abstract	Introduction	NTs	Search TS	Bif of RP	Explore PES	Variational NTs	Summary	Refs

The Use of Newton Trajectories in Theoretical Chemistry

Wolfgang Quapp

Mathematical Institute, University Leipzig, Germany

25 Years of Theoretical Chemistry Network of Catalonia, Barcelona, 29 June to 3 July 2009

abstract ●○	Introduction	NTs oo	Search TS 0000000000	Bif of RP	Explore PES	Variational NTs	Summary o	Refs o
p0								
Abstract								

The talk starts with a discussion of problems of the definition of a reaction pathway, especially of the intrinsic reaction coordinate (IRC). We propose Newton trajectories (NT) for an alternative.¹

An NT is a curve where at every point the gradient of the PES points into the same direction.

Definitions of NTs and different calculation methods are reported.²

NTs connect stationary points of the PES, thus, they can be used to find saddle points.

Another important property of NTs is: they bifurcate at valley-ridge inflection points (VRI). By simple 2D schemes we explain some methods used to find VRIs.

A further step are some theoretical extensions: NTs allow to explore the PES in relation to convex regions (valleys),

or concave regions (ridges), as well as statements about the index of connected stationary points.

An outlook on future research concerns the problem to find unsymmetric VRIs by a variational theory ansatz.³

¹W.Quapp, M.Hirsch, O.Imig, D.Heidrich, J.Computat.Chem. 19 (1998) 1087;

W.Quapp, M.Hirsch, D.Heidrich, Theor.Chem.Acc. 100 (1998) 285.

²W.Quapp, J.Theoret.Computat.Chem. 2 (2003) 385, and 8 (2009) 101.

³W.Quapp, Theor.Chem.Acc. 121 (2008) 227.

abstract	Introduction	NTs	Search TS	Bif of RP	Explore PES	Variational NTs	Summary	Refs
0•								

fig

Figure: Gradient extremal, IRC, and Newton Trajectories

abstract oo	Introduction ●○○○○	NTs oo	Search TS 0000000000	Bif of RP	Explore PES	Variational NTs 0000	Summary o	Refs o		
1 What i	is a Rear	tion	Path?							
winat										

... a little better.

abstract	Introduction	NTs	Search TS	Bif of RP	Explore PES	Variational NTs	Summary	Refs
	0000							

IRCI

2

- $\frac{\mathbf{g}(\mathbf{x}(s))}{|\mathbf{g}(\mathbf{x}(s))|}$ $d\mathbf{x}(s)$ g is gradient, Start at SP ds
- Does not always follow the valley of the PES

(2D modified PES using the Neria, Fischer, Karplussurface, see JCP 105 (1996) 1902)

abstract	Introduction	NTs	Search TS	Bif of RP	Explore PES	Variational NTs	Summary	Refs
	0000							

IRCI

2

- $d\mathbf{x}(s)$ $\mathbf{g}(\mathbf{x}(s))$ g is gradient, Start at SP $|\mathbf{q}(\mathbf{x}(s))|$ ds
- Does not always follow the valley of the PES

(2D modified PES using the Neria, Fischer, Karplussurface, see

JCP 105 (1996) 1902)

abstract	Introduction	NTs	Search TS	Bif of RP	Explore PES	Variational NTs	Summary	Refs
	0000							

IRCI

2

- $\frac{d\mathbf{x}(s)}{ds} = -\frac{\mathbf{g}(\mathbf{x}(s))}{|\mathbf{g}(\mathbf{x}(s))|}$, **g** is gradient, Start at SP
- Does not always follow the valley of the PES

Hirsch, Quapp, CPL 395 (2004) 150

(2D modified PES using the Neria, Fischer, Karplussurface, see JCP 105 (1996) 1902)

abstract	Introduction	NTs	Search TS	Bif of RP	Explore PES	Variational NTs	Summary	Refs
	00000							

IRC II

3

IRC does not indicate bifurcations of a valley

The dotted curve is the IRC. It does not see the valle-ridge inflection point.

abstract	Introduction	NTs	Search TS	Bif of RP	Explore PES	Variational NTs	Summary	Refs
	00000							

4zz

General problems of the steepest descent

IRC III

•
$$\mathbf{x}_{k+1} = \mathbf{x}_k - \lambda \frac{\mathbf{g}(\mathbf{x}_k)}{|\mathbf{g}(\mathbf{x}_k)|}, \lambda$$
 any steplength

• Shows numerical zigzagging

Left: exact IRC, right: numerically determined IRC (Fig. by Benjamin Schmidt)

ab	stract	Introduction	NTs	Search TS	Bif of RP	Explore PES	Variational NTs	Summary	Refs
		00000							

Definition of Reaction Pathway

RP

- Is a monotone way between Minimum and Transition State
- It looks nice if going through a valley of the PES
- It would be nice if indicating bifurcations of the valley

A synonyme for RP would be Minimum Energy Path. From the point of view of practical calculations, it would also be helpful if we could calculate the RP beginning at the minimum.

Examples

- Steepest descent from SP, IRC
- Gradient Extremal
- Newton Trajectory

Note: none of the examples fulfills all properties, in all cases. Thus, we can treat different RP-Examples on an equal footing.

abstract oo	Introduction	NTs ●○	Search TS	Bif of RP	Explore PES	Variational NTs	Summary o	Refs o
6								

Distinguished Coordinate

- Historical Source: Distinguished Coordinate Choose a driving coordinate along the valley of the minimum, go a step in this direction, and perform an energy optimization of the residual coordinates.
 - This leads to problems if the valley ends ...
 - The Distinguished Coordinate jumps

Alternative

Use another definition: Newton Trajectory.

abstract oo	Introduction	NTs ●○	Search TS 0000000000	Bif of RP	Explore PES	Variational NTs	Summary o	Refs o
6								

Distinguished Coordinate

- Historical Source: Distinguished Coordinate Choose a driving coordinate along the valley of the minimum, go a step in this direction, and perform an energy optimization of the residual coordinates.
 - This leads to problems if the valley ends ...
 - The Distinguished Coordinate jumps

Alternative

Use another definition: Newton Trajectory.

abstract oo	Introduction	NTs ○●	Search TS 0000000000	Bif of RP 00000	Explore PES	Variational NTs 0000	Summary o	Refs o
7								

Definition of Newton Trajectory

- W. Quapp M. Hirsch O. Imig D. Heidrich, J Comput Chem 19 1998, 1087-1100, "Searching for Saddle Points of Potential Energy Surfaces by Following a Reduced Gradient"
- W. Quapp M. Hirsch D. Heidrich, Theor Chem Acc 100 (1998) No 5/6, 285-299 "Following the streambed reaction on potential-energy surfaces: a new robust method"

- Chose a Search Direction r
- Build the Projector Matrix $\mathbf{P}_r = \mathbf{I} \cdot \mathbf{r}^T$
- Search the Curve $P_r g=0$. It is the Newton Trajectory.

abstract	Introduction	NTs	Search TS	Bif of RP	Explore PES	Variational NTs	Summary	Refs
			0000000000					
0								

Predictor-Corrector Method I

Predictor

Go along the tangent of the Newton trajectory

$$\mathbf{0} = \frac{d}{ds} [\mathbf{P}_{\mathbf{r}} \mathbf{g}(\mathbf{x}(s))] = \mathbf{P}_{\mathbf{r}} \frac{d \mathbf{g}(\mathbf{x}(s))}{ds} = \mathbf{P}_{\mathbf{r}} \mathbf{H}(\mathbf{x}(s)) \mathbf{x}'(s)$$

the tangent is \mathbf{x}' ; note: $\mathbf{P}_{\mathbf{r}}$ is a constant $n \times n$ matrix.

Corrector

Use the Newton-Method, jump back to the Curve

Both of the steps need the Hessian of the PES, or updates of it.

- The method was included in 3 top level quantum chemistry packets: in MOLPRO, COLUMBUS, and TURBOMOL.
- The method was accelerated by the TASC-method W.Quapp, M.Hirsch, D.Heidrich: TCA 105 (2000) 145-155; see also M.Hirsch, W.Quapp: JCC 23 (2002) 887

abstract	Introduction	NTs	Search TS	Bif of RP	Explore PES	Variational NTs	Summary	Refs
			000000000					
9								

Predictor-Corrector Method II

TASC-method

• Use the tangent of the Newton trajectory for the next search direction **r**.

The result is a Gradient Extremal (GE).

Definition of a GE

 At every point the gradient of the PES is an eigenvector of the Hessian.

 $\mathbf{H}\,\mathbf{g} = \lambda\mathbf{g}$

and λ is the corresponding eigenvalue.

- D.K.Hoffman, R.S.Nord, K.Ruedenberg: TCA 69 (1986) 265-279. "Gradient Extremals"
- W.Quapp: TCA 75 (1989) 447-460.
 "Gradient Extremals and Valley Floor Bifurcations on PES"

abstract	Introduction	NTs	Search TS	Bif of RP	Explore PES	Variational NTs	Summary	Refs
			0000000000					
10								

Gradient Extremal

GE

At every point the gradient of the PES is an eigenvector of the Hessian: $\mathbf{H} \mathbf{g} = \lambda \mathbf{g}$, and λ is the Eigenvalue.

The fat curves are the GEs, the thin dashes are NTs.

abstract	Introduction	NTs	Search TS	Bif of RP	Explore PES	Variational NTs	Summary	Refs
			000000000					

Gradient Extremal

At every point the Gradient of the PES is an Eigenvector of the Hessian: $\mathbf{H} \mathbf{g} = \lambda \mathbf{g}$, and λ is the Eigenvalue.

The fat curves are the GEs, the thin dashes are NTs.

abstract	Introduction	NTs	Search TS	Bif of RP	Explore PES	Variational NTs	Summary	Refs
			0000000000					

Applications of NTs: Reaction Pathways, TSs (Examples only)

- H.Valdes, J.A.Sordo et al.: CPL 309 (1999) 265, 333 (2001) 130, 392 (2004) 236 and JCC 24 (2003) 2044: Cl + nitrobenzene, Cl + propene
- K.Schiele, R.Hemmecke: ZAMM 81 (2001) 291: driven multiple pendula
- M.Dallos et al.: JCC 23 (2002) 576, JCP 118 (2003)1702, CPC 5 (2004) 1365, PP Columbus: formaldehyle, acetylene
- M.Hirsch, W.Quapp: JCC 23 (2002) 887 "Improved RGF Method to Find Saddle Points" HCP, H₂CO, C₄H₁₀, ring opening of sym-tetrazine
- O.Castano et al.: JCC 23 (2002) 732: cyclooctatetraene
- B.Lasorne et al.: JCP 118 (2003) 5831, and 122 (2005) 184304, Chem.Phys.326 (2006) 500: H₃CO, dimerization of cyclopentadiene

abstract oo	Introduction	NTs oo	Search TS	Bif of RP 00000	Explore PES	Variational NTs 0000	Summary o	Refs o		
13										
String Method										

- Chose an initial Chain between two Minimums.
- Change the Chain by a controlled Newton-Method, step by step, back to the searched Newton Trajectory.

The colored curves are different NTs (W.Quapp, JTCC 8, (2009) 101-117 "The growing string method for flows of NTs by a second order corrector") The PES concerns Alanine-Dipeptide: $CH_3CO-NHCHCH_3CO-NHCH_3$ The dimension is (3N-6)=60, N=22 atoms One of the blue NTs shows

Predictor- and Corrector steps

abstract	Introduction	NTs	Search TS	Bif of RP	Explore PES	Variational NTs	Summary	Refs
			00000000000					
14								

String Method

Effort for the String Method

- Example Alanine-Dipeptide, 60 internal coordinates, (2 dihedrals fixed, thus 58 coordinates optimized)
- Used: GamesUS on PC, DFT calculations B3LYP/6-31G basis set
- Number of chains calculated: 9
- Number of nodes per chain: 30
- Number of corrector steps per node: 2-3

With such a nice convergence velocity, one can calculate many nodes per chain, and many NTs at all, so to say, a flow of NTs.

abstract	Introduction	NTs 00	Search TS	Bif of RP	Explore PES	Variational NTs	Summary o	Refs o		
15										
Highor-dimonsional NTs										

- Use a path following method in a reduced PES
- Predictor: IRC- or eigenvector-following technique
- Corrector: Newton-Raphson method

The reduced PES is defined by a set of molecular geometry parameters, (bond distances, bond angles, or dihedrals) that undergo the largest change for the reaction. The remainder of the coordinates are forced to have a zero gradient.

- Thus again use $P_r g=0$ in a reduced space.
- Anglada, Besalu, Bofill, Crehuet: JCC 22 (2001) 387.
- Bofill, Anglada: TCA 105 (2001) 463.
- Hirsch, Quapp: TCA 113 (2005) 58, Examples of so called Newton Leaves
- I.Berente, G.Naray-Szabo: JPC A 110 (2006) 772. "Multicoordinate Driven Method for Approximating Enzymatic Reaction Paths: ..."

Application									
16									
00	00000	00	0000000000	00000	0000	0000	0	0	
abetract	Introduction	NTe	Soarch TS	Rif of PD	Explore DES	Variational NTe	Summary	Pofe	

• Search the way out of a barrierless PES by NTs

Quapp, Kraka, Cremer: JPC A 111 (2007) 11287

Joo, Kraka, Quapp, Cremer: Mol.Phys.105 (2007) 2697

abstract	Introduction	NTs	Search TS	Bif of RP	Explore PES	Variational NTs	Summary	Refs
			000000000					
17								

Further Applications of NTs (Examples only)

- W.Quapp, D.Heidrich: JMSt, THEOCHEM 585 (2002) 105
 "Exploring the PES of ethyl cation ..."
- D.H.Ess et al.: JOC 73 (2008) 7472, and 7586, Angew.Chem.In.Ed.47 (2008) 7592: dimerization of 1,3-cyclohexadiene, isomerization of methoxy radical to hydroxymethylene radical, semibullvalene, aldaldehyde radical anion additions to alkyl halides, Cyclopropylidene to allene, deazetization of heterocyclic nitrosimines, 1,2,6-heptatriene to 3-methylene-1,5-hexadiene, endo cyclopentadiene dimerization,...
- G.Rossmueller, ..., Ch.Haettig: JPC C 113 (2009) 1418.
 - "... methanol synthesis .. on the .. ZnO(0001j) Surface"

NTs indicate Bifurcations of the Valley											
18											
abstract oo	Introduction	NTs oo	Search TS 0000000000	Bif of RP ●○○○○	Explore PES	Variational NTs 0000	Summary o	Refs o			

NTs have a second definition by a differential equation

$$rac{d\mathbf{x}(t)}{dt} = \pm \mathbf{A}(\mathbf{x}(t)) \ \mathbf{g}(\mathbf{x}(t))$$

named the Branin equation.

It uses the adjoint matrix **A** of the Hessian **H**, which is $[(-1)^{i+j} m_{ij}]^T$, where m_{ij} is the minor of **H**. It is **A H** = $Det(\mathbf{H})$ **I**.

The singular points of the equation are zeros of A(x) g(x) = 0, thus
 (i) stationary points, if also g(x) = 0, or
 (ii) valley-ridge inflection points (VRI), if g(x) ≠ 0

If $\mathbf{A}(\mathbf{x}) \mathbf{g}(\mathbf{x}) = 0$ and $\mathbf{g}(\mathbf{x}) \neq 0$, then an eigenvector of the Hessian to eigenvalue zero is orthogonal to the gradient.

abstract oo	Introduction	NTs oo	Search TS	Bif of RP ○●○○○	Explore PES	Variational NTs	Summary o	Refs o
18math								

Branin is the desingularized, continuous Newton equation

A Newton step is

$$\boldsymbol{x}_1 = \boldsymbol{x}_0 - \boldsymbol{H}^{-1}(\boldsymbol{x}_0) \; \boldsymbol{g}(\boldsymbol{x}_0)$$

• One may change this difference into a differential equation, the continuous Newton equation

$$\frac{d\mathbf{x}(t)}{dt} = -\mathbf{H}^{-1}(\mathbf{x}(t)) \ \mathbf{g}(\mathbf{x}(t))$$

 However, the inverse Hessian is singular, if the Hessian has a zero determinat. The way out is a desingularization of the differential equation

$$\frac{d\mathbf{x}(t)}{dt} = -Det(\mathbf{H}(\mathbf{x}(t))\mathbf{H}^{-1}(\mathbf{x}(t))\mathbf{g}(\mathbf{x}(t))$$

• what is noting else then the Branin equation.

$$\frac{d\mathbf{x}(t)}{dt} = -\mathbf{A}(\mathbf{x}(t)) \, \mathbf{g}(\mathbf{x}(t))$$

Eigenvectors and Eigenvalues of A										
18ev										
abstract oo	Introduction	NTs oo	Search TS 0000000000	Bif of RP ○○●○○	Explore PES	Variational NTs 0000	Summary o	Refs o		

 λ_i, μ_i are the eigenvalues of *H* and *A*.

- *H* is regular then and only then if *A* is regular.
- *H* and *A* have the same eigenvectors. Thus, to any λ_i belongs exactly one μ_i.

•
$$\lambda_i \mu_i = \text{Det}H = \Pi_k \lambda_k$$
.

Bifu	reations							
10								
				00000				
abstract	Introduction	NTs	Search TS	Bif of RP	Explore PES	Variational NTs	Summary	Refs

abstract oo	Introduction	NTs 00	Search TS 0000000000	Bif of RP ○○○●○	Explore PES	Variational NTs 0000	Summary o	Refs o		
19										
Bifurcations										

abstract oo	Introduction	NTs 00	Search TS 0000000000	Bif of RP ○○○●○	Explore PES	Variational NTs 0000	Summary o	Refs o	
19									
Bifurcations									

abstract 00	Introduction	NTs oo	Search TS 0000000000	Bif of RP ○○○●○	Explore PES	Variational NTs 0000	Summary o	Refs o		
19										
Bifurcations										

 Note: in higher dimensional configuration space, the definition of VRIs can result in a higher dimensional VRI-manifold. It may be at least (*N*-2)-dim.

- Quapp, Hirsch, Heidrich, TCA 100 (1998) 285
 3D example of a test PES (derived from malone aldehyde PES)
- Hirsch, Quapp, Heidrich, PCCP 1 (1999) 5291
 3D example: PES of water
- Quapp, Melnikov, PCCP 3 (2001) 2735
 6D example: PES of formaldehyde

Index Theorem Let **a** and **b** be stationary points connected by a regular Newton trajectory. Then it holds

 $\label{eq:index} \begin{array}{l} \textit{index}(a) \neq \textit{index}(b) \ , \\ \text{and the difference is one.} \end{array}$

Regular NTs connect a SP (index 1) and a minimum (index 0). The PES shows two adjacent SPs of index one. There is no regular NT connecting the SPs. Between the SPs a VRI point has to exist. One singular NT leads to the VRI point and branches there.

Hirsch, Quapp: JMSt THEOCHEM 683 (2004) 1

All NTs which connect a minimum and a SP are a Reaction Channel

	abstract 00	Introduction	NTs oo	Search TS 0000000000	Bif of RP 00000	Explore PES	Variational NTs 0000	Summary o	Refs o
	22								
Channels and Index Theorem									

Index Theorem Let **a** and **b** be stationary points connected by a regular Newton trajectory. Then it holds

 $\textit{index}(\textbf{a}) \neq \textit{index}(\textbf{b}) \;,$ and the difference is one.

Index Theorem Let **a** and **b** be stationary points connected by a regular Newton trajectory. Then it holds

 $\textit{index}(\textbf{a}) \neq \textit{index}(\textbf{b}) \;,$ and the difference is one.

All NTs which connect a minimum and a SP are a Reaction Channel

abstract oo	Introduction	NTs oo	Search TS 0000000000	Bif of RP	Explore PES ○○○●	Variational NTs	Summary o	Refs o		
24										
Convexity										

Convexity Theorem

A regular NT may connect minimum and SP. If the PES along the NT is monotone increasing, then the NT goes through a valley.

Monotone increasing means for NTs, there is no Turning point.

Hirsch, Quapp: J Math Chem 36 (2004) 307

abstract oo	Introduction	NTs oo	Search TS 0000000000	Bif of RP	Explore PES ○○○●	Variational NTs	Summary o	Refs o		
24										
Convexity										

Convexity Theorem

A regular NT may connect minimum and SP. If the PES along the NT is monotone increasing, then the NT goes through a valley.

Monotone increasing means for NTs, there is no Turning point.

Hirsch, Quapp: J Math Chem 36 (2004) 307

abstract oo	Introduction	NTs oo	Search TS 0000000000	Bif of RP	Explore PES	Variational NTs ●○○○	Summary o	Refs o		
25										
Unsymmetric VRIs										

Included is the border between ridge and valley regions

 $\mathbf{g}(\mathbf{x})^{\mathsf{T}} \mathbf{A}(\mathbf{x}) \ \mathbf{g}(\mathbf{x}) = \mathbf{0}$

abstract oo	Introduction 00000	NTs oo	Search TS 0000000000	Bif of RP 00000	Explore PES	Variational NTs ○●○○	Summary o	Refs o
26								
Idea								

The pattern of the flow of steepest descent lines around a SP is exactly the same like the flow of NTs around a VRI point. Calculus of Variations is already used for the IRC. (Crehuet and Bofill, JCP 122, 234105 (2005).) We plan to transform the method to NTs.

abstract 00	Introduction	NTs oo	Search TS 0000000000	Bif of RP 00000	Explore PES	Variational NTs ○○●○	Summary o	Refs o		
27										
Variational NTs										

It is possible to formulate a variational ansatz for NTs

$$I(a,b) = \int_{a}^{b} F(x_{1}(t),...,x_{n}(t),x_{1}'(t),...,x_{n}'(t)) dt \to Min!$$

with a variational functional

$$m{\mathcal{F}}(\mathbf{x},\mathbf{x}') = ig(\mathbf{x}' \mp m{\mathcal{A}}(\mathbf{x}) \ \mathbf{g}(\mathbf{x})ig)^T ig(\mathbf{x}' \mp m{\mathcal{A}}(\mathbf{x}) \ \mathbf{g}(\mathbf{x})ig)$$

Of course, it uses the differential equation of Branin. (Quapp, TCA 121 (2008) 227)

abstract oo	Introduction	NTs oo	Search TS 0000000000	Bif of RP 00000	Explore PES	Variational NTs ○○○●	Summary o	Refs o		
28										
Variational NTs II										

Bofill proposes another variational functional in a recent note (JCP **130** (2009) 176102)

$$F(t, \mathbf{x}(t), \mathbf{x}'(t)) = t \left(\mathbf{g}^{\mathsf{T}}\mathbf{g}\right)^{1/2} \left(\mathbf{r}^{\mathsf{T}}\mathbf{x}'\right) + E(\mathbf{x}(t))$$

where E is the PES, **g** is the gradient, and **r** is the search direction for a special NT.

abstract	Introduction	NTs	Search TS	Bif of RP	Explore PES	Variational NTs	Summary	Refs
							•	
29								

Summary: How to find a RP, If You Must

Properties of NTs

- Describe the RP by (some) Newton Trajectories: it is tractable – in many practical cases.
- Find TS by Newton Trajectories: it is tractable.
- Find Bifurcations by special Newton Trajectories: it is tractable.

Acknowledgement

 I thank my collegues over many years Prof.Dr.D.Heidrich from Theoretical Chemistry Dr.M.Hirsch from Mathematics.

A row of results (which are presented here) are born in discussions with them.

abstract	Introduction	NTs	Search TS	Bif of RP	Explore PES	Variational NTs	Summary	Refs
								•

30

Some References to Newton Trajectories

W.Quapp, M.Hirsch, O.Imig, D.Heidrich, J.Computat.Chem.19 (1998) 1087 W.Quapp, M.Hirsch, D.Heidrich, Theor.Chem.Acc.100 (1998) 285 M.Hirsch, W.Quapp, D.Heidrich, Phys.Chem.Chem.Phys.1 (1999) 5291 W.Quapp, M.Hirsch, D.Heidrich, Theoret.Chem.Acc.105 (2000) 145 W.Quapp, V.Melnikov, Phys.Chem.Chem.Phys.3 (2001) 2735 W.Quapp, J.Computat.Chem.22 (2001) 537 J.M.Anglada, E.Besalu, J.M.Bofill, R.Crehuet, J.Comp.Chem.22 (2001) 387 J.M.Bofill, J.M.Anglada, Theor.Chem.Acc.105 (2001) 463 R.Crehuet, J.M.Bofill, J.M.Anglada, Theor.Chem.Acc.107 (2002) 130 M.Hirsch, W.Quapp, J.Math.Chem.36 (2004) 307 M.Hirsch, W.Quapp, Chem.Phys.Lett.395 (2004) 150 W.Quapp, J.Computat.Chem.25 (2004) 1277 M.Hirsch, W.Quapp, J.Mol.Struct.THEOCHEM 683 (2004) 1 W.Quapp, J.Mol.Struct.695-696 (2004) 95 W.Quapp, J.Chem.Phys.122 (2005) 174106 W.Quapp, J.Computat.Chem.28 (2007) 1834 W.Quapp, E.Kraka, D.Cremer, J.Phys.Chem.A 111 (2007) 11287 H.Joo, E.Kraka, W.Quapp, D.Cremer, Mol.Phys.105 (2007) 2697 W.Quapp, J.Theoret.Computat.Chem.8 (2009) 101 J.M.Bofill, J.Chem.Phys.130 (2009) 176102