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The distinguished coordinate path and the reduced gradient following path or its equivalent formula-
tion, the Newton trajectory, are analyzed and unified using the theory of calculus of variations. It is
shown that their minimum character is related to the fact that the curve is located in a valley region.
In this case, we say that the Newton trajectory is a reaction path with the category of minimum en-
ergy path. In addition to these findings a Runge–Kutta–Fehlberg algorithm to integrate these curves
is also proposed. © 2011 American Institute of Physics. [doi:10.1063/1.3554214]

I. INTRODUCTION

One of the main problems in theoretical chemistry is to
study the mechanisms associated with the chemical reactions.
An important achievement in the development of models to
understand the chemical reaction mechanisms was the intro-
duction of the following two concepts, namely, potential en-
ergy surface (PES) and reaction path (RP) as a way to describe
the molecular system evolution from reactants to products in
geometrical terms.1, 2 The impact of these concepts in chem-
istry during the last 40 years can been justified by the intuitive
and easy manner to visualize the evolution of any chemical re-
action and its qualitative prediction power. This fact has been
motivated by a continuous mathematical development on the
grounds of the model and computational algorithms to com-
pute RP as well.

The basic definition of RP is a curve line located in a PES
that monotonically increases from a stationary point charac-
ter minimum to a first order saddle point and from that point
monotonically decreases to a new stationary point character
minimum. The first order saddle point according to the previ-
ous definition is the highest energy point of the RP. The first
and the second minima are labeled as reactants and products,
respectively, while the first order saddle point is the transi-
tion state (TS). The parameterization of a curve line, say t,
satisfying the above RP requirements, is the reaction coordi-
nate. More concisely, if q is a coordinate vector of dimension
N, then RP is represented by q(t). Normally, the parameter
arc-length, s, of the curve is taken as the reaction coordinate;
however, the values of the PES can also be taken as reaction
coordinates.3

There exist many curves on the PES that satisfy the RP
conditions, this fact being the reason of the variety of RP
curves. The curve most widely used as RP is the so-called in-
trinsic reaction coordinate (IRC); this curve being the steep-
est descent curve in mass weighted coordinates. The IRC is
the steepest descent curve joining two minima through a TS.4
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The other curve used as RP is the distinguished or driven co-
ordinate method,5–7 or a more recent version, the so-called
reduced gradient following (RGF),8, 9 also labeled as Newton
path or Newton trajectory (NT).10 Additionally, we have the
gradient extremals (GEs);11–14 however, their computational
demand limits their applicability.

The RPs are static curves on the PES, which means that
only geometric properties of the PES are taken into account
and no dynamic information can be sought from these path-
ways. An effort to incorporate the dynamic information while,
at the same time, keeping the philosophy of envisaging the
reaction as a single path on the PES, was introduced with
the formulation of the reaction-path Hamiltonian (RPH).15

This views the reaction as a vibrating super-molecule, for
which some geometric parameters undergo dramatic changes;
these parameters most properly describe the reaction and are
very often taken as reaction coordinates, whereas the remain-
ing degrees of freedom experience some changes in the na-
ture of the associated vibrational motion. Classical and quan-
tum RPHs have been proposed recently.16–18 Reaction theo-
ries like the famous transition state and variational transition
state are also based at least implicitly or explicitly on the RP
model.19 Nevertheless, many times a well selected RP curve
very closely matches the average line of a set of molecular
dynamic trajectories.20 Maybe this observation gives physical
grounds to the RP model. Within the set of RP curves men-
tioned above, the IRC is one that matches both the theoretical
and the computational trajectories of classical and quantum
models reasonably.21

Despite many RPs commonly being geodesic curves on a
surface, each type of the RP curve has different mathematical
grounds. Due to this fact each RP has its own evolution in the
PES to reach the first order TS from the minimum. The prop-
erties and features of some RP curves, such as its variational
nature, are briefly discussed below:

(i) The IRC curve possesses a variational nature because
it is the steepest descent curve, and this type of
curve extremalizes a function associated to a Fermat
variational principle.22–24 From this point of view, we
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conclude that the IRC propagates through the PES ac-
cording to a speed law or continuous slowness model
related to the inverse of the gradient norm of the PES.
It travels through the surface varying the least potential
energy. For this reason, the IRC minimizes the function
associated to this special type of Fermat principle.24

(ii) The GE RP is defined as the curve which at each point
cuts a member of isopotential hypersurfaces of the PES
where the square of the gradient norm of this PES
is stationary in respect to the variations of the posi-
tions within the isopotential hypersurface. From this
definition it is clear that GE paths fall in the class of
variational problems with subsidiary conditions.25, 26 A
study of its variational nature was recently addressed by
Quapp.27

(iii) The RGF or NT RP is characterized by a curve in the
PES such that at each point of this curve, the gradi-
ent vector points at a constant direction.8 This can be
seen in another way, the RGF curve crosses the steep-
est descent curve at each point so that at the same point
the tangent has the same direction as the constant direc-
tion of the prescribed RGF direction. The possible vari-
ational nature of the RGF or NT RP was also discussed
in Refs. 27 and 28. The differences in both the views are
due to the integral function used. The RGF possesses
other important features largely studied by Hirsch and
Quapp (see, e.g., Ref. 29) in their studies on the con-
vexity of the PES region where the RP is located.

Taking into account all the features of the RP and the in-
creasing importance of the RGF or NT as RP in the present
article, we present a unification of a variational point of view
of the distinguished coordinate (DC) path and the RGF or
NT path. The second variation is also derived and analyzed
being related to the convex property of the PES introduced
by Hirsch and Quapp.29 For these purposes the article is di-
vided in the following way: first, we derive the necessary and
sufficient conditions such that the driven or DC path and the
RGF or NT path should satisfy to be a variational minimum.
Second, we present in detail the integration of the RGF equa-
tions being related to the NT. Based on these results an
integration technique is proposed to obtain either RGF or
NT path. Finally, numerical results are given using a two-
dimensional PES.

II. THE DRIVEN COORDINATE AND REDUCED
GRADIENT FOLLOWING PATHS DERIVED FROM
THE THEORY OF CALCULUS OF VARIATIONS

A basic problem in the differential calculus is to find in
the domain of an independent variable a point of this vari-
able for which a given function takes its maximum or mini-
mum value. The theory of calculus of variations is not only
a theory of maxima and minima but also a theory of vari-
ables and functions which are much more complicated than
those which appear in the standard differential calculus. A
general illustration of the problems that appear in this the-
ory consists in finding a curve, q(t) = (q1(t), . . . , qN(t))T,
within a set of curves joining two points on N-dimensional

space such that a function I(q), depending on these N indepen-
dent variables, takes an extreme value, in principle, maximum
or minimum. Usually, the function I(q) is an integral of the
form

I (q) =
∫ t f

t0

F(t, q (t) , q′ (t))dt, (1)

where F is a given function which is twice continuous dif-
ferentiable with respect to its three arguments, t, q(t), and
q′(t) = dq(t)/dt. As noted above, the functions q(t) will
be restricted to the class of admissible functions satisfy-
ing the conditions, q(t0) = q0, q(tf) = qf, q(t) continuous,
and q′(t) piecewise continuous. The requirement that
I(q) be an extremum is that I(q) is stationary with
respect to the variation of the N functions q1(t), . . . ,
qN(t) considered independently. The necessary condition
to be stationary is that the N Euler equations are
satisfied,

{Fq} = ∇q F
(
t, q (t) , q′ (t)

) − d

dt
∇q′ F

(
t, q (t) , q′ (t)

) = 0,

(2)

where ∇q
T = (∂/∂q1, . . . , ∂/∂qN) and the superscript T

means transposed. The notation {Fq} represents the Euler
operator.25

Let us now construct a function F such that the integra-
tion of the resulting Euler Eq. (2) results in the curve de-
scribed by the driven coordinate method. As explained in the
Introduction section, the driving coordinate or DC method
consists in selecting a driving coordinate, say qrc, along the
valley of the minimum, then walking a step in the direc-
tion of this driving coordinate first and second performing
an energy extremalization (stationarization) in the rest of
the coordinates, resulting in a curve on the PES, V(q). In
other words, this RP satisfies the next requirement at each
point

V (qDC) = extremalize
q1,...,qi−1,qi+1,...,qN

V (q1,..., qi−1, qi=rc, qi+1,..., qN )

= extremalize
q

V (qrc, q) , (3)

where qT = (q1,..., qi−1, qi+1,..., qN ). Notice that in this con-
text a point q can be represented as qT = (qrc, q̄T ). Accord-
ing to Eq. (3) at each point of the driving coordinate curve, the
gradient vector of the PES, g = ∇qV(q), is equal to zero for
each coordinate except for the driving coordinate, qrc. In other
words, the gradient points into the direction of the driving co-
ordinate. This direction is equal for all points of this path. In
this manner the distinguished coordinate or driving coordinate
path at each point satisfies the set of N − 1 equations

∇qV (qrc, q) = 0N−1, (4)

where 0N−1 is a zero vector of dimension N − 1. It is clear that
in the present case, qrc plays the role of t, that it is reaction
coordinate, and also that for any function F associated to this
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RP model, the corresponding set of Euler equations should
be equal to Eq. (4). An integral function satisfying all these
requirements is

I (q) =
∫ t f

t0

F (t, q) dt =
∫ q f

rc

q0
rc

V (qrc, q) dqrc. (5)

Because of this variational problem, the function V does
not involve the argument, q′ = dq/dqrc, the set of N − 1 Eu-
ler equations reduces to the form given in Eq. (4). Notice that
the dimension of the argument q is N − 1. In other words, the
set of N − 1 equations [Eq. (4)] is the set of the N − 1 Euler
equations associated to the variational problem (5). This set of
equations [Eq. (4)] determines the function q = q(qrc) implic-
itly. A point of this curve in the N-dimensional space is rep-
resented as qT (qrc) = (qrc, qT (qrc)). We note that in this case
the boundary values, q0 = q(q0

rc) and q f = q(q f
rc), cannot be

prescribed arbitrarily if the problem is to have a solution.25

On the contrary, one has to look for a solution starting at q0

and take the value qf from there.
From these results we conclude that the driving coor-

dinate RP satisfies the extremal necessary conditions of the
problem (5). Now two questions emerge, first, how to connect
these results with the new reformulation of this type of RP,
namely, the RGF method? Second, does the distinguished co-
ordinate curve also satisfy the extremal sufficient conditions?
In the next subsections, II A, II B, and II C, these questions
are answered.

A. The Euler equations

The first question formulated above is addressed us-
ing the invariant character of the Euler Eq. (2) with re-
spect to the change in coordinates.30 We consider the
transformation

x = Dq = D
(

qrc

q

)
, (6)

where x is the vector of dimension N of the new coordinates
and D is an N × N matrix formed by N constant linear inde-
pendent directions

D = [r| s1| · · ·| sN−1] = [r| S] . (7)

The notation [r|S] means an N × N matrix, where the first
column contains the normalized r vector, rTr = 1, and the
rest of N − 1 directions si are collected in the N × (N − 1) S
rectangular matrix. We select S such that DT D = I implying
that STr = 0N−1 and ST S = IN−1, being IN−1 the unit ma-
trix of the N − 1 dimensional subspace. The transformation
(6) is nonsingular because the determinant of its Jacobian is
not null, det (∇q xT) = det (DT) �= 0, in other words, the D
matrix is formed by N linear independent vectors. This con-
dition implies that this transformation is invertible; to every
point x corresponds a unique point q satisfying Eq. (6). It is q
= DTx thus qrc = rTx and dqrc = rT (dx/dxrc) dxrc. We write
again dx/dxrc = x′. Now, taking Eq. (5), the transformation

(6) also applied on the PES function, namely, V(q) = V(q(x))
= U(x) and dqrc = rT x′ dxrc, we can write

I (q) =
∫ q f

rc

q0
rc

F (qrc, q) dqrc =
∫ q f

rc

q0
rc

V (qrc, q) dqrc

=
∫ x f

rc

x0
rc

V (qrc (x) , q (x)) rT x′dxrc

=
∫ x f

rc

x0
rc

V (q (x)) rT x′dxrc

=
∫ x f

rc

x0
rc

U (xrc, x)
(
rrc + rT x′) dxrc

=
∫ x f

rc

x0
rc

G
(
xrc, x, x′) dxrc = I (x) , (8)

where x is the x vector without the xrc element, xT

= (xrc, xT ) and r is the r vector without the rrc element,
rT = (rrc, rT ). Now, given the curve qT (qrc) = (qrc, qT (qrc))
in the q space of coordinates, the transformation (6) de-
fines the curve in the x space of coordinates by the function
xT (xrc) = (xrc, xT (xrc)). The basic question on the invariant
character of the Euler equation is the following: let two curves
q(qrc) and x(xrc) related by the smooth and nonsingular trans-
formation (6), then x(xrc) is an extremal for I (x) if q(qrc)
is an extremal for I (q̄).30 This is because the corresponding
Euler equations are related by the transformation (6), and the
equality, {Gx} = [∇xqT ]{Vq} = 0N−1, where {Gx} = 0N−1 if
{Vq} = 0N−1 since det (D) �= 0. The vice versa is also true.
In more detail the Euler Eq. (2) corresponding to the function
G of Eq. (8), {Gx}, is satisfied if Eq. (4), the Euler equation
of the function V of the variational problem (5), {Vq}, is also
satisfied. Enunciated in another way and for the present case,
given the PES function in the q system of coordinates, V(q),
and the selection of a coordinate as a reaction coordinate, qrc,
with these elements one constructs the function V as given in
Eq. (5), then using the inverse of the transformation (6) one
obtains the function G

V (qrc (x) , q (x)) rT x′ = V (q (xrc, x)) (rrc + rT x′)

= U (xrc, x) (rrc + rT x′)

= G
(
xrc, x, x′) . (9.a)

The Euler equation of this new function G is related to
Eq. (4), the Euler equation of the variational problem (5) by
the equalities

rT x′[∇xxT ]S∇qV (q(xrc, x)) − (x′)T S∇qV (q(xrc, x))r

= 0N−1 (9.b)

being satisfied if Eq. (4) is also satisfied. Conversely, given
the PES function in the x system of coordinates, U(x), and a
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normalized vector, r, with these elements one constructs the
function G as given in Eq. (8), then using the expression (6)
it is transformed into the function V as exposed in the set of
equalities

G(xrc(q), x(q), (dx/dqrc)/(dxrc/dqrc))(dxrc/dqrc)

= U (xrc(q), x(q))

= U (x(qrc, q))

= V (qrc, q) (10.a)

and the Euler equation of the resulting function V, which is
Eq. (4), is related to the Euler equation of the function G
through the equalities

(∇qxT )∇xU (x (qrc, q)) = ST ∇xU (x (q))

= ∇qV (qrc, q) = 0N−1 (10.b)

being satisfied if the gradient of the PES function, U(x), is
null in its projection on the subspace spanned by the set of
N − 1 si vectors. An equivalent form to rewrite the second
term of Eq. (10.b) is

r
(∇T

x U (x) ∇xU (x)
)1/2 = ∇xU (x) , (11)

since multiplying from the left by ST one recovers the second
term of Eq. (10.b). We recall that r is a given normalized vec-
tor. Equation (11) was introduced for the first time by Quapp
et al. in their proposed RGF method.8, 10 The above equiva-
lence between the variational problems characterized by the
integrands V and G establishes the relation between both the
RGF path and the distinguished reaction coordinate or DC
path. If a column of the unit matrix I is selected as r vector,
then the function G of Eq. (8) is equal to the function V of
Eq. (5). In this case both the DC and the RGF methods coin-
cide in the original system of coordinates. From this point of
view, the RGF is a generalization of the DC or driven coordi-
nate method. However, the RGF method can always be trans-
formed to the DC method by choosing the appropriate trans-
formation of coordinates that are defined in the expression
(6). We emphasize that each of the Euler equations, namely,
Eqs. (4) and (10.b) or their equivalent equation [Eq. (11)],
does not involve derivatives of the type, dq/dqrc or dx/dxrc,
respectively. This fact implies that the extremal curve, q(qrc)
or x(xrc), should be obtained implicitly from the appropriated
Euler equation.

B. The extremal sufficient conditions

Since the relation between the DC and the RGF meth-
ods from a variational point of view has been established, we
now want to explore the extremal sufficient conditions of this
type of RP curves. The Euler differential equation is a nec-
essary condition for an extremum. However, a particular ex-
tremal curve satisfying the boundary conditions can furnish
an actual extremal, say character minimum, only if it satisfies
certain additional necessary conditions that take the form of

inequalities, normally denoted as δ2I ≥ 0. The formulation of
such inequalities together with their refinement into sufficient
conditions is an important part of the theory of calculus of
variations.25, 30 We address this problem from the function G
which is associated to the RGF method and is more general.
This function can always be transformed into the V function,
thanks to the transformation (6) related to the DC method.

In the present case, the extremal curve xT (xrc)
= (xrc, xT (xrc)) makes the integral I (x) of Eq. (8) a mini-
mum with respect to continuous comparison curves, xT

c (xrc)
= (xrc, xT

c (xrc)), with piecewise continuous first derivatives if
the condition

det
(
ST

[∇x∇T
x U (x (xrc))

]
S
) ≥ 0 (12)

is satisfied along the extremal curve x(xrc). To prove this
assertion, first, we replace in the integral I (x) of Eq. (8)
the arguments x and dx/dxrc with xc = x + εy and dxc/dxrc

= dx/dxrc + εdy/dxrc, being ε a number and y(xrc) an arbi-
trarily chosen function, yT(xrc) = (yrc(xrc), yT (xrc)). Second,
by the Taylor theorem we expand I (x) until the second order
in ε

H (ε) = I (x + εy)

= I (x) + εδ I (x, y) + ε2

2
δ2 I (x, y) + O(ε2). (13)

Since I (x) is stationary for the x(xrc) curve,
d H (ε)/dε|ε=0 = δ I (x, y) vanishes (from which follows
the Euler equation {Gx} = 0N−1) and a necessary condition
for a minimum is d2 H (ε)/dε2|ε=0 = δ2 I (x, y) ≥ 0 for the
arbitrarily chosen function y (xrc). For the present variational
problem we express the integrals I (x + εy) and δ2 I (x, y) of
Eq. (13) as a function of the q coordinates through x using
the transformation (6). The dependence of the x coordinates
with respect to q coordinates for the present purpose is given
by the following relation, xc = x + εy = D qc = D (q + εp),
where yT D = pT = (prc, pT ) and prc = 0 because qc

rc = qrc

implying that y=Sp̄. With these considerations we have

I (x + εy) =
∫ x f

rc

x0
rc

{U (xc (ε)) rT x′
c (ε)}dxrc

=
∫ q f

rc

q0
rc

{U (D (q + εp)) rT D(q′ + εp′)}dqrc

=
∫ q f

rc

q0
rc

V (qrc, q + εp)dqrc = I (q + εp) (14)

and

δ2 I (x, y) =
∫ x f

rc

x0
rc

yT
[∇x∇T

x U (xrc, x (xrc))
]

ydxrc

=
∫ q f

rc

q0
rc

pT ST
[∇x∇T

x U (x (qrc, q))
]

Spdqrc

= δ2 I (q, p) , (15)
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where x′
c (ε) = dxc (ε)/dxrc, q′ = dq/dqrc, and p′

= dp/dqrc. From Eq. (15) follows Eq. (12). The com-
parison curve, xc(xrc), and its derivative, x′

c, tends to the
extremal curve and its derivative, x(xrc) and x′, as ε tends
to zero. The variation, ε y(xrc), is called a weak variation
because it satisfies these two conditions and geometrically
means that the extremal curve x(xrc) is compared to the
curves that approximate to x(xrc) in the slope as well
as position as ε tends to zero. Taking into account this
definition, we conclude that the DC curve or its general-
ization, the RGF or Newton path, satisfies the necessary
weak relative minimum conditions if the inequality (12)
is satisfied everywhere along the extremal path, x(xrc),
joining the points x0 = (x0

rc, x0) and x f = (x f
rc, x f ).

If in the expression (12) the equality is dropped then
the curve satisfies the sufficient weak relative minimum
condition.

In contrast to these weak variations, we now consider a
new type of strong variations the smallness of which does not
apply to that of its derivatives. Since the quadratic form of the
integrand δ2 I (x, y) of Eq. (14) does not depend on the deriva-
tive and is positive if expression (12) is satisfied then the ex-
tremal curve, x(xrc), in the given region certainly furnishes
a minimum. We conclude that the DC curve or its general-
ization, the RGF or Newton path, also satisfies the necessary
strong minimum conditions. This extremal path joining two
points of the PES function minimizes the integral functional
given in the expression (8) if it evolves through a convex re-
gion of the PES. The sufficiency condition of the minimum
character is achieved if the convexity is strict. In Sec. II C, we
remark this conclusion from another point of view.

C. Transversality

Now we analyze the concept of transversality which is
important in the theory of calculus of variations.25, 30 The
transversality is a relation between the direction of the ex-
tremal curve, xT (xrc) = (xrc, xT (xrc)) and that of the given
boundary curve, a member of the family of equipotential hy-
persurfaces of the PES, U(x) = v. To get this relation we
define an arbitrary curve, xT

a (xrc) = (xrc, xT
a (xrc)), which in-

tersects the above family of equipotential hypersurfaces of
the PES and touches them nowhere; thus if we set v(xrc)
= U(xa(xrc)), then

dv/dxrc = ∇T
x U (x)

(
dx

dxrc

)∣∣∣∣
x=xa (xrc)

. (16)

We express the value I (x) of Eq. (8) along the curve
xa(xrc) as a function of v obtaining

I (xa) =
∫ x f

rc

x0
rc

G(xrc, xa, x′
a)dxrc =

∫ v f

v0

U (xa) rT x′
a

∇T
x U (xa) x′

a
dv,

(17)

where x′
a = dxa/dxrc and x′

a = dxa/dxrc. We look for those
tangent vectors, x′

a , for which the integrand of the second
integral of Eq. (17) is stationary with respect to these vectors.
They satisfy the condition

r = rT x′
a

∇T
x U (xa) x′

a
∇xU (xa) . (18)

Since r is a normalized vector to the unity, rT x′
a/

[∇T
x U (xa)x′

a] = 1/[∇T
x U (xa)∇xU (xa)]1/2. This condition is

satisfied if the curve with tangent x′
a cuts the family of

equipotential hypersurfaces of the PES, v, at the correspond-
ing point where the gradient vector ∇xU(xa) points to the
direction r, ∇xU(xa) = r [∇T

xU(xa) ∇xU(xa)]1/2, which is
nothing more than Eq. (11), the Euler equation of function G
of the variational problem (8). We conclude that the arbitrary
curve xa(xrc) satisfying the above condition is the RGF curve
that extremalizes the functional (8) is the extremal xa(xrc)
= x(xrc). Normally, at each point of an equipotential hyper-
surface of the PES, the gradient vector points to different
directions, on the other hand the function G is parametri-
cally dependent on the r vector. The r vector is not an ar-
gument of this function, and the resulting Euler equation is a
function of this vector. From this fact we conclude that the
variational problem (8) normally does not generate a field
of RGF extremals with a given r. With the starting point or
initial condition x0 = x(x0

rc) so that at this point the gradient
of the PES points to the direction r, Eq. (11) only generates
a curve cutting the family of equipotential hypersurfaces of
the PES at the points where the corresponding gradient vec-
tors point to the same direction r. In other words, only from
these initial conditions a curve is generated. The extremal
curve is not imbedded in a field of extremal curves satisfying
Eq. (11) and these initial conditions. Additionally, if we take
into account the relation between the RGF and the DC meth-
ods, we say that the function V of Eq. (5) does not gener-
ate a field of extremals, since normally only a point of the
equipotential hypersurface has a gradient that possesses the
form given in Eq. (4).

III. INTEGRATION

In Sec. II C, only the variational nature of both the DC
and the RGF methods has been analyzed. An important result
is that the RGF method is a generalization of the DC method.
Due to this fact, from now on we only deal with Eq. (11),
the Euler equation associated to the RGF method. As noted
above, this Euler equation is not a system of ordinary differ-
ential equations; therefore, straight forward integration is not
possible to determine the curve. It is a system of N-first order
partial differential equations, and in this case, the curve is ob-
tained through the corresponding treatment of this system. In
this section, we analyze the integration of this system of par-
tial differential equations. We are facing a Cauchy or initial
value problem.25, 31, 32 Briefly, in the present case, it consists
of constructing an N − 1 dimensional surface, and through
each point of this surface passes a curve which is not tangent
to the surface and also varies quite smoothly. The value of
the surface, U(x) − v = 0, its derivatives in the direction of
the curve, and the initial values are prescribed on the surface.
Now the transformation (6) is used because det (∇q x

T) �= 0,
and it is possible to replace the coordinates x by the new co-
ordinates q of the surface. Now we multiply Eq. (11) from the
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left by DT and for the resulting equation, we apply the above
change of coordinates((∇T

x U (x) ∇xU (x)
)1/2

0N−1

)
= DT ∇xU (x)

= [∇q (Dq)T ]∇xU (x)

= [∇qxT ]∇xU (x)

= ∇qU (Dq) = ∇qV (qrc, q)

=
(

∂V (qrc, q)/∂qrc

∇qV (qrc, q)

)
. (19)

Using the resolution of identity I = DDT and
∇qV (qrc, q) = 0N−1 which is Eq. (10.b) we have(∇T

x U (x) ∇xU (x)
)1/2 = (∇T

x U (x) DDT ∇xU (x)
)1/2

=
((

DT ∇xU (x)
)T (

DT ∇xU (x)
))1/2

= (∇T
q V (qrc, q) ∇qV (qrc, q)

)1/2

= ∂V (qrc, q)/∂qrc. (20)

In this way, Eq. (11) in the new coordinates q takes the
form

∇qV (qrc, q) =
(

∂V (qrc, q)/∂qrc

∇qV (qrc, q)

)

=
(

∂V (qrc, q)/∂qrc

0N−1

)
(21)

with the initial condition

∇qV (qrc, q)
∣∣

qrc=q0
rc

q=q0

=
(

∂V (qrc, q)/∂qrc

0N−1

)∣∣∣∣∣ qrc=q0
rc

q=q0

. (22)

In the q system of coordinates, we say that the curve
going through a point of the surface depends on N − 1 pa-
rameters for which we can take the coordinates q of the
point of the surface. The qrc denotes the coordinate that
varies along the curve. In other words, qrc is the parame-
ter of a point on the curve and q are the N − 1 parameters
of the curve itself. Through each point of the surface one
and only one curve goes implying that the numbers q may
be taken as new coordinates of the point x. The normal to
the plane tangent to the surface is the vector ∇qV (qrc, q̄) of
Eq. (21). Since this vector possesses a nonzero component in
the r direction and null components in the set of the N − 1
directions collected in the S matrix, the plane tangent at
the initial point q0 is given by 0 = qrc − q0

rc. In the x co-
ordinates this plane is 0 = qrc − q0

rc = (qrc − q0
rc) + 0T

N−1(q̄
− q̄0) = rT D(q − q0) = rT (x − x0) being the r vector the
normal to the plane in the x coordinates. The curve that passes
through the plane 0 = qrc − q0

rc at the point q0 = (q0
rc, q̄0) is

obtained by applying the implicit function theorem33 to the
set of N − 1 functions, ∇qV (qrc, q) = 0N−1, this curve be-
ing the solution to the system of first order partial differential

equation (21) with the initial condition (22). If at the point
q0 = (

q0
rc, q̄T

0

)
the above N − 1 equations are satisfied and

det(∇q∇T
q V (qrc, q)| qrc=q0

rc
q=q0

) �= 0 then according to the implicit

function theorem there exists in a certain neighborhood of
the point q0

rc one and only one system of continuous func-
tions q = q(qrc) satisfying the two conditions, q0 = q(q0

rc)
and ∇qV (qrc, q (qrc)) = 0N−1. In addition, the first derivative
dq/dqrc exists in the same region and it is a continuous func-
tion of qrc and is obtained through the equation

[∇q∇T
q V (qrc, q)

] dq
dqrc

+ ∂

∂qrc
(∇qV (qrc, q)) = 0N−1.

(23)

The functions q = q (qrc) describe the curve and dq/dqrc

their tangent. Now we transform Eq. (23) from q coordinates
to x coordinates using Eq. (6)

0N−1 = ST
[∇x∇T

x U (x)
]

S
(

dq
dqrc

)
+ ST

[∇x∇T
x U (x)

]
r

= ST
[∇x∇T

x U (x)
]

D
(

dq
dqrc

)

= ST
[∇x∇T

x U (x)
] (

dx
dxrc

)
dxrc

dqrc
. (24)

Since dxrc/dqrc �= 0 and the matrix SST is a representation
of the projector (I − rrT) we rewrite Eq. (24) after multiplying
it from the left by S as

(I − rrT ) [H (x)]
dx

dxrc
= 0, (25)

where H(x) is the Hessian matrix, H(x) = ∇x∇x
TU(x).

Equation (25) has been reported many times as the basic equa-
tion to integrate the RGF method.10, 34 This equation tells us
that the N − 1 components, si

T[H(x)]x′ = 0, but we are free
for the rT[H(x)]x′ component. Due to this fact and for con-
venience we take rT[H(x)]x′ = (gT(x)g(x))1/2 det(H(x)). With
these considerations, to obtain the tangent vector, dx/dxrc, we
write [H(x)]x′ vector as follows:

[H (x)]
dx

dxrc
= r(gT (x)g(x))1/2 det (H (x)) , (26)

which satisfies the above requirements. Now, multiplying
Eq. (26) from the left by A(x), the adjoint matrix of the Hes-
sian, and finally using Eq. (11), we get the equation

dx
dxrc

= [A (x)] r
(
gT (x) g (x)

)1/2 = [A (x)] g (x) , (27)

where the next identity has been employed

[A (x)] [H (x)] = [H (x)] [A (x)] = I det (H (x)) . (28)

Equation (27) is the Branin equation.35, 36 The basic equa-
tion (25) of the RGF method is related to the Branin equation
(27) if the rT[H(x)]x′ component is the one given above. The
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vector ∇xU(x) = g(x) varies through the direction of the curve
(27) according to the equation

dg (x)

dxrc
= d∇xU (x)

dxrc
= [∇x∇T

x U (x)
] (

dx
dxrc

)

= [H (x)]

(
dx

dxrc

)

= r
(
gT (x) g (x)

)1/2 det (H (x))

= g (x) det (H (x)) , (29)

where Eqs. (27) and (28) have been used. Integrating Eq. (29),
we conclude that ∇xU(x) varies only in the r direction,
∇xU(x) = g(x) = r (gT(x)g(x))1/2, and null in the N − 1 si

directions as is expected looking at the system of partial dif-
ferential equation (11). Finally the variation of U(x) through
this curve is given by the expression

dU (x)

dxrc
=

(
dx

dxrc

)T

∇xU (x) = rT [A (x)] r(gT (x) g (x))

= gT (x) [A (x)] g (x) , (30)

where again Eqs. (11) and (27) have been used. The system
[Eqs. (27), (29), and (30)] is called the characteristic system
of differential equations belonging to Eq. (11). At each point
of the curve given by the set of ordinary differential equations
(27) and (29), the coordinates x and the vector ∇xU(x), satisfy
the system of partial differential equations (11). The system
of ordinary differential equations (27), (29), and (30) is not
autonomous because it involves arguments that do not appear
in the partial differential equation (11). The direction, dx/dxrc,
given by the expression (27) is called characteristic direction
and in the point x where det(ST [∇x∇T

x V (x)]S) �= 0 we say
that the hypersurface U(x) − v = 0 is noncharacteristic; the
curve transverses it at this point.

A. The case of turning points

The solution of the initial value problem or Cauchy
problem fails in the case where det(∇q∇T

q V (qrc, q))
= det(ST [∇x∇T

x U (x)]S) = 0. At this point, the implicit func-
tion theorem cannot be applied and the immediate conse-
quence is that it is not possible to write q as a function of qrc.
In this situation, we take t as the parameter that characterizes
the curve, q(t) = (qrc(t), q (t)). Now we look for the solution
of the initial value problem for this case. First we differentiate
∇qV (qrc, q) = 0N−1 with respect to t

dqrc

dt

∂

∂qrc
∇qV (qrc, q) + [∇q∇T

q V (qrc, q)
] dq

dt

= ST [H (x)] r
dqrc

dt
+ ST [H (x)] S

dq
dt

= 0N−1, (31)

where we applied that H(x) = ∇x∇x
TU(x). If

det(∇q∇T
q V (qrc, q)) = det(ST [H(x)] S) = 0 implies that

at least one eigenvalue of ST[H(x)]S matrix is zero. To
analyze this case we transform Eq. (31) into the system of

coordinates, (qrc, z̄T ), that diagonalize the ST[H(x)]S matrix

WT ST [H (x)] r
dqrc

dt
+ hWT dq

dt

= b
dqrc

dt
+ h

dz
dt

= 0N−1, (32)

where W is the unitary matrix of eigenvectors and h is the di-
agonal matrix of the eigenvalues of the ST[H(x)]S matrix; in
other words, ST[H(x)]S = W {hijδij} WT. Let us assume that
the eigenvalue hjj = hj = 0 and the corresponding j element of
the b vector is nonzero, bj �= 0, then the solution of Eq. (32) is
dqrc/dt = 0 and (dz/dt)T = (01,..., 0 j−1, 1 j , 0 j+1,..., 0N−1),
and from this dq/dt = Wdz/dt = w j being wj the j column
vector of W matrix.34 The tangent vector in this case lies in
the plane 0 = qrc − q0

rc which is tangent to the constant en-
ergy contour curve, V (qrc, q) − v = 0, and orthogonal to the
gradient vector, ∇T

q V (qrc, q) = (∂V (qrc, q)/∂qrc,0T
N−1), since

the r component is zero, dqrc/dt = 0. The curve at this point
does not satisfy the transversality condition. Such a point will
normally mark a switch from going uphill in potential en-
ergy to going downhill or vice versa, but may in principle
also be a tangential touching of the constant energy contour
curve, V (qrc, q) − v = 0. Such cases are denoted as ‘‘turning
points’’ TP.10, 37 In this case, the curve solution is characteris-
tic at this point.

If the diagonal h matrix has more than one eigenpairs
with null eigenvalues and their corresponding elements of the
b vector are different from zero, then there exist infinitely
many characteristic curves, all lying in the plane 0 = qrc − q0

rc
tangent to the constant energy contour curve, V (qrc, q) − v
= 0.

B. The case of valley-ridge inflection points: Their
consequences in the extremal sufficient conditions

In the case that the eigenvalue hjj = hj = 0 and the
corresponding j element of the b vector is zero, bj = 0,
there are only N – 2 independent equations in the sys-
tem of equations [Eq. (32)] (or N – 1 if one includes the
normalization condition), which does not allow a unique
determination of the tangent curve at this point. Rather the
whole subspace spanned by the vectors (dqrc/dt, dqT /dt)
= (dqrc/dt, dzT /dtWT ), where dqrc/dt �= 0 and (dz/dt)T

= (b1/h1,..., b j−1/h j−1, 0 j , b j+1/h j+1,..., bN−1/hN−1) and
(dqrc/dt, dqT /dt) = (0, dzT /dtWT ), where (dz/dt)T

= (
01,..., 0 j−1, 1 j , 0 j+1,..., 0N−1

)
is a solution to the matrix

equation (32). The former vector is noncharacteristic and
transverses the constant energy contour curve while the latest
is characteristic lying in the contour energy curve. Thus, the
condition of a bifurcation point of RGF curves of the same
r vector is bj = hj = 0, named also valley-ridge inflection
point (VRI).

In these points, the set of characteristic differential equa-
tions (27), (29), and (30) are still valid. To prove this assertion,
first, we transform equation (27) from x coordinates to q co-
ordinates using the transformation (6) and the resolution of
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identity; and second, we multiply from the left the resulting
equation by the unitary matrix(

1 0T
N−1

0N−1 WT

)
(33)

obtaining⎛
⎜⎝

dqrc

dt
dz
dt

⎞
⎟⎠ =

[
rT [A (x)] r rT [A (x)] SW

WT ST [A (x)] r WT ST [A (x)] SW

]

×
⎛
⎝ ∂V (qrc, q)

∂qrc

0N−1

⎞
⎠ . (34)

Using the definition of adjoint matrix, we have the element
rT [A(x)]r = det(∇q∇T

q V (qrc, q)) = det(h) = 0 because hj

= 0. In the case that bj �= 0, the element (WTST[A(x)]r)j

�= 0 and the rest of elements is equal to zero. From these
results, one follows that the tangent vector takes the same
structure as given above for this situation. However, when
bj = 0, the vector WTST[A(x)]r = 0N−1 and due to this fact(
dqrc/dt, dzT /dt

) = 0T .With the above results one concludes
that both the stationary points and the VRI points of a PES are
singular points for RGF or NT curves. These curves stop in
these points because g(x) = 0, stationary point, or [A(x)]g(x)
= 0, VRI point, and from this the tangent of the curve in these
points is x′ = 0. The existence of VRI points has an impor-
tant consequence on the extremal conditions of RGF or NT
curves. If an NT curve starts in a stationary point of the PES
with character minimum and stops at a stationary point char-
acter of first order, then the value of the integral δ2 I of Eq.
(15) is positive definite, and we say that this NT is a minimiz-
ing extremal curve. To prove this assertion, we say that since
the NT path at each point transverses the family of equipo-
tential hypersurfaces and because of the continuity and the
nonexistence of VRI points, we have det

(
ST [H (x)] S

)
> 0 at

each point of the curve. From this one concludes that δ2 I > 0.
On the other hand, if the NT curve has a VRI point and trans-
verses the equipotential hypersurface that contains this point,
it stops to a stationary point but no statement can be made on
the character of this NT curve. To prove the latest assertion,
we say that the NT path transverses the family of equipoten-
tial hypersurfaces, det

(
ST [H (x)] S

)
> 0 holds from the min-

imum to the VRI point. From the VRI point to the station-
ary point holds det

(
ST [H (x)] S

)
< 0 since the curve enters

a ridge and because of this fact the sign of the integral δ2 I
cannot be determined until its explicit evaluation.

C. Runge–Kutta–Fehlberg technique

Taking into account the overall analysis, we conclude
that the set of ordinary differential equations (27), (29) and
(30) can be used to integrate the system of partial differential
equation (11), but any algorithm based on this set of equa-
tions stops at both stationary points and VRI points. We pro-
pose to integrate this set of ordinary differential equations
using the Runge–Kutta–Fehlberg technique with τ -stage and
p-algebraic order (RKF-τp).38 We note that the RKF tech-

nique has been used before as a part of other proposed algo-
rithms to locate RPs of the type IRC.39–42 The RKF-τp algo-
rithm is used for the evaluation of a general vectorial function,
say yn+1 = y(xn+1), when yn = y(xn) is known. The vectorial
function yn+1 is computed by the equations

yn+1 = yn +
τ∑

i=1

bi ki , (35.a)

ki = f

⎛
⎝xn + ci h, yn + h

i−1∑
j=1

ai j k j

⎞
⎠ , i = 1,..., τ,

(35.b)

where f(x, y(x)) is the vectorial function of the problem un-
der consideration. The coefficients, {ai j }τ,τ−1

i=1, j=1, {bi }τi=1, and
{ci }τi=1 that appear in Eq. (35) satisfy some relations that are
given through the so-called Butcher formula-table.38 The set
of coefficients, {ci }τi=1, are computed through the equation

ci =
i−1∑
j=1

ai j , i = 2,..., τ. (36)

To solve the set of first order ordinary differential equa-
tions (27) and (29) using Eq. (35), we take yT = (xT, gT)
and the f vector is constructed using the right-hand side part
of the equations (27) and (29), the former for the x vector
and the latter for the g vector. In the present study, we take
τ = 4 and p = 8; in other words, the algorithm used is labeled
as RKF (4,8).

IV. EXAMPLE, ANALYSIS AND DISCUSSION

In this section, using a two-dimensional example we
show the properties of the NT curves as RP and using as
integration algorithm the above explained RKF(4,8). As a
two-dimensional case, we take the PES initially proposed by
Wolfe et al.43 and later modified by Quapp.44 The so-called
Wolfe–Quapp PES is characterized by the following expres-
sion

U (x, y) = x4 + y4 − 2x2 − 4y2 + xy + 0.3x + 0.1y.

(37)

This equation describes a “three and a half”-well PES.
In this PES there are three minima M1, M2, and M3 which
are located in (−1.174, 1.477), (−0.822, −1.367), and (1.124,
−1.485) with energies −6.762, −4.137, and −6.369, respec-
tively, three saddle points labeled as TS1, TS2, and TS3 which
are located in (−1.022, −0.116), (−0.303, −1.401), and
(0.941, 0.131) with energies −1.251, −3.980, and −0.637,
respectively, a stationary point character maximum labeled as
MAX located at the point (0.081, 0.023) with energy 0.013.
The coordinates and energies are given in arbitrary units.

In Fig. 1 an NT curve that emerges from the mini-
mum MIN1 with direction (0.707, −0.707) transverses the
family of equipotential curves to achieve the first order
stationary point TS3. During this evolution the totality of
the curve remains in the bowl of MIN1, never crosses
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FIG. 1. The blue curve is the NT or RGF curve joining the stationary points
MIN1 and TS3 of the Wolfe–Quapp PES. The green curve is the valley-ridge
border line, where det (ST[H(x)]S) = 0. The red lines are the equipotential
curves of the PES. In this case the NT or RGF curve is an RP with the cate-
gory of MEP and is a minimizing extremal curve.

the valley-ridged border line, det (ST[H(x)]S) = rT[A(x)]r
= g(x)T[A(x)]g(x)/(gT(x)g(x)) = 0,45 is located in a val-
ley region as a consequence at each point of the curve det
(ST[H(x)]S) > 0. As a result of this, the NT is a minimizing
extremal curve. Note that x = (x, y) is set. This NT is an RP
of the category of MEP at least until TS3.

In Fig. 2 the NT curve also emerges from MIN1 but with
direction (0.643, −0.766). The curve achieves the TS3 sta-
tionary point; however, at the point (−0.493, 0.814) crosses
the valley-ridged border line, it leaves a valley or bowl of
MIN1 and enters a ridge, but at the point (0.040, 1.210) the
curve enters the bowl of MIN1 again. The former point is of
the mixed-type VRI46 while the latter point is a turning point;
in this case, the NT curve touches the equipotential curve at

FIG. 2. The blue curve is the NT or RGF curve joining the stationary points
MIN1 and TS3 of the Wolfe–Quapp PES. The green curve is the valley-ridge
border line, where det (ST[H(x)]S) = 0. The red lines are the equipotential
curves of the PES. In this case the NT or RGF curve is not RP because does
not increase always monotonically from MIN1 to TS3.

FIG. 3. A set of RGF or NT curves joining all stationary points of the Wolfe–
Quapp PES. The curves, cTS1MIN1, cTS1MIN2, cTS2MIN2, cTS2MIN3,
cTS3MIN3, and cTS3MIN1 are minimizing extremal curves while the curves
cTS1MAX, cTS2MAX, and cTS3MAX are maximizing extremal curves.

this point, resulting in dU(x)/dt = 0. For the subarc within
the VRI and the TP holds that at each point det (ST[H(x)]S)
< 0 because it is located on a ridge. The rest of the curve
is located in a valley region. The present NT curve does not
achieve even the category of RP because it does not increase
monotonically from the minimum MIN1 to the first saddle
point TS3. At subarc between the points (−0.493, 0.814) and
(0.040, 1.210), the potential energy decreases, dU(x)/dt < 0.
In this case the sign of the integral δ2 I cannot be determined
until its explicit evaluation. The cases exposed in Figs. 1 and
2 are examples of the conclusions discussed in the last para-
graph of Sec. III B.

In Fig. 3, we show the RGF curves that start in the three
first order saddle points, TS1, TS2, and TS3 with the di-
rections (1.0, 0.0), (0.0, 1.0), and (−1.0, 0.0), respectively.
The selected tangent in the Branin equation is negative, dx/dt
= −[A(x)] g(x). The three curves end at the MAX point,
showing the property that RGF curves join stationary points.
These curves are labeled as “cTS1MAX”, “cTS2MAX”, and
“cTS3MAX”. The other curves start at the same stationary
point but in different directions. The two curves labeled as
“cTS1MIN1” and “cTS1MIN2” start at TS1 with the direc-
tions (0.0, 1.0) and (0.0, −1.0) and end at MIN1 and MIN2,
respectively, while the curves “cTS2MIN2” and “cTS2MIN3”
start at TS2 with the directions (−1.0, 0.0) and (1.0, 0.0) and
end at MIN2 and MIN3, respectively. Finally, the two curves
labeled as “cTS3MIN3” and “cTS3MIN1” start at TS3 with
directions (0.0, −1.0) and (0.77, 0.64) and end at MIN3 and
MIN1, respectively. The curve cTS3MIN1 is the curve labeled
as “NT_MEP” of Fig. 1. These nine RGF curves show the im-
portant fact that with the negative option in the RGF tangent
the integrated curve ends at the stationary points such that
their corresponding Hessian matrix has an even number of
negative eigenvalues. Starting at any minima, MIN1, MIN2,
and MIN3 and taking the positive option in the tangent, the
corresponding curves end at the stationary points so that their
Hessian matrices have an odd number of negative eigen-

Downloaded 15 Feb 2011 to 161.116.74.187. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



074101-10 J. M. Bofill and W. Quapp J. Chem. Phys. 134, 074101 (2011)

FIG. 4. Two curves, cTS3MIN1TP, and cTS3MAXTP both start at the first
order saddle point TS3 but end at different stationary points. The initial di-
rection between both is slightly different. The different evolution is due to the
existence of a mixed-type VRI point.

values. The three NT or RGF curves, namely, cTS1MAX,
cTS2MAX, and cTS3MAX show a negative value for the in-
tegral δ2 I , of Eq. (15), which means that these three curves
present a maximum character. They are maximizing extremal
curves. On the other hand, the integral δ2 I takes a positive
value for the other curves, which means that these curves
show a minimum character. It is important to see that the
curves with a minimum character are located in a valley re-
gion while the curves with a maximum character are located
on a ridge region of the PES.

In Fig. 4 a curve that starts in TS3 with direction (0.407,
0.914) ends at the MAX point. In the point (0.573, 1.339)
of this curve the tangent is orthogonal to the gradient vec-
tor, in other words, −(dx/dt)T g(x) = −gT(x) [A(x)] g(x)
= −dU(x)/dt = 0, and due to this fact, this point is another ex-
ample of a TP. Notice that the curve takes a descent direction
from TS3 to this TP and an ascent direction from the TP to the
MAX point. The other curve that also starts at the same point
TS3 but with a direction slightly different (0.423, 0.906) and
ends at the MIN1 point. It shows a first TP near the above TP
and a second TP located in (−0.515, 0.838). This curve shows
a behavior very close to the latter curve; however, thanks to
the second TP it starts to a decreasing direction until reaching
the MIN1 point. The integral associated to the second varia-
tion, δ2 I , is positive and the curve is located in a valley region.
Again we find a relation between the minimum character and
that the RGF curve is fully located in a valley. The former
curve shows a negative value for δ2 I in the last straight line
step. This subarc that is a straight line is located on a ridge.

The curve from MIN1 to the VRI point is a curve in the
bowl of the minimum, thus it is a valley curve. Its bifurca-
tion, however, is not the bifurcation of the two valleys, nei-
ther from MIN1 to TS1 nor from MIN1 to TS3. That bi-
furcation already happens at the minimum. The VRI indi-
cates the transition from the bowl of MIN1 to the summit of
MAX, thus it indicates a valley-ridge inflection, as the name
implies.

V. CONCLUSION

We have proved the variational nature of the distin-
guished coordinate path and the reduced gradient following
path or its equivalent formulation, the Newton trajectory. All
these paths are extremal curves of a variational problem that
can be formulated in different forms which are given in ex-
pression (8). If the curve starts in a minimum of the PES
and ends at a first order stationary point, the extremal curve
achieves its condition of minimum. However, if this curve has
a VRI point and transverses the equipotential hypersurfaces
at this point, its extremal condition can only be determined by
an explicit evaluation of Eq. (15). Finally, the RKF technique
has been proposed as a tool to integrate NT curves, showing
a robust behavior as an integration tool.
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