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Abstract The potential energy surface of a chemical
reaction contains Valley-Ridge inflection points (VRI)

if – an often occurring phenomenon – the reaction path

branches. In this paper, we introduce a new direct search

method to detect these VRI points. It is based on an

inductive execution of Gauss-Newton steps. Thus, for
the first time we were able to find not only singular non-

symmetric VRI points, but whole VRI manifolds on the

potential energy surface of HCN.
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1 Introduction

The concept of the Minimum-Energy-Path (MEP) serves

as a basic model to understand the process of chemical

reactions. It is based on the Transition State Theory
(TST) according to which reactants and products are

energetically stable states, separated from each other

by a potential barrier [1]. In the course of the reaction

it is necessary to overcome the barrier.

From a mathematical point of view we treat reac-

tants and products of a chemical reaction as minima

on a Potential Energy Surface (PES). We then under-
stand the MEP as a curve in the configuration space

of the PES – a curve, which connects the two minima
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with a saddle point that corresponds to the potential
barrier. Minima and saddle points on a PES are also

called stationary points.

At this point it should be emphasized that the MEP
is an “artificial chemical tool” [2] whose advantages

lie in overcoming the following dimensionality prob-

lem: The PES geometry of an N -atomic molecule is

described by 3N coordinates. By using internal coor-
dinates the dimensionality can be reduced to 3N − 6.

However, the PES of a molecule with more than four

atoms is not wholly accessible. Instead, we determine

a one-dimensional curve as a reaction path via MEP-

concept.

Firstly it must be required that along the MEP

the potential energy is strictly monotonic increasing
from the reactant minimum to the saddle point and

strictly monotonic decreasing from the saddle point to

the product minimum. Secondly the MEP should take

course through a valley on its way up to the saddle

point. In mathematical terms the minimum energy path
cannot be described more precisely. Paths which satisfy

both conditions must be considered equally. This loose-

ness leads to several reaction path models.

As the simplest and most commonly used model

serves the steepest descent from the saddle point [3]

which is the basis for Fukui’s Intrinsic Reaction Coordi-
nate (IRC) [4]. It meets the monotony demand but does

not distinguish between valley- and ridge-structures on

the PES [5].

A second reaction path model, the Gradient Ex-

tremal (GE) [6,7,8,9,10,11], yields curves that may

proceed on the valley floor. Along GE-curves the gra-

dient is an eigenvector of the Hessian. However, their
determination is expensive. Moreover, valleys might end

abruptly on the PES which leads to GE-curves being

interrupted by turning points [12].
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The Reduced-Gradient-Following method (RGF) [13,

14,15,16] has been proven as a very capable reaction

path model. Along RGF-curves the gradient constantly

points to one fixed search direction. Due to their equiv-

alence to the continuous Newton method RGF-curves
are also called Newton trajectories (NT). Normally they

connect several minima and saddle points with each

other. Their behaviour in case of reaction path branch-

ings argues for RGF-curves as well. However, not nec-
essarily any choice of a search direction leads to appro-

priate reaction paths since there are examples of non-

monotone NTs and NTs containing turning points.

During certain chemical reactions branchings can

occur. For example, one transition state (TS) might
lead to two products in case the MEP bifurcates be-

tween TS and products. In this case several MEPs share

the same transition structure. But for our calculations it

is irrelevant whether the MEP bifurcates before, nearby
or after the TS.

With the following considerations we can show that

reaction path branchings take place independently of

the chosen reaction path model: If the MEP proceeds

along a valley the trajectory is bound to the valley floor,
making the path stable. If, however, the valley turns

into a ridge we obtain an instable path. Small changes

of the trajectory lead to great deflections. The valley

divides into two valleys and a ridge in between. Other
kinds of splits are possible, too; cf. monkey-saddles [17],

mixed-type VRIs or ridge-ridge inflections [18,19]. Points

where this occurs are called Valley-Ridge Inflection points

(VRI). They are specific points on the PES, indepen-

dent of the chosen reaction path model [17]. The term
“point” is deceptive though because VRI points might

form an up to (n− 2)-dimensional manifold in the con-

figuration space of an n-dimensional PES [20,21]. The

interest in determining VRI points has increased steadily
over the past years [22,23,24].

The IRC is not fitted to find (nonsymmetric) VRI

points. It results from a solution of a differential equa-

tion system which determines a tangent in gradient di-

rection. Hence, IRC-curves are unique and free of bifur-
cations outside of stationary points [25]. At this point

we want to emphasize that despite it is widely com-

mon to consider the IRC as minimum energy path, no

reaction path branching can be truly described by fol-

lowing it [26,25]. Gradient Extremals are better fitted
because GE-curves lead through VRI points [11] but

usually don’t bifurcate there. Besides their suitability

as a reaction path model Newton trajectories have the

nice property that they bifurcate at VRI points [27]. A
so-called singular NT connects the VRI point with its

adjacent stationary points. For its determination vari-

ational methods were used lately [28,29,30].

Finding VRI points or, if existing, whole VRI man-

ifolds is this paper’s objective. To achieve that we no

longer use the property that VRI points are bifurca-

tion points of singular Newton trajectories. Instead we

directly calculate them with the help of an adjusted
Gauss-Newton-step. In Section 2 we will explain the

properties of VRI points and introduce the method we

developed to find them. Basic principles of the method’s

implementation will be illustrated in Section 3 while
Section 4 will show the method’s results on the poten-

tial energy surface of HCN. For VRI points in a sym-

metry plane of the molecule, manifolds of such points

are known already [27,31,32]. However, it is the first

time that not only singular nonsymmetric VRI points
were found but whole curves of such points.

2 Gauss-Newton step for VRI points

In the past, VRI points were mostly determined either

in their capacity as bifurcation points of singular New-

ton trajectories [27,31,33] or via variational methods

[28,34]. In contrast, we now introduce a direct search
method. Therefore some theory must be gathered.

2.1 Calculating on potential energy surfaces

As mentioned above, an abstract idea of the potential

energy surface meets our requirements. We assume that

the PES is given by a scalar function of the molecule’s

coordinates in every point of interest. This leads to the
following definition:

Definition Let K be a subset of the R
n. Then we call

the mapping E : K → R an n-dimensional potential

energy surface. K is called configuration space of the

potential energy surface E.

For practical reasons, we demand that E is at least

three times differentiable. Furthermore we need the gra-

dient and the Hessian for our calculations.

Definition Be x = (x1, . . . , xn)t ∈ K. Then, the vec-

tor of the first derivatives g : K → R
n and the matrix

of the second derivatives H : K → R
n×n by

g(x) = ∇E(x) =

(
∂E(x)

∂x1
, . . . ,

∂E(x)

∂xn

)t

,

H(x) = ∇∇E(x) =

(
∂2E(x)

∂xi∂xj

)

i=1,...,n
j=1,...,n

are called gradient and Hessian of E.

The Hessian is symmetric. At stationary points (min-

ima, saddle points) the gradient becomes (the) zero

(vector). Finally, we define the adjoint matrix of H.
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Definition Be H ∈ R
n×n and let Hij ∈ R

(n−1)×(n−1)

be the matrix, that evolves from H by omitting the i-th

row and the j-th column. If we set ãij according to

ãij := (−1)i+j det
(
Hij

)
,

then the matrix A := (ãji)j=1,...,n
i=1,...,n

is called the adjoint

matrix of H. Note, that the indices i and j are inter-
changed.

The following relation holds between the Hessian

and its adjoint matrix:

AH = det(H)In, (2.1)

where det(H) is the determinant of H and In is the n-

dimensional unit matrix. Since (2.1) holds, A is some-

times named the desingularized inverse matrix of H.

2.2 Properties of VRI points

If the minimum energy path is situated in a valley, then
the eigenvalues corresponding to the Hessian’s eigenvec-

tors which are orthogonal to the gradient are positive.

On its way up the valley an eigenvalue may become

smaller until it is finally negative on a ridge. For this
reason we obtain the following definition for VRI points:

Definition Let x be a non-stationary point in the con-
figuration space of the PES, hence g(x) 6= 0. Let the

eigenvalue which corresponds to one of the eigenvectors

of H(x) which are orthogonal to g(x) be zero. Then x

is called VRI point. Note, that we exclude VRI points
which are also transition states, so-called monkey sad-

dles [17].

Let u be the Hessian’s eigenvector with the eigen-

value zero. Following the definition, we then have gtu =
0 in VRI points. Through this, we get our first property:

Property 2.2.1 In VRI points x ∈ K the relation

A(x)g(x) = 0 (2.2)

holds.

A proof is given in [27]. We want to briefly outline

it. Let therefore ui be the eigenvectors of H and λi the

corresponding eigenvalues. Since λiu
i = Hui holds, we

obtain after multiplication with A:

λiAui = AHui (2.1)
= det(H)ui =





n∏

j=1

λj



ui.

In case of λi 6= 0 the adjoint A has eigenvectors ui

with corresponding eigenvalues (
∏n

j=1 λj)/λi. Accord-

ing to the VRI definition one eigenvalue of x equals
zero, WLOG λ1 = 0. Hence, the eigenvectors u2, . . . ,un

of A have the eigenvalue zero (as the product always

equals zero). We write g as a linear combination of the

ui by g =
∑n

k=1 ξku
k. Since in the VRI point x the

gradient g is orthogonal to u1, it is ξ1 = 0 and we

obtain

A(x)g(x) = A(x)

(
n∑

k=1

ξku
k(x)

)

= ξ1
︸︷︷︸

=0

A(x)u1(x) +

n∑

k=2

ξkA(x)uk(x)

=

n∑

k=2

ξk

(∏n

j=1 λj

λk

)

︸ ︷︷ ︸

=0

uk(x) = 0.

Now that Property 2.2.1 is proven, a second one

follows as a direct implication:

Property 2.2.2 Since VRI points x ∈ K are non-

stationary, we have g(x) 6= 0. Combined with the prop-

erty above, A(x)g(x) = 0, it follows immediately that

the kernel of A(x) is nontrivial. Hence we have

detA(x) = 0. (2.3)

Combining the two properties we realize that VRI

points are the zeros of the mapping f : K → R
n+1 by

f(x) :=

[
Ag

detA

]

(x). (2.4)

It must be pointed out that f maps a point x of the

configuration space to an (n + 1)-dimensional vector.

The first n components of f(x) are identical with the
components of A(x)g(x) while the (n + 1)-th compo-

nent equals detA(x).

It will be our objective to determine the zeros of f
directly via a Gauss-Newton step. But prior to this we

would like to show how VRI points and the desingular-

ized continuous Newton method are interconnected.

2.3 VRI points and Newton’s method

In its classic formulation Newton’s method

xj+1 := xj − α · H
(
xj
)
−1

g
(
xj
)



4 B. Schmidt, W. Quapp

converges under certain conditions to a zero of the gra-

dient g, in our case to a minimum or a saddle point. The

starting point x0 must be suitably close to the station-
ary point and the step length α must be chosen suitably

small. In the limiting case of infinitesimal step lengths

we obtain Newton’s continuous differential equation:

ẋ = −H(x)−1g(x)

When solving the equation above numerically we have

to overcome the problems caused by the singularities

of H, hence all the points in which the right hand side

of the equation is not defined. With the help of the
adjoint matrix one changes over to the desingularized

formulation and calls the method for solving

ẋ = −A(x)g(x) (2.5)

the desingularized continuous Newton method. As (2.1)

holds, the phase portraits of both differential equations

are identical except for orientation [21]. The trajectories

of (2.5) are called Newton trajectories (NT). As the

gradient’s direction remains constant along an NT, we
can treat RGF-curves, which have been introduced as

a reaction path model, as Newton trajectories as well.

We have to distinguish between two kinds of end

points of the desingularized continuous Newton method:

(i) Points, where g = 0 and A is nonsingular, are called

essential singularities [35]. These are the stationary

points on a PES. They are either attracting or re-

pelling fixed points of (2.5). By change of sign one
changes the fixed character of the point and with

the help of Branin’s equation

ẋ = ±A(x)g(x)

one can find a lot of (if not all) stationary points on

the PES.

(ii) Points, where Ag = 0 and g 6= 0 hold, are called ex-

traneous singularities [35]. According to (2.2) these

are the VRI points. Following the argumentation in
[20] the set of extraneous singularities of the desin-

gularized continuous Newton method (and hence

the set of VRI points) might be an up to (n − 2)-

dimensional closed subset of the configuration space
K ⊂ R

n. Thus, the term VRI point is deceptive.

On symmetric subspaces of potential energy sur-

faces like the ones of water and formaldehyde whole

VRI-curves were already found [31].

As VRI points might be parts of high-dimensional

manifolds one must question their meaning. Is it a bi-

furcation point of the reaction path? Should the reac-

tion path (minimum energy path) be defined as a sin-
gular curve on the PES whatsoever? These questions

cannot be answered here. Nevertheless, they will need

to be discussed.

2.4 A Gauss-Newton step [36,37,38]

Let us move on to the actual objective of this paper:

Finding zeros of the mapping f defined by (2.4). There-

fore, we define a generalized inverse matrix at first.

2.4.1 The Moore-Penrose pseudoinverse

Be M ∈ R
p×q. The matrix M+ ∈ R

q×p is called Moore-
Penrose pseudoinverse of M , if the following conditions

are fulfilled:

(M+M)t =M+M, MM+M =M,

(MM+)t =MM+, M+MM+ =M+.

The Moore-Penrose inverse exists and is unique for any

given matrix M . With its help, we can “invert” rectan-
gular matrices.

2.4.2 Gauss-Newton step for VRI points

Now, all preparations are done and we can explain the

method to determine zero vectors of the mapping f ,

defined by (2.4). Starting with x ∈ K we have to cal-
culate ∆x, so that x+∆x is a better approximation to

the zero of f . Then, the Taylor series yields

f(x + ∆x) = f(x) + Jf (x) · ∆x + O
(
‖∆x‖2

2

)

where

Jf (x) =







∂f1(x)
∂x1

· · · ∂f1(x)
∂xn

...
. . .

...
∂fn+1(x)

∂x1
· · · ∂fn+1(x)

∂xn







is the Jacobian matrix of f . If we omit the terms of

the second order and keep in mind that f(x+ ∆x) ≈ 0

holds, we have

Jf (x) · ∆x = −f(x),

being a linear equation system, whose solutions may

be used to gain better approximations to zeros of f .

If we solve the term above using the Moore-Penrose

pseudoinverse, we obtain

∆x = −Jf (x)+f(x). (2.6)

In summary, we have shown that VRI points are the

zeros of the mapping f =
[

Ag
detA

]
. Starting with x0 we

iteratively determine them by

xk+1 = xk + ∆xk (2.6)
= xk − Jf (xk)+f(xk) (2.7)

for k = 0, 1, 2, . . ..
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3 Comments on the implementation

Before explaining the actual program we would like to

give some comments on the implementation of the Ja-

cobian matrix and the Moore-Penrose pseudoinverse.

3.1 Implementing the Jacobian matrix

Let x ∈ K be a point of the configuration space of

the PES. Then we approximate the partial derivative
∂fi/∂xj where i = 1, . . . , n + 1 and j = 1, . . . , n by a

forward difference quotient

∂fi(x)

∂xj

≈ fi(x + h · ej) − fi(x)

h
, (3.1)

where h ∈ R is still to be specified and ej is the j-th

unit vector of the R
n.

The accuracy of the approximation essentially de-
pends on the choice of h. On the one hand the distur-

bance x + hej shall not be too small in case of xj ≫ 1.

On the other hand we want to reduce the cancellation

by not choosing h to be too small. In the latter case we
had |fi(x + hej) − fi(x)| ≈ 0. Thus, we set

h :=
√

ε · max{1, |xj|}

and choose ε = 10−12.

It has to be considered that determining the Jaco-

bian matrix is quite expensive because f must be de-

termined at the n + 1 points x and xrj := x + hej ,
with j = 1, . . . , n. In case of HCN four calls of f are

necessary per program run.

3.2 Implementing the Moore-Penrose pseudoinverse

To obtain the Moore-Penrose pseudoinverse of a matrix

M ∈ R
p×q a singular value decomposition has to be

carried out. Any matrix, where p ≥ q holds, can be
written as a product

M = UΣV t

of an orthogonal matrix U ∈ R
p×q, a diagonal matrix

Σ = diag(σ1, . . . , σq) ∈ R
q×q and the transposed of an

orthogonal matrix V ∈ R
q×q. The σi are the eigenvalues

of M . Then, we have

M+ = V Σ+U t,

where Σ+ = diag(σ̃1, . . . , σ̃q) is a diagonal matrix with

the entries

σ̃i =

{

1/σi , if σi 6= 0

0 , else

By (2.7) we have to determine the Moore-Penrose

pseudoinverse of the Jacobian matrix Jf (x). Thus, it

holds p = n + 1 and q = n. The source code for imple-

menting the singular value decomposition is taken from

[39].

3.3 Program for the detection of VRIs on the PES of

HCN

The necessary calculations of gradient and Hessian are

performed by Firefly Version 7.1.G (formerly PC-Gamess)

[40]. We use the standard basis set 6-31G∗∗ with the fol-

lowing input file:

$CONTRL SCFTYP=rhf NZVAR=3 EXETYP=binv

COORD=zmt MAXIT=999 RUNTYP=optimize $END

$SYSTEM TIMLIM=5 MEMORY=400000 $END

$BASIS GBASIS=N31 NGAUSS=6 NDFUNC=1 $END

$STATPT HESS=calc NSTEP=1 DXMAX=0.00001

NPRT=-2 NPUN=3 $END

$FORCE METHOD=analytic PRTIFC=.true. $END

The program is divided into four sections with Fire-

fly being called between the second and the third sub-
program. In detail, the following tasks are being exe-

cuted:

(i) Providing the actual point x for iteration and pro-

viding the shifted points xrj := x + hej (with j =
1, 2, 3) for calculating the Jacobian matrix.

(ii) Providing the Firefly input for the four points x and

xrj , j = 1, 2, 3.

(iii) Call Firefly for gradient and Hessian.
(iv) Analysis of the Firefly output.

(a) Reading out the gradient g and the Hessian H

(b) Calculating the adjoint matrix A

(c) Calculating the function f =
[

Ag
detA

]
. To calcu-

late the determinant we use the LU-decomposition
of A after the method of Crout [39].

(v) Actual iteration step.

(a) Calculating the Jacobian matrix Jf (x) and its

Moore-Penrose pseudoinverse Jf (x)+.
(b) Calculating the iterated point xnew by (2.7):

xnew = x + stl · ∆x = x− stl · Jf (x)+f(x)

(3.2)

with a suitable step length stl > 0.

The subprograms (ii) and (iv) as well as Firefly itself

have to be called four times per program run. This and
the whole overriding control of all four subprograms

plus the monitoring of the stop criterion is governed by

a batch file.
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4 Results

4.1 VRI-curves

In this section we consider points in the configuration
space of the HCN potential energy surface to be vectors

in terms of

x = (rCH, rCN, α)t

where rCH and rCN are the distances C–H respectively

C–N in Å and α is the angle between H–C–N in degree.
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1.35rCH

1.42

1.44

1.46
rCN

83

84

85

86

87

Α

xS1

xS2

xVRI1

xVRI2

1.25

1.3

1.35rCH

1.42

1.44

1.46
rCN

Fig. 4.1 Iteration steps that lead from the starting points xS1

and xS2 to the corresponding VRI points xVRI1 and xVRI2 .

At first we want to examine the VRI points which

occur when the N-atom dissociates from the saddle point.

Therefore, we choose (arbitrarily, but nearby the al-
ready known VRI points [33,34]) two starting points

xS1 = (1.25, 1.41, 83.)t and xS2 = (1.25, 1.46, 87.)t. With

a step length of stl = 0.25 and a suitable stop criterion,

if |Ag| < 10−5, we subsequently obtain the two follow-
ing VRI points after 45 iterations each:

xVRI1 = (1.28324, 1.41188, 86.739)t,

xVRI2 = (1.37582, 1.41906, 87.001)t

Figure 4.1 shows the single iteration steps from both

starting points to the corresponding VRI points.
Since there are assumably more VRI points between

the two we have already found, we put a straight chain

of points between xVRI1 and xVRI2 which in turn we use

as new starting points for the algorithm. In this way we

obtain new VRI points, depicted in Figure 4.2.
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Fig. 4.2 A straight chain of starting points (above) lead to
new VRI points (below).

By closing the gaps between the single VRI points

successively and following the resulting curve over the
end points xVRI1 and xVRI2 we obtain an even longer

curve with end points in (1.0212, 1.6751, 84.798)t and

(1.5464, 1.4446, 103.65)t, as one can see in Figure 4.3.
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Fig. 4.3 VRI-curve when the N-atom leaves the transition
structure

A possible interpretation of this VRI curve would be

the following: A dissociating N-atom leaves the saddle-

point structure over a two-dimensional ridge. When meet-
ing the VRI curve the N-atom has to decide whether to

leave the ridge and dissociate completely along a val-

ley, or to return to the minimum HCN through a val-

leys [34]. The fourth branch is a ridge leading into the

PES mountains. Note, the VRI is of a mixed type. A
valley touches a ridge. Figure 4.4 shows the VRI curve

(VRI curve 1) with four RGF-branches at one of its VRI

points and hence the possible paths for the N-atom to

go along.

As a second example we want to detect VRI points

on the pathway where the H-atom comes from the sad-
dle point and meets the C≡N triple bond which is a

saddle point of index 2. This case has already been an-

alyzed, as well [34]. As the discovered VRI points lay

very closely together, it was supposed even then that
those points might be part of one curve. This can be

proven now. Following the same procedure as described

above, we started this time in the already known VRI

points and were able to close the gaps between them by

executing our algorithm.

Figure 4.4 shows the VRI-curve we obtained (VRI-
curve 2) and exemplary the VRI point

xVRI = (1.365, 1.468, 47.563)t

1
1.25

1.5
1.75

2
rCH

1.2

1.4

1.6

1.8rCN

0

50

100

150

Α

HNC

HCN

SP
VRI-curve 2

VRI-curve 1

1
1.25

1.5
1.75

2
rCH

1.2

1.4

1.6

1.8rCN

Fig. 4.4 Both VRI-curves (bold) with singular Newton tra-
jectories (thin) through one VRI point of each curve. Analo-
gous NT-branches emerge for all the other VRI points of the
given curves.

with the four branches of the singular Newton trajec-

tory that bifurcates in it. The curve’s two end points are

(1.3096, 1.8040, 31.285)t and (2.0053, 1.5205, 43.192)t.

4.2 Singular Newton trajectories

Every VRI point belongs to a singular Newton trajec-

tory which bifurcates in it. Since we found curves of
VRI points there must be a family of singular NTs that

hypersurfaceersurface” in the configuration space of the

PES.

To determine the singular RGF-curves we use two

approaches. The first one is based on the very same
method we developed here for VRI-detection. Since it

is basically a zero search we slightly adjust it to find

the zeros of the projector equation

0 = Prg(x) :=
(
In − rrt

)
g(x). (4.1)

All points x which fulfill the equation (4.1) form the

Newton trajectory to the fixed search direction r. If
we identify r with the normalized gradient of one of

the VRI points we will get the singular NT which bi-

furcates in that VRI point. Figure 4.4 shows the re-

sults for the VRI points (1.1266, 1.4691, 87.545)t and
(1.365, 1.468, 47.563)t.

However, in flat sections of the PES this method

might cause trouble by jumping over the sought branch
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Fig. 4.5 Approximation of the four branches of a singular
NT which were determined with Branin predictor steps by
the iterative method of [34]. The corresponding VRI point is
at the intersection at (1.42, 1.44, 87.3)t

of the singular NT to another one. In that case we re-

turned to the well-known predictor-corrector method

[27,41] for determining RGF-curves. Usually, corrector
steps did not work in these sections either. So we only

used Branin predictor steps to determine the singular

RGF-curves. Results can be seen in Figure 4.5 which

shows the beginning of the four branches of a singular
Newton trajectory.

5 Conclusions and outlook

It was our objective to develop a new direct search

method for VRI points on the basis of the Gauss-Newton
method. Valued at the results, this objective was achieved.

So far, VRI points were mostly considered as spe-

cial singularities of the Newton method, meaning that
one practically determined the corresponding singular

Newton trajectory at first (by a “reasonable” guess or

with variational treatment) and obtained the VRI point

finally as its bifurcation point. This “detour” is not nec-

essary here. With the introduced algorithm one has an-
other method available to detect these special points of

interest on a potential energy surface.

Beyond that, we succeeded in finding whole curves
of nonsymmetric VRI points on the PES of HCN with

this method’s help. That is noteworthy insofar as now

questions about the meaning of VRI points and thereby

the meaning of the minimum energy path will arise

again. Which one of the VRI-curve points corresponds

to the reaction path branching? Can the reaction path

be considered as a singular curve on the PES at all?

Additionally it must be emphasized that HCN (with

its three atoms) is one of the smallest molecules where

VRI manifolds with a dimension greater that zero might

occur. And they do! It is very likely that potential en-
ergy surfaces of greater molecules do not only contain

singular VRI points as found before but whole high-

dimensional VRI manifolds. This will have to be exam-

ined as well.

It will certainly be our future work to applicate the

method on different potential energy surfaces. As the

basis of the method is a zero search it surely can be

adjusted to determine steepest-descent curves or RGF-
curves. For the latter ones the often used predictor-

corrector method could be dropped when applying Gauss-

Newton steps (3.2) iteratively instead, at least where

the PES is not too flat.
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