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ABSTRACT: The potential energy surface (PES) of a molecule can be decomposed into equipotential hypersurfaces. We show
in this article that the hypersurfaces are the wave fronts of a certain hyperbolic partial differential equation, a wave equation. It is
connected with the gradient lines, or the steepest descent, or the steepest ascent lines of the PES. The energy seen as a reaction
coordinate plays the central role in this treatment.

1. INTRODUCTION

The potential energy surface (PES)1−3 is the basic element of
the chemical reaction path and of theories of chemical
dynamics. The PES is a continuous function with respect to
the coordinates of the nuclei, having also continuous derivatives
up to a certain order not specified here, but required by the
operations which are to be carried out. The PES can be seen as
formally divided in catchments associated with local mini-
mums.1 The minimums are associated with chemical reactants
and products. The first order saddle points or transition states
(TSs) are located at the deepest points of the boundary of the
basins. According to these definitions, both points, TS and
minimums, correspond to stationary points of the PES, but they
differ in the structure of the Hessian matrix. Two minimums of
the PES can be connected through a TS via a continuous curve
in the N-dimensional coordinate space, describing the
coordinates of the nuclei. The curve characterizes a reaction
path (RP). One can define many types of curves satisfying the
above requirement. This is the reason for the variety of RP
models. One of the most used RP models is the steepest
descent (SD) from the TS to the reactant or product. The SD
reaction path in mass weighted coordinates is normally called
the intrinsic reaction coordinate (IRC).4−6 The discussion of a
coordinate independent definition of SD curves was already
given.7

The SD curves and in particular the IRC path are in fact
orthogonal trajectories to the contour hypersurfaces, V(q) = ν
= constant, if the corresponding metric relations are used, see
ref 7. In this paper, we will assume N orthogonal and
equidistant coordinates, q, thus Cartesians of the n atoms with
N = 3n, for simplicity only. Then the metric matrix reduces to
the unity matrix. In the determination of the SD curves, the
relation between the gradient field and the associated
orthogonal trajectories is relevant. At this point it is important
to remember that the Hamilton−Jacobi equation or eikonal
equation describes a relation between the contour of a surface
and curves.8 In addition the difference between two contour
hypersurfaces is related to a functional depending on some
arguments that characterize the SD curves. The connection

between the field of SD curves of a PES and the picture of the
Hamilton−Jacobi theory was discussed by Bofill and Crehuet.8

From a theoretical point of view (however not numerically) the
SD curves and the inverse ones, the steepest ascent (SA)
curves, are equivalent. (Intensive numerical treatments of IRC
following procedures are known.9) The SA curves emerging
from a minimum of the PES can be seen as traveling in an
orthogonal manner through the contour hypersurfaces of this
PES. In addition, it should be noted that the construction of the
contour hypersurface, V(q) = ν = constant, such that all points
satisfying this equation possess the same equipotential
difference with respect to another contour hypersurface and
specifically with the value of the PES in the minimum, is similar
to the construction of the Fermat−Huygens of propagation of
the cone rays. Notice that the construction of the Fermat−
Huygens of propagation of rays and Hamilton−Jacobi theory
are strongly connected.10 Using this analogy, we will develop a
wave equation theory for contour hypersurfaces of the PES.

2. THE EIKONAL EQUATION
The eikonal equation of SD curves in a PES domain is8,11,12

∇ ∇ =V V Gq q q( ) ( ) ( )T
q q (1)

where ∇q
T = (∂/∂q1,...,∂/∂qN) and G(q) is the square of the

gradient norm at the point q. The equation means that, if a
function G(q) is given, then we search for a potential V(q)
fulfilling this eikonal condition. In eq 1 the PES function V(q)
represents the minimal total geodetic distance, and G(q) is the
geodetic distance function at each point q of the PES domain.
This geodetic distance function is defined at the beginning of
the problem, and the solution V(q) to the above problem
represents the total geodetic distance, which is the smallest
obtainable integral of G(q), considered over all possible curves
throughout the computational domain from a start point to a
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final point. The integral of G(q) on the SA curve joining these
two points is8,11−14

∫=V G d dt d dt tq q q q( ) ( ) ( / ) ( / ) d
t

t
T

SA
f

0 (2)

where t is the parameter that characterizes the SA curve and q =
qSA(t). From a practical point of view, first order nonlinear
partial differential eq 1 is solved for this total geodetic distance
function V(q) first, and the actual stationary or cheapest path
from qSD(tf) to qSD(t0) is obtained by starting at the final point
and integrating a trajectory backward along the gradient field
∇qV(q). Eikonal eq 1 is an example of the general static
Hamilton−Jacobi equation. In other words, eikonal eq 1 tells us
that as the parameter t evolves, the coordinates q = qSA(t)
evolve, and the contour hypersurface with constant potential
energy V(q) = ν changes, through the coordinates q. A point of
this contour hypersurface is linked to a point of the
neighborhood contour hypersurface. This set of points defines
a SD curve that makes the integral functional, eq 2, extreme.
One can establish some analogies between the propagation of
light through a medium having a variable index of refraction
and the present problem. Just as the light rays are given as
extremal paths of least time, now the SD curves are extremal
paths of the PES.

3. AN ANSATZ OF A WAVE EQUATION
The SA curves starting at a minimum are a set of curves
traveling in an orthogonal manner through the contour
hypersurfaces of the PES. Notice the important fact that each
SA curve cuts each member of the family of contour
hypersurfaces in one and only one point. Additionally, the SA
curves are strictly monotonic in ν between stationary points.
Thus, we can establish a one-to-one relation between a point of
the curve and the energy value of the member of the family of
contour hypersurfaces. In other words the SA curve, q(t), can
be expressed as q(ν) being ν the energy of the contour
hypersurface at the point q(t).13 The family of contour
hypersurfaces is geodesically equidistant. In the present
understanding the distance is the energy difference. It is
known that a family of energy equidistant contour hyper-
surfaces is the solution of eikonal eq 1.10 But the construction
of a solution of eikonal eq 1 as a contour hypersurface with
constant potential energy is similar to the Fermat−Huygens
principle for the construction of wave fronts.8,11,15 The aim of
this paper is to find the equation that governs the propagation
of the “wave” associated with the SA curves. The unique
possibility is a second order partial differential equation such
that its associated characteristic equation is eikonal eq 1, which
is related with the PES. Furthermore, characteristic curve
solutions of eq 1 are just the SA curves.8 Consequently, let us
consider a wave equation in N + 1 dimensions, q1,...,qN, and ν

ψ ν
ν

ψ ν∇ − ∂
∂

=Gq q q( , ) ( ) ( , ) 0q
2

2

2 (3)

where ∇q
2 = ∇q

T∇q = ∂
2/∂q1

2 + ...+ ∂
2/∂qN

2. Note that we treat
ν as an independent variable. ψ(q,ν) is, for the time being, an
abstract field in any medium with slowness 1/G(q)1/2, which
also emerges in eq 1. Equation 3 looks like a wave equation
where the time variable, t, is replaced by the variable ν and
where the factor 1/G(q)1/2 plays the role of the velocity of the
corresponding wave solution. The concept of “medium” is used
here by comparison with the propagation of waves associated

with rays of light that propagate in a (maybe inhomogeneous)
medium.
Of course, eq 3 is of hyperbolic type by signature ++...+−

since G(q) > 0, thus outside of stationary points. Note that the
factor, G(q), changes the character of eq 3 into a differential
equation with variable coefficients. The solution of such
equations is usually assumed to be more difficult than that of
equations with constant coefficients. However, in this case, a
particular solution will become easier, see section 4.
First, we look for the characteristic manifold of eq 3, see ref

10, part II, chapter VI, paragraph 2. The solutions of hyperbolic
equations are “wave-like”. If a disturbance is done in the initial
data of a hyperbolic differential equation, then not every point
of space feels the disturbance at once. Relative to the fixed
“energy” coordinate, ν, the disturbances have a finite
propagation speed. They travel along the so-called character-
istics of the equation. The method of characteristics is a
technique to solve this type of partial differential equation.
Though it is usually applied to first order equations, the method
of characteristics is valid also for our second order hyperbolic
equation. The idea is to reduce a partial differential equation to
a family of ordinary differential equations along which the
solution can be integrated from some initial data given on a
suitable hypersurface. To find here the characteristics, we have
to treat the quadratic form, which is connected with eq 3

∑ φ φ− =ν
=

G q( ) 0
i

N

q
1

2 2

i (4)

where φqi means the derivation to qi of the characteristic
function φ, and the last derivation to energy, ν, with number
(N + 1) is symbolized by the index ν. We note that the factor
G(q) creates problems since it becomes zero at stationary
points. The shapes of the solution of eq 4, the characteristics,
are N-dimensional hypersurfaces. They are conoids in regions
outside of a stationary point of the PES. The global behavior is
distorted by the zero of the gradient at a stationary point. On
the other hand, the characteristic equation of eq 3 has an
associated characteristic plane

φ

φ
− −

∇ |

∂ ∂ |
=

=

=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟v v

v
q q(( ) , ( ))

/
0T

q q q

q q
0 0

0

0 (5)

We call the vector r the resulting vector of the normalization of
the vector (∇q

Tφ,∂φ/∂ν). An element of the r vector, say ri, is
the cosine of the angle between the normal vector to the
characteristic plane and the qi axis. Because the characteristic
equation, eq 4, is homogeneous with respect to the vector
(∇q

Tφ,∂φ/∂ν), we can replace it by the normalized vector r and
get in eq 4

Using the normalization condition of the r vector, the left-hand
side of the equation can be transformed in the following
manner

− = − + =G r G rr r q q( ) 1 (1 ( )) 0T
v vq q

2 2
(7)

From this, we find

=
+

r
G q
1

(1 ( ))v 1/2
(8)

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct300654f | J. Chem. Theory Comput. XXXX, XXX, XXX−XXXB



which is the cosine of the angle between the v axis and the
normal vector to the characteristic plane. Using the forward
conoid expression, we obtain the radius of the “circle” of the
conoid, for an intersection hyperplane to a fixed v,

=
+
G

G
r r

q
q

( )
( )

(1 ( ))
T
q q

1/2
1/2

1/2
(9)

A schematic view to a straightforward cone with apex qo is
given in Figure 1.

A surface φ(q,v) = 0, such that at every point (q,v) the
gradient vector (∇q

Tφ,∂φ/∂ν) has the same direction as the r
vector, is a characteristic surface. The Cauchy−Kowalewsky
theorem breaks down at such points.
A trivial conclusion is the following. If dq/dt is the tangent of

a steepest ascent (descent) curve, then the two relations hold

= +r d dt d dtq q1/(1 ( / ) ( / ))v
T 1/2

(10)

=

+d dt d dt d dt d dt

r r

q q q q

( )

[( / ) ( / )/(1 ( / ) ( / ))]

T

T T

q q
1/2

1/2
(11)

which determine the direction of the tangential hyperplane of a
characteristic surface, φ(q,v), through the curve.
We develop a one-dimensional example (N = 1), and we use

x = q1 for the coordinate. The test function is a double well
potential

= −V x x( ) ( 1)2 2
(12)

The gradient of the function is ∇xV(x) = 4x(x2 − 1), and G(x)
is the square of the gradient. The stationary points of the
surface are located at x = 0 and ±1, point 0 being a first order
saddle point with V(0) = 1. The two other points are the
minimums with V(±1) = 0. We have

= − +r x x1/(16 ( 1) 1)v
2 2 2 1/2

(13)

So, for both x = 0 (saddle point) and x = 1 (minimum), it is rv
= 1 and rx = 0. For the coordinate x, we have the following
relation on the (0,1) interval

= − − +r x x x x4 ( 1)/(16 ( 1) 1)x
2 2 2 2 1/2

(14)

The development of the vector (rx,rv) is shown in Figure 2.

The opening angle of the conoid changes along the profile.
At the stationary points, the cone apex is a pure vector head. Its
opening angle is zero. The vector is “energy-like” along the
energy axis, v. The vector is orthogonal to the gradient, which is
zero. It is obvious that only nonstationary points with G(q) > 0
are useful points for any treatments. In analogy, if the profile is
a minimum energy path (MEP) in a higher dimensional
example, say for V(x,y) = (x2 − 1)2 + y2, and we move a tiny
step away from the SP, then we can calculate the steepest
descent from SP to a minimum, as well as have the steepest
ascent, and vice versa. Note, at values x1 = 0.27 and x2 = 0.84,
the characteristic direction crosses the gradient. The gradient
has an “energy-like” direction inside the interval (x1,x2). (One
could speculate that along “energy-like” gradients a steepest
descent method works well; however, if the gradient is “space-
like,” then such a method can tend to zig-zag.)
To solve eq 4, we try a function φ(q,v) in the form16

φ = −ν−vq( , ) e 1i V q[ ( )]
(15)

Its substitution into eq 4 fulfills this equation, because the
derivations of φ lead directly to eikonal eq 1. If we put φ =
constant = 0, we can obtain the solution for the variable ν, with
ν = V(q), which is exactly its definition; thus it is correct. The
wavefront of eq 3 develops along its characteristic manifold
along a curve in the (N + 1) space, which is described by a SA
curve with V(q) = ν for the current t value. We can say that the
progression of wave eq 3, which is a hyperbolic partial
differential equation, is regulated by eikonal eq 1, a first order
partial differential equation. A general rigorous proof of this
result is based on the theory of characteristics of partial
differential equations.10,17,18

4. A MORE REFINED WAVE EQUATION
The function φ(q,v) from eq 15 does not fulfill the first ansatz
of wave eq 3 because of the chain rule. There emerges an
additional term besides the eikonal terms of eq 1. However, we
can attempt an extension of eq 3 via a “friction” term

ν ν
ψ ν∇ − ∂

∂
+ ∂

∂
=

⎛
⎝⎜

⎞
⎠⎟G Traceq H q( ) ( , ) 0q

2
2

2
(16)

H is the Hessian of the PES at the current point q; thus H =
∇qg

T with the gradient of the PES, g. If F is any function of one
real variable, F(x), with first and second continuous derivations,
then

ν νΨ = −F Vq q( , ) ( ( )) (17)

is a solution of extended wave eq 16. The proof is
straightforward. The solution is a kind of generalized plane

Figure 1. Schematic forward cone in three dimensions, if G(q) = 1 is
used for simplicity.

Figure 2. Function V(x) and vectors of the characteristic direction
(rx,rv) along the profile.
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wave with the fixed phase function, Z(q,ν) = ν − V(q), and the
waveform function F, see ref 10, part II, chapter VI, paragraph
18. Note that the solution, eq 17, is simpler than some spherical
wave solutions for wave equations with constant coefficients,19

and ref 10 part II, chapter VI, paragraph 13, section 4, because
we can drop the so-called “distortion” factor. The principal part
of eq 16 is the same as in eq 3; thus the characteristic manifold
here is also the same. Since the friction term is of low order,
eikonal eq 1 is not affected. Note that the plus sign in the
“friction” term with the Trace H coefficient is somewhat
“unphysical” if Trace H > 0.
The solution, eq 17, of the refined wave equation allows the

application of deep conclusions concerning the Huygens
principle, see section 7 below.
In the general theory of hyperbolic differential equations, one

uses the normal form of the wave equation. We will now derive
it. The part of second order in eq 3, or eq 16, is

ψ ν
ν

ψ ν∇ − ∂
∂

Gq q q( , ) ( ) ( , )q
2

2

2 (18)

Note that the factor G(q) depends only on the space variables,
q, but not on the potential variable, v. The so-called metric
matrix in eq 18 is

=
−= +

⎛
⎝⎜

⎞
⎠⎟g

G

E 0

0 q
( )

( )
i j

i j N T
,

, 1,..., 1
(19)

E is the N-dimensional unit matrix, and 0 is the N-dimensional
zero vector. Because the metric matrix here is only a diagonal
matrix, its inverse matrix is simply

=
−= +

⎛
⎝⎜

⎞
⎠⎟g

G

E 0

0 q
( )

1/ ( )i j i j N T, , 1,..., 1
(20)

(Compare a remark in the Introduction: the metric matrix in q
space is a simplification.) The absolute value of the determinant
of the inverse matrix is γ = 1/G(q).
Now, we can write the v part of eq 18:

ν ν
ψ ν

γ ν
γ

ν
ψ ν

∂
∂

∂
∂

= ∂
∂

∂
∂

−

+ +

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

G G G

g

q q q q

q

( ) ( ) ( ) ( , )

1
( , )N N

1/2 1/2

1, 1

(21)

For the space variables, q, we have

∑ ∑= ∂
∂

∂
∂

=
= =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟G

q
V

q
G V Vq q q( ) ( ) , thus ( ) 2

i

N

i k i

N

q q q
1

2

1
i i k

(22)

Because it holds for the coefficients gi,j = δi,j, for i,j = 1,...,N, we
can try an ansatz

γ
γ ψ ν∂

∂
∂

∂

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟q q

q
1

( , )
i i (23)

If we differentiate the factor √γ inside the formula, with the
product rule we get

∑ψ ν ψ ν∂
∂

+ − ∂
∂=

⎜ ⎟
⎛
⎝

⎞
⎠q

G
G

V V
q

q q
q

q( , ) ( )
1
2

1
( )

2 ( , )
k i

N

q q q
k

2

2
1/2

3/2
1

i i k (24)

Consequently, we get for the second order part of eq 18

∑

ψ ν
ν

ψ ν

γ
γ ψ ν

γ ν

γ
ν

ψ ν

ψ ν

∇ − ∂
∂

= ∂
∂

∂
∂

− ∂
∂

∂
∂

+ ∇

∂
∂

+ +

=

⎜ ⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝

⎞
⎠

G

q
g

q

g
G

V

q

q q q

q

q
q

H

q

( , ) ( ) ( , )

1
( , )

1

( , )
1
( )

(( ) )

( , )

i

i j

j

N N

i

N
T

i

i

q

q

2
2

2

,

1, 1

1

(25)

where Hi means the ith column of H. The first two parts of the
right-hand side build the normal form of a second order wave
equation with (N + 1) variables and with variable coefficients.
For such a normal form, we have an integration theory which
guarantees the existence of exactly one forward (and one
backward) fundamental solution.20 But we stop here and look
for other properties of the phase function V(q) = ν.

5. A CHARACTERISTIC INITIAL VALUE PROBLEM
No stationary point should emerge between a q(t0) on a
hypersurface for ν0 and the corresponding q(tf) on an upper
hypersurface at energy νf. A wave equation with a second order
part like eq 18 allows a characteristic initial value problem
posed for the characteristic surface in section 3. If we put the
value ν = V(q) into solution, eq 17, we get

ψ ν ν| = − =ν= F V Fq q( , ) ( ( )) (0)V q( ) (26)

everywhere on the characteristic surface, because for ν = V(q)
we are also on the characteristic surface φ(q,ν) = 0 with eq 15.
Without a loss of generality, we can assume F(0) = 0. We treat
a double-conoid (DC) between two points Po = (q(t0),ν0) and
Pf = (q(tf),νf), see Figure 3, compare Figure 56 in ref 10,

chapter VI, paragraph 6, section 1. The corresponding defining
formula is eq 4. We can multiply eq 18 by (−2ψv) everywhere
in the DC, and we have

∑ψ ψ ψ− =νν
=

G q2 ( ( ) ) 0v
i

N

q q
1

i i (27)

where the indices mean the corresponding derivation. It is
equal to

∑ ∑ψ ψ ψ ψ− + =ν ν ν ν
= =

G q( ( ) ) 2 ( ) ( ) 0
i

N

q q
i

N

q
2

1 1

2

i i i (28)

Figure 3. Three-dimensional schematic representation of two
intersecting conoids, one forward conoid with the apex in Po and
one backward conoid with the apex in Pf. They form by their curve of
intersection a double conoid: all points in the interior of both conoids
between Po and Pf.
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which is proved by a straightforward calculation. The
expression of eq 28 is a divergence; its integration over the
full region of the double conoid and application of Gauss’
integral theorem results in a surface integral over the borders of
the double conoid with

∬ ∑ ∑ψ ψ ψ ψ− + =ν ν ν
= =

G r r r Sq{ ( ) 2 } d 0v
i

N

q q
i

N

qDC

2

1 1

2

i i i (29)

It is equivalent to the integral10

∬ ∑ ψ ψ− =ν
=

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭r

r r S
1

( ) d 0
v i

N

q v q
DC 1

2

i i
(30)

which again is examined by a straightforward calculation where
the relation of eq 7 still is taken into account, at least. The
integral delivers the proof of the uniqueness for the
characteristic initial value problem:
We suppose that the initial values of a solution vanish on the

characteristic forward conoid and integrate the expression eq 28
over the double conoid DC. Since the integral vanishes,
therefore, the integrand likewise vanishes because it is the sum
of quadrates. The integral over the lower conoid vanishes, since
in the integrand only interior derivatives appear, and they, by
hypothesis, are all zero. Hence, the interior derivatives of the
brackets in the integral eq 30 likewise vanish on the upper
conoid. In other words, on the surface of the upper conoid, ψ is
constant and therefore zero, since ψ vanishes on the
intersection of the surfaces of the two conoids.

6. BACK TO THE SA EQUATION
In the present problem, we recall that we should find a solution
ψ(q,v) for eq 16, having prescribed the data on a hypersurface S
given by the zero function Z(q,ν) = ν − V(q) = 0. The function
ψ(q,v) has to have second continuous derivatives, and the
surface is automatically regular in the sense that (∇q

TZ,∂Z/∂ν)
≠ 0T, where 0 is the zero vector of dimension (N + 1). It holds
because it is allways ∂Z/∂ν = 1. The data on S for the second-
order equation eq 3, or eq 16, consist of ψ(q,v) and of the set of
the first derivatives of ψ(q,v) with respect to q and ν. We will
find a solution ψ(q,v) near S which has these data on S. We say
that S is noncharacteristic if we can obtain all first and second
derivatives of ψ(q,v) with respect to q and ν on S from a linear
algebraic system of equations building the compatibility
conditions of the data and the partial differential eq 3, or eq
16, taken on S. We call S characteristic if at each point (q,ν) the
hypersurface S is not noncharacteristic. If we set G(q) to be any
given function of the space variables, q1,...,qN, then eikonal eq 1
can be used with a function

∇ = ∇ ∇ −Q V V V Gq q q q( , ) ( ) ( ) ( )T
q q q (31)

Q(∇qV,q) = 0 is satisfied on S with the values of V(q) and
∇qV(q) given by the data. Equation 31 is the characteristic
condition resulting in a partial differential equation. We
remember that eq 1 is the Hamilton−Jacobi equation of
steepest-ascent curves.8 An important consequence is that the
second order partial differential eq 3, or eq 16, is an interior
differential operator in the following sense. If along the
characteristic hypersurface S the values of V(q) and ∇qV(q) are
given, then the second order parts of eq 18 are known.
Taking into account the theory of first order partial

differential equations, each member of the family of solutions,
ν = V(q), is generated by a family of bicharacteristic curves or

rays being linked with the second order partial differential eq 3,
or eq 16. We understand the function Q(∇qV,q) to be the
Hamiltonian of a certain problem. Then, the generating strips
should be obtained by a Hamilton−Jacobi system of 2N
ordinary differential equations and characterized by a suitable
parameter t,

= ∇ ∇ = ∇ =∇
d
dt

Q V V t
q

q q g
1
2

( , ) ( ) ( )V q q( )q (32)

where we have grad(V(q)) = g(q) = ∇qV(q), and then the
bicharacteristic strip is (theoretically) given by q(t) and g(t)
with

= − ∇ ∇

= ∇

=

=

d
dt

Q V

G

t t

t
d
dt

g
q

q

H g

H
q

1
2

( , )

1
2

( )

( ) ( )

( )

q q

q

(33)

Note that eq 32 is nothing but the differential equation that
characterizes the SA curve of a PES. But eq 33 is nothing but its
next derivation,8 thus d2q/dt2. It means that the second
equation, eq 33, is not a new condition; thus the system of eqs
32 and 33 reduces to only N differential equations in the SA
system of eq 32. The system of eq 32 yields to all possible
characteristic curves for the solution ψ(q,ν). We emphasize that
the integral curves of the system of eq 32 of the first order
partial differential equation Q(∇qV,q) = 0 are the characteristic
“rays” of the given second order partial differential eq 3, or eq
16; they generate all members of the family of hypersurfaces ν
= V(q). The characteristic hypersurfaces of eq 31 play a role as
“wave fronts”, compare also section 7. The “wave fronts” occur
as frontiers beyond which there is currently no excitation at
potential ν. We remark that ν is interpreted as the potential,
and ψ is a function in the N-dimensional q space with the
potential ν as an additional dimension. Then, we deal with a
solution ψ(q,ν) of eq 16 with a hypersurface, where all points
are a map of points of the lower surface V(q) = ν0, by a point to
point map. (For every SA, we have to use the corresponding tf
to finish at the hypersurface with energy value νf. The values tf
can be different from one SA curve to any other SA curve.) For
wave eq 16, we see the propagation of the initial “wave front”
V(q) = ν0, a hyperplane in the configuration space, to the
parallel “wave fronts” V(q) = ν for any ν. (However, the map
works only before the next stationary point, which itself will
cause a “caustic” of the level hypersurfaces.)
The map looks indeed like a wavefront. Note that V(q(tf))

does not depend on a full backward conoid; from this point of
view, it only depends on the point V(q(t0)), along the SA curve.
The reason is that differential eq 32 now defines the curve in a
local way. So to say, the backward conoid of the solution of a
usual hyperbolic differential equation10,17,18 contracts to a curve
on the conoid, V(q(t)) = ν(t). Every parallel equipotential
hypersurface is the result of a map from a former one, as well as
it also being the initial surface for the step to a next one. So to
say, the propagation of the equipotential hypersurfaces goes
along the Huygens principle of propagation of wave fronts.
Note that here the dimension of the configuration space can be
even or odd. It contrasts with the Cauchy initial value problem
for a general wave equation where the decision criterion of the
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dimension plays an important role.20,21 Already the solution of
the wave equation in two- or three-dimensional spaces is
different. A pointwise perturbation at an initial source produces
a spherical wave in R3, while in R2 the full region inside a circle
will be disturbed. In the first case, the Huygens principle holds
in a strong sense, in the second case the wave diffuses.

7. THE HUYGENS PRINCIPLE
In 1678, the Dutch physicist Christian Huygens (1629−1695)
wrote a treatise called Traite ́ de la Lumier̀e (on the wave theory
of light).22 In the work, he stated that the wavefront of a
propagating wave of light at any instant conforms to the
envelope of spherical wavelets emanating from every point on
the wavefront at the prior instant, with the understanding that
the wavelets have the same speed as the overall wave.
Though the action of the family of SA curves, to map a

hypersurface of fixed energy, is another action of a wavefront by
an envelope, we may assume that also the equipotential
hypersurfaces are “fronts” of the ascending energy, especially
because they fulfill a hyperbolic wave equation.
The above explanation of the Huygens principle can be

described as a syllogism due to Hadamard.23 The first premise,
which is the major premise of this syllogism adapted to the
problem under consideration, is the following. A steepest ascent
curve arrives at a point located on the equipotential
hypersurface ν = ν0 and achieves a highest equipotential
hypersurface ν = νf via a mediation of every intermediate
equipotential hypersurface, say, ν = ν′ assuming that ν0 < ν′ <
νf. In order to elucidate how the steepest ascent curve takes
places at ν = νf, we can deduce from the position at ν = ν0 the
position at ν = ν′ and, from the latter, the required position at ν
= νf. The second premise, which is the minor premise, is
enunciated in the following manner. If we produce a
“disturbance” at point q0, where the steepest ascent is localized
in the equipotential hypersurface ν = ν0, the effect of it will be,
for ν = ν′, localized in the immediate neighborhood of the
surface of the sphere with center q0 and radius Δν = ν′ − ν0;
that is, it will be localized in a thin spherical shell with center q0,
including the afore-mentioned sphere. The conclusion of this
syllogism based on these two premises is that the effect of the
initial “disturbance” produced at q0 at ν = ν0 may be replaced
by a proper system of disturbances taking place at ν = ν′ and
distributed over the surface of the sphere with center q0 and
radius ν′ − ν0. An illustration of this idea, now known as the
Huygens principle, is shown in Figure 4.

8. CONCLUSION
The present work still does not claim to lead to results in
experimental research. The authors ask that it be considered as
a contribution to the theory of SD/SA curves and their

orthogonal equipotential hypersurfaces. One can formulate
wave equations with the energy of the molecular PES as an (N
+ 1)st variable, see eq 3 or eq 16. The characteristic manifold of
the wave equations is given by long known eikonal eq 1. We
report a particular solution of eq 16 using eq 17, it being very
simple, and we report some properties of the solution and its
connection to the SD/SA problem. Note that eq 16 has an
unphysical “friction” term with false sign, if Trace H > 0. We do
not develop in this paper the general solution of wave eq 16,
but a normal form is prepared, which is a first step. For the type
of wave eq 3 with “variable speed”, there exist special solutions,
in the here uninteresting case of N = 1, depending on the
“speed” 1/√G.24,25 In the case of a general N > 1, there already
exists a mathematical treatment of a solution with a certain
behavior of the geometrical optics.26 Of course, the full-fledged,
theoretical possibilities of the second order wave eq 16 cannot
be adapted to the first order system of SA equations, eq 32.
However, we state that wave eq 16 allows a particular phase
function solution with argument ν − V(q), which itself behaves
with the Huygens principle. The wave “fronts” are the phases of
the equipotential hypersurfaces, ν = V(q).
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