordinates is HCH,CH = 

0.11193, HCH,CN = -0.01487, HCN,CN = 2.04173, HCH,α = 0.07521, HCN,α = 0.07936, Hα,α 
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= -0.03748.  The units are given in Hartree / bohr2, Hartree / (bohr radian) and Hartree / 

radian2.  The eigenpairs of this Hessian matrix are h1 = -0.07, a1
T = (-0.037, -0.381, 

0.924); h2 = 0.14, a2
T = (-0.009, 0.924, 0.381); h3 = 2.04, a3

T = (-0.999, 0.006, -0.038).  

The main component of the first eigenvector is the bond angle α, while for the second 

and the third eigenvectors the main components are the bond distances CN and CH, 

respectively.  Note that det(H) ≠ 0 indicating that this point is not a VRI point.  The 

gradient vector at this point in Hartree / bohr and Hartree / radian is, gT = (-0.230, 

0.078, -0.044).  Using this gradient vector a T matrix transformation is computed by a 

Gram-Schmidt orthogonalization using the gradient for the first vector.  Their 

components are, rT = (-0.933, 0.315, -0.176), s1
T = (0.213, 0.875, 0.434), s2

T = (-0.291, 

-0.367, 0.884).  The components of the resulting TTHT symmetric matrix are, rTHr = 

1.812, s1
THr = -0.398, s1

THs1 = 0.238, s2
THr = 0.508, s2

THs1 = -0.121, s2
THs2 = 0.066.  

The block matrix HSS is characterized by the elements of the TTHT matrix, s1
THs1, 

s2
THs1, s2

THs2 and due to the symmetry s2
THs1 = s1

THs2.  The eigenpairs of this HSS 

matrix are, z1 = 0.00, w1
T = (0.458, 0.889); z2 = 0.30, w2

T = (0.889, -0.458).  From 

these results we see that det(HSS) = 0.  The coupling vector between rTHr and ZSS = 

WTHSSW, namely, zrS
T = (s1

THr s2
THr) W = (s1

THr s2
THr) [w1 | w2] = (0.269, -0.586) 

≠ 02
T.  Because det(HSS) =0 and zrS ≠ 02 or that it is equal det(H) ≠ 0 and det(HSS) =0 

we conclude that this point is a VRT point. 

Figure 4 shows the same VRI region like Figure 3 in the full three-dimensional 

configuration space of all internal coordinates.  Note that this VRI point is part of a one-

dimensional VRI manifold on the two-dimensional ridge of the PES, a curve, thus a 

manifold of dimension N-2, see [6].  The VRT points form a two-dimensional surface in 

the full space. 
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Conclusions and Final Remarks. 

 

 The purpose of this paper is to show the mathematical features of VRI- and VRT 

points and their subtle differences.  Based on the application of Löwdin’s Partitioning 

Technique [36] on the Hessian eigenpair equation at the VRT and VRI points we derive 

the structure of this matrix at these special points of the PES.  This analysis was carried 

out in the space spanned by the gradient and the complete subset of linear independent 

directions orthogonal to the gradient vector.  The change of coordinates permits to study 

the curvature of the proper directions contained in the equipotential energy surface in a 

better way.  The nature of this curvature is related to the existence of VRT and VRI 

points.  The Hessian matrix in this new set of coordinates can be divided into two 

diagonal blocks.  A block corresponds to the Hessian projection into the gradient 

subspace and the other one of the resulting projection of this Hessian into the subset of 

directions tangent to the equipotential energy surface.  The coupling block of these two 

diagonal block matrices should also be taken into account.  The Löwdin’s Partitioning 

Technique enables us to use the structure of these blocks to conclude if the point is a 

VRT or a VRI point.  If the diagonal form of the block Hessian matrix has at least a null 

eigenvalue and this element is decoupled with respect to the block of Hessian projected 

into the gradient subspace then we are in a VRI point.  If the blocks are coupled then we 

are in a VRT point.  In the latter case the eigenvector of null eigenvalue of this block 

matrix is not an eigenvector of the full Hessian matrix, since this eigenvector is defined 

in the subspace of directions tangent to the equipotential energy surface.  It does not 
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make the decoupling between the null eigenvalue and the block Hessian projected into 

the gradient subspace.  In the former case the eigenvector of null eigenvalue due to the 

decoupling with the block Hessian projected into the gradient subspace is an actual 

eigenvector of the full Hessian matrix of this point. 

Note that the eigenvalues of the Hessian may depend from the used coordinate system.  

Fortunately, the sign or the zero value are independent.  Thus, the location of the VRI 

points does not depend from the coordinate system [2,45,46].  We can use any 

convenient linear transformation to highlight VRI points. 

Finally we report the connection with a former alternative way to characterize these 

points by the adjoint Hessian matrix.  However, the adjoint matrix is more abstract and 

not well imaginable.  The Hirsch equation for a VRT point, equation (18), and their 

counterpart for the VRI points, equation (20), are the equivalent form using the adjoint 

matrix to that just explained using the Hessian as a basic element. 

 

 

 

 

Acknowledgments. 

 

Financial support from the Spanish Ministerio de Economía y Competitividad, project 

CTQ2011-22505 and, in part from the Generalitat de Catalunya projects 2009SGR-

1472 is fully acknowledged.  We are indebted to a referee for a constructive comment. 

 

  



  25 

 

 

Figure 1. 

 

 

 

 

 

 

 

 

  

l(h)
R(h)=h

h

l(h)=0

h=Hrr h=0

z1
z1

z2=0

z3

z4

z3

z4

z2=0

h1

h2

h3=0

h4

h5

l(h)1

l(h)2

l(h)3

l(h)4

l(h)5



  26 

 

 

Figure 2. 

 

 

 

 

 

  



  27 

 

 

Figure 3. 
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Figure 4. 
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Figure Captions. 

 

Figure 1.  Plot of the vectorial function or multivalued function l(h) as function of h.  

The elements of this vectorial function represent the eigenvalues of the matrix L(h) = 

[ZSS-zSr(Hrr-h)-1zrS
T], and the eigenvalues of the Hessian matrix are represented by the 

intersections of these branches with the line R(h) = h.  The Hessian matrix corresponds 

to a VRI point of a generic five dimensional surface.  The Hrr element is taken negative.  

We show the case where the block Hessian matrix HSS has in addition to the eigenvalue 

zero (z2) a negative eigenvalue, z1, and two positive eigenvalues, z3 and z4.  The 

resulting full Hessian has two negative eigenvalues, h1 and h2, two positive eigenvalues 

h4 and h5 and the null eigenvalue, h3.  These values are located where the branches cut 

the straight line R(h) = h.  The asymptote of the branch l(h)3 at negative values of h 

takes the value of z3 whereas at positive values takes the value of z2 and across the point 

h = 0, l(h) = 0.  This branch is responsible for the fact that the full Hessian matrix has a 

null eigenvalue.  At the value h = Hrr, the eigenvector of the branch l(h)1, v1, is parallel 

to the block coupling matrix which is a vector, zSr.  For the remainder of the branches 

their eigenvectors are orthogonal to this coupling vector.  The branch l(h)3 at the point h 

= 0, l(h) = 0 the associated eigenvector has the structure, (v3)
T = (0, 1, 0, 0), being 

orthogonal to the zSr vector.  This is the reason way the eigenvector of the null 

eigenvalue of the full Hessian is orthogonal to the gradient vector.  For this reason this 

Hessian belongs to a point of the PES that is a VRI point.  See text for more details. 

 

Figure 2.  Equipotential curves of the two-dimensional PES model given in equation 

(22).  The IRC curve from the SP1 to the minimum is the dotted line.  GEs are the thick 
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dotted curves, branches of a singular NT are the bold dashes.  Pairs of eigenvectors of 

the Hessian are shown at a grid of points.  The thin dashed lines are the border between 

the valley and the ridge of the PES.  Each point of this border is a VRT point and 

satisfies the Hirsch equation (18). 

 

Figure 3.  Two-dimensional contour diagram of the HCN PES section for CH = 1.125 

Å fixed [31].  The fixed value is the CH distance of the VRI point.  The NTs are 

projected from their three-dimensional space into this plane.  The dotted branches a, b, 

c, d are the singular NT through the VRI point, where other dotted curves are regular 

NTs.  The NTs between branches a, and b have TPs depicted by crosses.  They are VRT 

points.  There is the border between the bowl of the HCN minimum, and the ridge 

through the SP.  Further properties of the VRT point of curve e are given in the text.  

There is also a GE (thin line) which connects the SP and the VRI point.  It does not 

bifurcate at the VRI point. 

 

Figure 4.  Singular NT (dots) which meets the VRI point of an N-dissociation from 

HCN saddle in the full three-dimensional configuration space of internal coordinates.  

The singular NT connects SP and VRI point, as well as the HCN minimum and the VRI 

point.  There are regular NTs (dots also) turning off the VRI region.  The full and 

dashed line (left and below) is the valley line of the isomerization [5]. 
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