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Ordinary differential equations
according to the text book with this title by V.I. Arnol’d.

Introductionary lectures held at Leipzig University during the summer semester 2011
by B. Herzog
Fr. 7.30 -   9.00, Ph. 2-18 (exercises)
Fr. 9.15 - 10.45, Ph. 2-18 (lectures)

Exercises and lectures from July 15, 2011 are moved to

Fr.   July 22, 15.00-18.00, Math Institute, Felix-Klein-Hörsaal, Johannisgasse.
Mo. July 25, 15.00-18.00, Math Institute, Felix-Klein-Hörsaal, Johannisgasse.

Writen examination:
July 26, 8.00-11.00, Room 1-22, Mathematical Institute, Johannisgasse
Repetition:
September 26, 8.00-11.00, Room S 114, Augustusplaz

Conditions
• There will be a written test at the end of the semester.
• To enter this test you will have to solve problems every week.
• Each week you will usually have to deal with three problems, whose solutions you

will have to return in written form at the beginning of the exicises at Friday
moring.

• For each solution you can achieve up to three points. For the right to enter the
written examination you need 50% of the maximum number of points.

Notation
∂X boundary of the set X (in some topological space), see 2.2.2.
∂
∂xi

, ∂∂x ,∂∂t derivatives in the directions of, respectively, the xi - , x-, and t- axes, which

are identified with the standard unit vectors in the direction of these axes,
see 1.4.2.

dx
dt  (t0) the tangent vektor of the curve x: I H M, t ! x(t), at the point x(t0), see

Example  4 of 1.4.3.
∂f
∂x (p) the Jacobian matrix of a map f: U H V between open sets U, V in

euclidian space at the point p P U, see Appendix.
dpϕ differential of a map ϕ: M H M’ at the point pPM, see 1.4.3, (which is

a linear map dpϕ: Tp(M) H T
ϕ(p)(M’), in appropriately chosen

coordinates it is multiplication by the Jacobian matrix of ϕ, see 1.4.3
Example 2).

dϕ differential form of a map ϕ: M H M’, see Remark (iii) of 1.4.7,
(which is the map ϕ: TM H TM’ whose  restriction to Tp(M) is dpϕ

for every pPM).
Aut(M) transformation group of the set M, see 1.2.2.
OM,p local ring of the manifold M at the point p, see 1.4.1.
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TM tangent bundle of a manifold, see 1.4.6.
Tp(M) tangent space of the manifold M at the point pPM, see 1.4.2.

Γf graph of the map f: A H B, i.e., Γf := {(a,f(a)) | aPA}.

S(I, A) The space of solution I H Rn of the linear differential equation dx
dt  =

A(t):x, see 2.2.1. B.

1. Basic notions

1.1. A first definition
An ordinary differential equation (ODE) is an equation depending upon a function, say

x = x(t),

together with certain derivatives of this function and the variable t. In other words, an
ordinary differential equation is something like this:

f(x, dx
dt  , d

2x
dt2

 , ... , d
nx

dtn
 , t) = 0. (1)

More precisely, such an equation is called n-th order ordinary differential equation.

The topic of the theory is to find solutions (one, as many as possible or all) of such an
equation, i.e. all functions x such that this equation becomes an identity.

Moreover, one wants to find qualitative properties of the solutions.

Remarks
(i) We do not assume, that the values of the function x are real or complex numbers.

They may be contained in any set, where differention is possible. Typically,
x(t) P Rn.

Likewise we allow f to be a vector valued function,
f(y0, y1, ... , yn) P Rm.

This way there will be not really a difference between one single differential
equation and a system of such equations.

(ii) On the other hand, the variable t is always assumed to vary in an open subset of
the real axis,

t P U é R, U open.
Remember, open means, for every value t in U there is an open intervall around t,
which is completely contained in U,

t P U ⇒ t P ( t - ε , t + ε ) é U for some ε > 0.
(iii) Consider a massive particle (of mass equal to m) moving with the time t in 3-space,

say
x(t) P R3,

such that
d2x(t)

dt2
  - g/m = 0.

This ordinary differential equation is probably the first one has to solve in classical
mechanics.
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(vi) A considerable part of mathematics and physics is related to differential equations,
for example

∂2x
∂u2 + ∂

2x
∂v2 + ∂

2x
∂w2 = 0 ,  x(u,  v, w) PR, (Laplace-Gleichung) (2)

or
∂2x
∂u2 + ∂

2x
∂v2 + ∂

2x
∂w2  - ∂

2x
∂t2

 = 0 , x (u,  v, w) PR, (Wellen-Gleichung) (3)

or
∂f(u,v)
∂u  + i:∂f(u,v)

∂v  = 0, f(u,v) PC (Cauchy-Riemann equations) (4)

Other examples are
the Hamiltopn equations in classical mechanics,
the Maxwell equations in electrodynamics,
the Schrödinger equation in Quantum mechanics
or various Yang-Mills equantions in Quantum field theory.

All these equations are not ordinary differential equations, since they contain
partial derivatives with respect to different variables. They are partial differential
equations (PDE’s).

(vii) There are essential differences between ordinary and partial differential equations:

• The theory of ODE’s is much easier than any theory of PDE’s. If you want to
understand partial differential equations you need a good knowledge of the
behavior of the ordinary ones.

• One can even say there is a well understood theory about the behavior of all
ODE’s, while there is no common theory of PDE’s. Two different PDE’s usually
require different theories. Even the questions one has to ask for are usually
different for different PDE’s.

• The theory of the equations of type (2) is called Potential theory in the real case or
Hodge theory in the complex projective case.

• Those of type (3) lead to (classical) wave theory.
• Those of type (4) result in complex analysis.
• The theory of the (finitie dimensional) Hamilton equations is called simplectic

geometry (or classical mechanics).
• etc.

 (vii) Our topic, the ordinary differential equations, is much easier.

Convention: If not stated otherwise, we will always assume that the functions solving
our equations are sufficiently often continuously differentiables.

Problem 2:
(viii) Note that every systems n-th order ODE’s is equivalent to system of first order

ODE’s.

Two systems ODE’s are called equivalent in case they have (essentially) the same
solutions (i.e. the solutions of one system can be directly seen from the solutions
of the other).

Equation (1) can be written as follows.

f(x0, x1 , x2 , ... , xn, t) = 0.
x1 = dx0/dt
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x2 = dx1/dt
...
xn = dxn-1/dt

We introduce a new notation:
X := (x0, x1 , x2 , ... , xn), Y = (y0, y1 , y2 , ... , yn)
F(X, Y,t) := ( f(x0, x1 , x2 , ... , xn,t), x1 - y0 , x2 - y1 , ... , xn - yn-1).

Then the above system reads
F(X, dX

dt  ,t) = 0.
This way we see that an n-th order ODE is equivalent to an first oder ODE.

To start with, we will give a quite different look at the theory of ordinary differential
equations.

1.2 Phase spaces and phase flows

1.2.1 Finite dimensional deterministic processes
The theory of ordinary differential equations deals with deterministic, finite dimensional
and differential processes evolving in time.

Finite dimensional means, the state of such a process is given by a point in a finite
dimensional space (i.e. by a finite number of parameters). This space, consisting of all
possible states, is called phase space.

Deterministic means, that all future and all past states are uniquely determined by the
current state.

Formally, if M denotes the phase space, there is a map
 g: R;M H M, (t, x) ! gtx,

such that gtx is the state of the process at time t whose state at time 0 is x.

In other word, given the state x at time 0, the state gtx at time t of this process is uniquely
determined.

The map g is called the phase flow of the process.

The process is called differentiable, if M ist a space where differentiaton is defined (a
differentiable manifold) and the map g is differentiable.

Remarks
(i) Let x be the state of the process at time 0. Than its state at time t is gtx.

Similarly, if y is the state at time s, its state at time s+t is gsy. Substituting gtx for
y we obtain

gs+tx = gsgtx for arbitrary x P M, s, t PR. (1)

time state
0 x
t gtx
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s+t gsgty

Moreover, by the very definition of the phase flow,

g0x = x for each x P M. (2)

The identities (1) and (2) are the most important properties of the phase flow.

(ii) For each t PR the phase flow defines a map
gt: M H M, x ! gtx.

Thus we have a family of maps
{gt}tPR

Note that the composition of any two maps in this family is again a map in this
family:

gsgt = gs+t.
The family {gt}tPR is called the one-parameter group of transformations

associated with the phase flow g.

Problem 1: Prove that each map of the family {gt}tPR is bijective and that these

maps form a commutative group.

(iii) The notion of phase space is the most important notion in our context. Often the
introduction of the phase space of a problem is already the solution of the
problem.

Example
Consider two cities connected by two none-intersecting roads, say city A and city B.

A B

About these two roads the following fact is known:

Assume that there are two cars in city A, which are connected by a cord of length < 2:l.
Then we know that it is possible for these cars to travel to city B on different roads
without breaking the cord.

Question:
Assume that there are two circular wagons (moving discs) of radius l, one in city A and
one in city B. Is it possible to move these two wagons simultaneously to the other city
without touching each other ?

Intuitively one would expect that this is impossible. But how to prove this ?
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It turns out that the solution is to form the phase space describing the situation. The
movement  of each car or wagon it given by the single parameter, namely the distance it
has moved from its city on its road.

Denote the distance on the first road by x and the distance on the second by y. We may
assume that both roads have the same length 1 (we may use for each road its own unit to
measure the distances). Thus both parameters vary between 0 and 1,

0 ≤ x ≤ 1, 0 ≤ y ≤ 1.
Therefore, the positions of two bodies on the two roads is given by a point in the square

M := { (x, y) P R2 | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 }
Assume that both roads start in city A and end in city B, i.e. the coordinate 0 describes in
both roads the starting point in city A and the coordinate 1 describes city B.

The movement from A to B of the two cars is given by a curve γ from (0,0) to (1,1), since
both start in the same city A and end in the same city B.

Similarly, the movement of the two wagons is given by a curve δ from (1,0) to (0,1). The
situation tells us that the two curves must intersect.1

γ

δ

M

Let (x,y) be a point of intersection. This point describes a situation, where the two cars
are in the same position like the two wagons. But the distance of the two cars is be
assumption less than 2:l, while the two wagons should be at a distance greater than 2:l,
which is impossible.

There are no ODE’s involved in the above problem. But we see that the pure
construction of the phase space already solves a not quite trivial problem !

1.2.2 One-parameter groups of transformations
Let M be a set. A transformation (or automorphism) of M ist simply a bijektive map

M H M.
The transformations of M form a group, denoted

                                                
1 Each curve divides the square in two components, and the other curve connects points of different
components.
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Aut(M),

whose group law is the usual composition of maps. A one-parameter group of
transformations (or automorphisms) is by definition a group homomorphisms

h:R H Aut(M), t ! ht
from the additive group of real numbers to the transformation group Aut(M).
Equivalently, a one-paramter group is given by a map

R;M H M, (t, x) ! ht(x),
such that
1. h0(x) = x for every x P M
2. hs(ht(x)) = hs+t(x) for every x P M and arbitrary s,t P R.
Remarks
(i) The one-parameter group of a phase flow is obviously a one-parameter group in

the sense just defined.
(ii) In case M is a (finite dimensional) differentiable manifold, and h is a differentiable

map, than h is nothing else but a phase flow.

1.2.3 Phase curves and fixed points of the phase flow
Let M be a phase space with phase flow

g: R;M H M, (t, x) ! gt(x).
Then for each point x the map

R H M, t ! gt(x),
is called the motion of the point x under the effect of the phase flow g. The image of this
map is called the phase curve through x or the trajectory through x.
In case the phase curve through x consists of one single point, i.e.,
                                                                   

 gt(x) = g0(x) = x for every t PR,

the point x is called equilibrium or fixed point of the phase flow.

The space R;M is also called extended phase space of the given flow. An integral curve
of the flow is by definition the graph of a motion of the flow, i.e. a set in the extended
phase space of the type

{ (t, gt(x) | t P R}

Remark
The line R;{x} is an integral curve if and only if the point x is a fixed point of the
flow.

The R;{x} is an integral curve if and only if there is some point x’PM such that
R;{x} = { (t, gt(x’) | t P R},
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i..e.,
gt(x’) = x for every t PR.

For t = 0 this latter condition gives x’ = g0x’ = x. Thus:

R;{x} is an integral curve $ gt(x) = x for every t PR.

The condition on the right hand side means that x is a fixed point of the flow.

Problem 2
Prove that there is precisely one integral curce through each point of the extended phase
space.
Problem 3
Prove that for every s PR, the following translation of the extended phase space maps
integral curves into integral curves.

hs: R;M H R;M, (t, x) ! (t + s, x).

1.2.4   Phase flows and direction fields in the plane
Let g: R;M H M a phase flow with M = R. Through every point

(t0, x0) P R2

of the extented phase space goes presicely one integral curve

C(t0, x0) = {(t, g
t
g
-t0x0) | t P R}.

Let
T(t0, x0)

denote the tangent to this curve at the given point (t0, x0). This way we get a map

T: R2 H {lines in R2}
which associates with each point in R2 a lin going through this point. Such a map is
called direction field.

(t , x)

t

x

C (t,x)

1

v(t,x)

T(t,x)
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Problem: Is it possible to recalculate the integral curves of the flow from this direction
field ?

Generalization of the problem: forget that the direction field comes from a flow.

A curve is called integral curve of a direction field if the tangent line at any point of the
curve is equal to the line of the direction field at that point.

Generalized problem: how to find integral curves of direction fields.

More precisely, let
v(t, x)

denote the slope of the direction field line associated with the point (t,x). The problem is
to recalculate the integral curves from the function

v: R2 H RÕ{§}.
Equivalently, solve the differential equation

dx
dt  = v(t, x).

A trivial case
Assume the the following additional conditions are satisfied
1) There is no direction in the field parallel to the x-axis.
2) Translations in the direction of the x-axis map the lines of the direction field into

lines of that field.

•The first condition means, the the values of v are always finite and the integral
curves are graphs of functions, say

x = x(t).
• The second condition means,

v = v(t)
does not depent upon x.

• The graph of the function x = x(t) is an integral curve, if and only if
dx
dt  = v(t).

Integration yields

⌡⌠
t0

t
 dx
dt  dt = ⌡⌠

t0

t
  v(t) dt

hence

x(t) = x(t0) +  ⌡⌠
t0

t
  v(t) dt.

A less trivial case: dx
dt  = v(x).

This is not the type of equation corresponding to the above trivial case. But it asks for
the integral curves of a given direction field.

But there is another problem with the same solution: look for a function t = t(x), such
that the graph is an integral curve of the given direction field. The differential equation
for this problem,

dt
dx = 1

v(x) ,
can be solved:
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t(x) = t(x0) + ⌡⌠
x0

x
  dx
v(x)

Condition: v(x) should be continuos and none-zero.
Example: The equation of normal reproduction

dx
dt  = x.

(Remove the t-axis x = 0 from R2).
Solution:

t = t0 + ⌡⌠
x0

x
  dx

x

= t0 + [ln |x|]
x
x0

= t0 + (ln |x| - ln |x0|)
= t0 + ln |x/x0|

e
t-t0 = |x/x0|

x = x0: e
t-t0

The graph of this curve is the ingral curve through the point (t0, x0).
The general (phase flow) case:
As we know, translations in the diretion of the t-axis map integral curves of phase flows
into integral curves. This means that the function v(t,x) does not depend upton t. Thus
the above solved problem is already the general case.
Remarks
(i) Liouville has proved that the equation

dx
dt  = x2 - t.

cannot be solved just by integration.
(ii) A slight generalization of the above example,

dx
dt  = k:x

decribes population growth2 for k > 0 and radioactive decay for k < 0 (or air density)3.
Calculations like above give:

x = x0: e
k(t-t0)

The most remarkable property of this function is, that there is a constant time period
after which the absolute value of x doubles:

T = k-1: ln(2)
( T is negative if so is k, and |T| is called half life in this case).
(iii) The above equation of normal reproduction describes population growth only for
a restricted time period. At some point the population might become too large, so that the
way of development changes due to food problems. One way to get a model for this
phenomen is to assume that the constant k above depends upon the size of the
population,

k = k(x).
In the simplest type of model one assumes the k is a linear function of x, say
                                                
2 Population growth is proportional to the number of individuals.
3 Air density is half as large at Mt. Elbrus in  abour 5,6 km height compared with the density at sea
level.
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k = a - bx.
An easy transformation leads to the differential equation

dx
dt  = (1 - x)x.

This equation has an instable4 equilibrium at
x = 0.

and a stable5 equilibrium at
x = 1

All integral curves in the upper half plane are asymptotic to the curve x = 0.

1.3 Differentiable Manifolds

1.3.1 Aboud the notion of differentiable process
The definitions of the previous sections formally define the notion of deterministic
process. The notions of finiteness and differentiability have been treated until now in a
rather uncertain way. We want to be now somewhat more precise.

Together these conditions mean that the phase space is a finite dimensional differentiable
manifold and the phase flow is a differentiable map. Hence we have to define the notions
of differentiable manifold and differentiable map.

Examples
of differentialbe manifolds are the euclidian spaces, open subsets of euclidian spaces,
circles, spheres, toruses, etc.
Examples of differentiable maps are map between differentiable manifolds whose
coordinate functions are differentiable.

More generally, a differentiable manifold (of finite dimension) is a space which looks
locally like an open set in euclidian space and is such that the notion differentiable
function is well-defined and such that the derivative of such functions can be formed.

Differentiable manifolds can be obtained by gluing together open sets of an euclidian
space of a fixed (finite) dimension identifying commen open subsets.

                                                
4 An integral curve x = x(t) with a state close to 0 but  different from zero increases the absolute value
of its state with increasing time, i.e. it moves away from the equilibrium state.
5 An integral curve x = x(t) with a state close to 1 but  different from 1 develops with increasing time
such that its state approaches the vale 1, i.e. comes closer and closer to this state.
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The identification has to be done in such a way that the notions of differentiability on
both piecs coicide, i.e. one has to use bijective maps which are differentiable in both
directions.

To give a more formal definition, we have first to introduce the notion of topological
space.

1.3.2 Topological spaces
A topological space is a set X together with a family T(X) of subsets of X, called open
sets of X, such that the following conditions are satisfied.

(i) The empty set and the whole space are open sets of X, i.e.,
$ P T(X) and X P T(X).

(ii) The intersection of any two open sets is open, i.e.,
U, V P T(X) ⇒ U,V P T(X).

(iii) The union of any family of open sets is open, i.e.,
Ui P T(X) for every i P I ⇒ ÕiPI Ui P T(X).

In this situation, the family T(X) is called the topology of X. An open set UPT(X)
containing a given point x P X is also called (open) neightbourhood of x.

A topological space X is called Hausdorff space , if there exist, for any two given
different points x, y P X , open subsets U, V é X such that

x P U, y P V and U,V = $.
A map f: X H X’ between topological spaces X and X’ is called continuous, if for
every open set U’PT(X’) the set

f-1(U’) := {xPX | f(x) P U’}
is an open set of X.

The map f: X H X’ is called a homeomorphism, if it is bijective and both f and f-1 are
continuous. In this case X and X’ are called homeomorph. As topological spaces they
are consindered as essentially equal.

Example
For every set X the family

T(X) := {U | U é X}
of all subsets defines on X the structure of a topological space. This topology T(X) is
called discrete topology of X. The topological space whose topology is the discrete one
is called discrete topological space. A discrete topological space is always a Hausdorff
space.
Example
For every set X the family

T(X) = {$, X}
defines a topology on X. If X is equipped with this topology and has at least two points,
it is never a Hausdorff space (each point is in every neighbourhood.
Example
For every two points x = (x1,...,xn) and y = (y1,...,yn) in Rn write
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d(x, y) := (x1-y1)2+...+(xn-yn)2

for the distance between x and y und denote by
U
ε
(x) := {y P Rn | d(y, x) < ε}

the ε−neightbourhood of all points of distance less than ε from x. A subset
U é Rn

is called open, if there is, for every x P U there is some positive real number ε such that
U
ε
(x) is completely containted in U,

x P U ⇒ U
ε
(x) é U for some positive real ε.

The set T(Rn) of all open sets of Rn as just defined is called the euclidian topology of
Rn. One can easily prove that a map

f: Rn H Rm,
where both spaces are equipped with the euklidian topology, is continuous in the above
defined sense if and only if it safisfies the conditions of the δ−ε-criterion.

A examples of an open set in R2 is the open disc of radius r around the origin o :=
(0,0),

Ur(o) is open in R2.
The closed disc (including the border)

{ y P R2 | d(x,o) ≤ r} (1)
is not an open set. To see this, take a point y on the border of this set. Then there is no ε-
neightbourhood around this point, which is completely contained in (1).

1.3.3 Manifolds
An n-dimensional manifold or n-manifold is a topological Hausdorff space X which
looks locally like an open set in Rn, i.e., for every point x P M there is an open
neightbourhood U é M of x,  an open subset V é Rn and a homeomorphism

ϕ: U H V
(which identifies the points of U with the point of V). These homeomorphisms are are
called charts of M. The domain of definition of a chart is called coordinate
neightbourhood of M. A family of charts such that the coordinate neightbourhoods
cover M is called an atlas of M.

Example
Take two copies of the complex plane, say

U0 := C und U1 := C.
On both copies fix an open subset,

U’ := {z P U0 | z 0 0}

U” := {z P U1 | z 0 0}

Now identify each point z P U’ - {0} with the point 1/z P U”.
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U U0 1

r
1/ r

Note that increasing circles around the origing in U0 are identified with decreasing
circles around the origin in U1. The unit circle in U0 is identified with the unit circle in
U1 (with the orientation reversed).

U

U

0

1
Thus, the union

P
1
C:= U0 Õ U1

can be identified with a 2-dimensional sphere, the so-called Riemann sphere. Another
way to describe this set is to identify it with the set of 1-dimensional complex linear
subspaces in complex 2-space C2.6

The identifying functions
g’:U’ H U” , z ! 1/z
g”: U” H U’ , z ! 1/z

are obviously differentiable in each point of their domain of definition. Therefore, a
function

f: U’ H R
is differentiable in a given point p P U’, if and only if the composition

f9g”: U” H  R

                                                
6 Hence the notation P1

C:.
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is differentiable in the corresponding point of U”. In other words, the notions of
differentiability of a function is independent upon wheter it is considered as a function
on U’ ore a function on U”. This way one has the notion of differentiable function on
the Riemann sphere.
Note that the two identifying functions g’, g” are even complex analytic, such that the
notion of complex analytic function is defined on the Riemann sphere, i.e., the Riemann
sphere even has the structure of a complex manifold.

The open subsets U0 and U1 are called charts ore local coordinate systems of the

manifold P1
C. Since their union is equal to the whole manifold, the set {U0, U1} is

called an atlas of the Riemann sphere.

For arbitrary manifolds these notions are defined in a similar way.

1.3.4 Differentiable manifolds
A differentiable manifold of dimension n is a topological (Hausdoff-) space M equipped
with a covering by open sets,

M = UiPI Ui ,

such that each Ui can be identified with an open subset Vi é Rn, i.e. there are bijective
maps

ϕi: Ui H Vi
such that
(i) ϕi is homeomorphic, i.e., ϕi  and ϕ-1

i  are continuous functions for every i.

(ii) For every pair i, j P I such that Ui,Uj is none-empty the following map between 
open subsets in euclician space is continuously differentiable7

ϕi( Ui,Uj) H ϕj ( Ui,Uj), x ! ϕj( ϕ
-1
i (x)).

A chart or local coordinate system of this maninfold M is by definition a bijective map
ϕ: U H V

of an open subset U é M onto an open subset V é Rn such that the conditions (i)
and (ii) above continue to be satisfied if ϕ is added to the familie of ϕi used in the
definition above. In this situation, U is called the coordinate neighbourhood of the chart
ϕ.

An atlas of M is a family of charts of M such that the associated coordinate
neighbourhoods cover M.

Two differentiable manifolds with the same underlying set M but possibly different
families {ϕi: Ui H Vi} are considered equal if a bijection ϕ: U H V is a chart with
respect to the first manifold if and only if it is a chart with respect to the other.

Remark
                                                
7 We will usually assume that these maps are sufficiently often continuously differentiable, say r times.

In this case M is called a Cr-manifold. In case r = § one also says, M is a smooth manifold. If these
functions are analytic (given by power series), on writes r = ω and says that M is an analytic manifold.
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The condition in (ii) of being continuously differentiable can be replaced by the
condition to be r times continously differentiable (r = 0, 1, ... , §, ω) where the case r =
ω means that the involved functions are analytic, i.e., can be locally expanded into power
series. The resulting manifold is than called a Cr-manifold (smooth manifold in case r =
§ and analytic manifold in case r = ω).
Example
Let

S1 := { z P C |  |z| = 1}
denote the unit circle of the complex plane. We want to show that S1 is an analytic
manifold in the sense of the above definition. The construct an atlas, it is usefull to
consider the complex exponential function. It definies a surjective map

f: R H S1, r ! e2πir = cos 2πr + i:sin 2πr,
such that

f(ρ’) = f(ρ”) $ ρ’ - ρ” P Z. (1)
In particular, the restriction

fr := f|(r-ε,r+ε): (r - ε, r + ε) H S1, 0 < ε < 12
of f to any open intervall of length < 1 is injective. Write

Vr := (r - ε, r + ε) é R

Ur := Im(fr) = fr(Vr) é S1.
Then

ϕr := f-1r : Ur H Vr
is a bijective map for every r, and the sets Ur cover S1 as r varies in the real numbers.

f
V r

U r

ϕ
r

Now let ε = 12. Every complex number z P S1 of absolute value 1 can be written

z = e2πir = cos 2πr + i: sin 2πr = f(r) with - 12 ≤ r ≤ +1
2.

Therefore,8

                                                
8 Note that U

0
 contains every point except eπi = f(1/2).
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S1 = U0 Õ U1/2

Assume p P U0,U1/2. and write
p = f0 (x0) = f1/2 (x1/2) (2)

with
x0PV0 = (-12 , +1

2) and x1/2PV1/2 = (0, 1).

From (1) we see x0 - x1/2 P Z, i.e., either9

x0 = x1/2 P (0, 12)
or

x1/2 = x0 + 1 and x0 P (-12 , 0)
i.e,

ϕ1/2(p) = ϕ0(p) for p P (0, 12),

ϕ1/2(p) = ϕ0(p) + 1 for p P (-12 , 0),

Note that p = ϕ-1
0 (x0). The above identieis write

ϕ1/2(ϕ-1
0 (x0)) = x0 for x0 P ϕ0(0, 12),

ϕ1/2(ϕ-1
0 (x0)) = x0 + 1 for x0 P ϕ0 (-12 , 0),

Therefore, the map
ϕ1/29ϕ-1

0 : ϕ0(U0,U1/2) H ϕ1/2( U0,U1/2)
is locally a translation by an integer constant, hence analytic. Similarly one proves that
the same is true for

ϕ09ϕ-1
1/2: ϕ1/2(U0,U1/2) H ϕ0( U0,U1/2).

Example

To prove that the torus is an analytic manifold, one can identify it with the direct product
S1;S1

and prove that the direct product of to analytic manifolds is an analytic manifold.

Example

An alternative method to prove that the 2-sphere
S2 := { x = (x1, x2 , x3) P R3 | x2

1 + x2
2 + x2

3 = 1}
is an analytic manifold, is to use the stereographic projection.

                                                
9 Either one of the points is in the intersection V

0
,V

1/2
 = (0, 1/2) or none is in this intersection. In

the first case the other must be also in this intersection (since a shift be >1 is outside the union of V
0

and V
1/2

). In the second case one point must be in the left part of V
0

 and the other in the right part of

V
1/2

.
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1.3.5 Diffeomorphisms
Let

f: M H M’
be a map between Cr-manifolds. This map is called (r times)10 differentiable, if its
descriptions in terms of local coordinate systems gives differentiable maps (between
open subsets of euklidian spaces). More precisely, we require:
(i) f is continuous.
(ii) For every point xPM there are charts ϕ: U H V and ϕ’: U’ H V’ of M and

M’ respectively, such that the following conditions are satisfied.
1. x P U.
2. f(U) é U’
3. The uniquely determined map g: V H V’ ´such that the diagramm

U Hf|U U’
Lϕ ϕ'L
V Hg

V’
is commutative, is (r times) differentiable.

In case r = § we say that f is smooth, and in case r = ω, f is analytic.
A diffeomorphism is a bijective map f: M H M’ between differentiable manifolds such
that f and f-1 are differentiable.

Problem 4
Let M and M’ differentiable manifolds such that there is a diffeomorphism

f: M H M’.
Prove that M and M’ have equal dimension.
Hint: Use the implicite function theorem.

Problem 5
Decide which ones of the following maps f: R H R are diffeomorphisms.

f(x) = 2x, x2, x3, ex, ex + x.

1.3.6 One parameter groups of diffeomorphisms
Let M be a differentiable manifold. A one-parameter group of diffeomorphisms on M is
a map

g: R;M H M, (t, x) ! gtx ,
such that the following conditions are satisfied.

(i) g is a differentiable map.
(ii) The map gt: M H M, x ! gtx , is a diffeomorphism for every t PR.
(iii) The map R H Aut(M), t ! gt , is a one-parameter group of transformations of

M.
Problem 6
Prove that condition (ii) follows from the other two conditions.
Example
                                                
10 r = 0, 1, 2, ... , § , ω.
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M = R, gt(x) = x + vt (v P R).11

Remark
Out next aim is the definition of the notion of tangent vector to a manifold at a given
point. The problem is, that there is no canonical coordinate system, so that our definition
must avoid coordinates.
The idea of the definition is that, for a given vector X = (X1, ..., Xn) at a given point p
there is a derivative in the direction of this vector,

X(f) = df(p+t:X)
dt  |t=0 = ∑

i=1

n  ∂f
∂xi

 (p):Xi .

It turns out,
• these derivatives can be considered quite indepently upon any coordinate system.

they are just function such that
X(f:g) = f(p):X(g) + g(p):X(f)  if f and g are defined near p
X(c) = 0    if c is a constant near p.
X(c:f + d:g) = c:X(f)+d:X(g)    if c and d are constant near p.

• the vector X is uniquely determined by the derivative f ! X(f), for example, the i-
th coordinate with respect to the given coordinate system is Xi = X(xi).

This allows to identify the vector X with its associated derivative. For example, the unit
vector in the direction of the xi-axis of a given coordinate system will be identified with
the derivative

∂
∂xi

in the direction of this axis. Thus, tangent vectors will be defined to be operators
f ! X(f)

satisfying the above conditions. The most complicated part of this setting is the
description of the domain of definition of these operators, called the local ring of the
manifold at the given point.

1.4 Tangent spaces and vector fields

1.4.1 The local ring of a manifold at a given point
Let p P M be a point on a Cr manifold M. Denote by

OM,p
the set of all Cr functions

f:U H R
which are defined on an open neightbourhood U é M of the point x. Different
elements f of this set can be defined on different open sets U (but every U should
contain the given point p.

We are interested in the behavior of these functions close to the point p and will ignore
everything which happens far away from p. Therefore we make the following

                                                
11 Condition (i) is trivially satisfied. Therefore it is sufficient to check for condition (iii). One has

gs(gt(x) = gs (x + vt) = (x+vt) + vs = x + v(s+t) = gs+t(x).
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Aggreement: two elements of OM,x , say

f’: U’ H R and f”: U” H R,
are considered to be “equal”, if there is an open neightbourhood U é M of p such that

U é  U’,U” and f’|U = f”|U .
In other words, functions which are equal in a neightbourhood of p are considered equal.

This way OM,x consists of equivalence classes of functions rather than functions.

With this aggreement elements of OM,p can be added and multiplied. Given to
functions, say

f’: U’ H R and f”: U” H R,
the sum f’+f” is given by the function

f’+f”: U’,U” H  R, u ! f’(u) + f”(u),
and their product f’:f” is given by

f’:f”: U’,U” H  R, u ! f’(u) : f”(u).

With these operations, the set OM,p is a commutative ring with 1.
This ring is called local ring of M at p, its elements are called germs of functions on M
near p.

Example
Let M = U é Rn be an open set in euclidian space and consider M as an analytic
manifold. To each analytic function defined in a neightbourhood of the point p P U we
associate its power series expansion around p,

f ! f(p) + ∑
i=1

n  ∂f(p)
∂xi

  (xi - pi) + ∑
i,j=1

n   ∂
2f(p)
∂xi∂xj

 (xi - pi)(xj - pj) + higher terms

Two analytic functions are mapped to the same power series if and only if they are equal
in a neightbourhood of p, i.e., if they are equal as elements of OM,p. In other words,

OM,p
can be identified with the ring power series at p.

In the general case OM,p can be considered as a replacement for the power series ring,
even in the case of functions which do not allow any power series expansions.

1.4.2 Tangent vectors on manifolds
Let M be a Cr manifold with r ≥ 2 and p P M be some Point. A tangent vektor of M at p
is a map (or operator)

X: OM,p H R
such that the following conditions are satisfied.

(i) X is R-linear, i.e.,
X(c:f + d:g) = c:X(f) + d:X(g)
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for arbitrary c,d P R and f,g P OM,p.
(ii) X is a derivation, i.e.

X(f:g) = f(p):X(g) + g(p):X(f)
for arbitrary f, g P OM,p.

(iii) X(c) = 0 für c constant near p.

The set of all tangent vectors of M at p is denoted by

Tp(M)

and is called tangent space of M at p.

Remarks

(i) The tangent space Tp(M) is obviously a real vector space, since for every two
tangent vectors

X, Y : OM,p H R
and every two real numbers c, d the linear combination

c:X + d:Y: OM,p H R , f ! c:X(f) + d:Y(f),
satisfies again the above conditions (i) - (iii).

(ii) Let
ϕ : U H V é Rn

be a chart near the given point p P M. The tangent space Tp(M) does not change,

if M is replaced by the open set U é M containing the point p (sind the local ring
does not change).

Consider the map12

α:Rn H Tp (U) = Tp(M), X = 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

X1
...
Xn

 ! ∑
i=1

n  Xi:
∂
∂xi

 |p (1)

mapping each vector X P Rn to the associated operator, i.e. to the derivate at p in
the direction of X, i.e.,

X(f) = ∑
i=1

n  Xi:
∂(f9ϕ)
∂xi

 |p

for every smooth funtion f defined near p P U.13

                                                
12 Below we will see that α = d

p
ϕ is just the differential of the chart ϕ at the point p.

13 We use the chart ϕ: U H V to identify U with V and hence identify each function
f: U’ H R

defined in a neighbourhood U’ é U of p with the corresponding function
f9ϕ: V’ H R

defined in the corresponding neighbourhood V’ := ϕ(U’) of ϕ(p).
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This is an isomorphism of real vector spaces.

Usually we will use this map α to identify the tangent space Tp(M) with euclidian

n-space Rn. In particular, we will identify the standard unit vector ei the the

derivative ∂∂xi
 .

(iii) Example. Let
M = R2

and denote by
x: M H R, (u, v) ! u,
y: M H R, (u, v) ! v,

the two coordinate functions on R2. The map ϕ with coordinate functions x and y,
ϕ = (x,y): M H R2, p = (u, v) ! (x(p), y(p)) = (u , v)

is (global) chart of M. For every point p P M the tangent space at p is identified
with R2 via the map

Rn H Tp (M), 
⎝⎜
⎜⎛

⎠⎟
⎟⎞u

v  ! u: ∂∂x |p + v: ∂∂y |p ,

i.e. the Point 
⎝⎜
⎜⎛

⎠⎟
⎟⎞u

v  is identified with the operator u: ∂∂x |p + v: ∂∂y |p. In particular the

two standard unit vectors e1 = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞1

0  and e2 = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞0

1  are identified with the derivatives at p

in the directions of the x- and y-axis, resp. Thus
e1(f) = ∂f

∂x (p) , e2(f) = ∂f
∂y (p)

for every differentiable function f defined near p.
Other charts may lead to other identifications.

(iv) Example. Let
M = R

and
t: M H R, u ! u,

the coordinate function on R. Then
ϕ = t: M H R

is a (global) chart of M. For every point p P M the tangent space at p is identified
with R via the map

R H Tp(M), u ! u:∂∂t|p

In particular, the unit vector 1 of R at p P R is identified with the derivative ∂∂t =
d
dt at the point p.

Prove of remark (ii).
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First of all we see that this map is R-linear: the sum of two vectors is mapped to the sum
of the two associated operators, a real multiple of a vector is mapped to the real multiple
of the corresponding operator:

α(

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

X1
...
Xn

 + 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

X’1
...

X’n

) = α(

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

X1+X’1
...

Xn+X’n

) = ∑
i=1

n  (Xi+ X’i):
∂
∂xi

 |p

= ∑
i=1

n  Xi:
∂
∂xi

 |p + ∑
i=1

n  X’i:
∂
∂xi

 |p

= α(

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

X1
...
Xn

) + α(

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

X’1
...

X’n

)

and similarly

α(c: 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

X1
...
Xn

) = α(

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

cX1
...

cXn

) = c: ∑
i=1

n  Xi:
∂
∂xi

 |p = c:α(

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

X1
...
Xn

)

Further, the linear map α ist injective, since its kernel is trivial:

α(

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

X1
...
Xn

) = 0

implies ∑
i=1

n  Xi:
∂f
∂xi

 |p = 0 for every differentiable function f defined near p. In particular,

if f is the j-th coordinate function f = xj we obtain

0 = ∑
i=1

n  Xi:
∂xj
∂xi

 |p = Xj .

Since this is true for every j, we see that 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

X1
...
Xn

 = 0 is the zero vector.

To prove surjectivity of α it will be sufficient ot prove that the tangent space has at most
dimension n,

dim Tp(M) ≤ n.
For this, it will be sufficient to prove that the tangent space is generated by the operators

∂
∂xi

 |p with i = 1, 2, ... , n.

We will prove more. We will even show that the following identity is true for every
element DP Tp(M):
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D = D(x1): ∂
∂x1

 |p + ... + D(xn): ∂
∂xn

 |p
i.e.,

D(f) = D(x1): ∂f
∂x1

 (p) + ... + D(xn): ∂f
∂xn

 (p) (1)

for every Cr-function f (with r ≥ 2) defined near p.

To simplify notation, we may assume that p is the origin.
p = (0, ... , 0) = o.

Consider the first order Taylor expansion of f at p = 0.

f = c + ∑
i=1

n  fixi + ∑
i,j=1

n   fijxixj with fi = ∂f
∂xi

 |x=p.

Applying the operator D gives

D(f) = ∑
i=1

n ( fi(p)D(xi) + xi(p)D(fi) ) +  ∑
i,j=1

n   ( fij(p)xi(p)D(xj) + xj(p)D(fijxi) )

Since xi(p) = 0 for every i,

D(f) = ∑
i=1

n fi(p)D(xi) = ∑
i=1

n  D(xi)
∂f
∂xi

 (p) = ( ∑
i=1

n  D(xi)
∂
∂xi

 ) (f).

But this is the claim.

Convention

For simplicity we will assume below that all manifolds and all maps between manifolds
are smooth (rather than being of type Cr), despite of the fact that most constructions will
also work for Cr with r sufficiently large.

1.4.3 The differential at a given point
Let M, M’ be a Cr manifolds ( r ≥ 2),

ϕ: M H M’
a Cr map and p P M be a point. Then the following map is well-defined and R-linear. It
is called differential of ϕ at the point p.

dpϕ: Tp(M) H T
ϕ(p)(M’), X ! ϕ*(X)

such that
ϕ*(X) (f) := X(f9ϕ) (1)

for every germ f on M’ near ϕ(p). Note that the composition
f9ϕ

is a germ14 on M defined near p, i.e., X(f9ϕ) is a well-defined real number. Moreover, the
map

OR,ϕ(p)HR, f ! X(f9ϕ),

defined this way, is a tangential vector at ϕ(p). For, it is obviously R-linear and vanishes
on constant functions f. Moreover,
                                                
14 i.e. an element of O

M,p
.
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X((f:g)9ϕ) = X((f9ϕ):(g9ϕ) = f(ϕ(p))X(g9ϕ) + g(ϕ(p))X(f9ϕ).
We have proved, the differential dpϕ is well-defined. Its linearity can be directly seen
from the definition (1).

Example 1
Let

M = M’ = R, p P M,
and

ϕ: R H R, t H ϕ(t),
a Cr map. For every Cr function f defined near ϕ(p), the composition f9ϕ is a Cr
function defined near p and

∂(f9ϕ)
∂t  (p) = ∂f(t)

∂t  (ϕ(p)) : ∂ϕ(t)
∂t  (p)

i.e.
dpϕ(∂∂t |p) (f) = ( ∂ϕ(t)

∂t  (p): ∂∂t|ϕ(p) ) (f)
i.e.,

dpϕ(∂∂t |p) = ∂ϕ(t)
∂t  (p): ∂∂t|ϕ(p)

The linear map
dpϕ: R: ∂∂t |p H R: ∂∂t|ϕ(p), c: 

∂
∂t |p ! c: ∂ϕ(t)

∂t  (p): ∂∂t|ϕ(p) ,

is just multiplication by ∂ϕ(t)
∂t  (p). If we identity the two tangent spaces with R, the

differential can be written
dpϕ: RH R, c: ! c: ∂ϕ∂t  (p),

To simplify formulas, assume p = 0 is the origin. If ϕ has Taylor expansion

ϕ(t) = ϕ(p) + ∂ϕ∂t  (p):t + 12
∂2ϕ
∂t2

 (p):t2 + ...

at p, then
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dpϕ (t) = ∂ϕ∂t  (p):t,
i.e. dpϕ is the linear part of the Taylor expansion. On also says that dpϕ is the
linearization of ϕ at p.
Example 2
Let

M = Rm

M’ = Rn

p P M
and

ϕ: Rm H Rn, x = 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

x1
...
xm

 ! 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

ϕ1(x)

...
ϕn(x)

,

a Cr map. For every Cr function f defined near ϕ(p), the composition f9ϕ is a Cr
function defined near p and

∂(f9ϕ)
∂xi

 (p) = ∑
j=1

n ∂f(y)
∂yj

 (ϕ(p)) : 
∂ϕj(x)
∂xi

 (p)

i.e.

dpϕ( ∂∂xi
 |p) (f) = ( ∑

j=1

n 
∂ϕj(x)
∂xi

 (p): ∂∂yj
 |
ϕ(p) ) (f)

i.e.

dpϕ( ∂∂xi
 |p) = ( ∑

j=1

n 
∂ϕj(x)
∂xi

 (p): ∂∂yj
 |
ϕ(p) )

The linear map

dpϕ: Τp(Rm) H Τp(Rn), ∂∂xi
 |p ! ∑

j=1

n 
∂ϕj(x)
∂xi

 (p): ∂∂yj
 |
ϕ(p)

maps the i-th basis vector ∂∂xi
 |p to the linear combination ∑

j=1

n 
∂ϕj(x)
∂xi

 (p): ∂∂yj
 |
ϕ(p) of the

basis vectors ∂∂yj
 |
ϕ(p). If we use the two sets of basis vectors to identifiy the tangent

spaces with euclidian spaces the differential can be written as follows.

dpϕ: Rm H Rn, ei ! ∑
j=1

n 
∂ϕj
∂xi

 (p):ej ,

i.e, the i-th standard unit vector ei is mapped to the i-th column of the Jacobian matrix
∂ϕ
∂x (p).

Equivalently, dpϕ is just multiplicatoin by the Jacobian matrix,

dpϕ: Rm H Rn, X = 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

X1
...

Xm

 H ∂ϕ∂x (p):X = . ∑
i=1

n ∂ϕ∂xi
 (p):Xi
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Comparing with the Tayler expansion of ϕ at p we see again that dpϕ is again the linear
part of this Taylor expansion (and is therefore also called linearization of ϕ at p).

Note that the expression on the right is obtained from

dϕ = ∑
i=1

n ∂ϕ∂xi
 dxi

when dxi is replaced with Xi for every i. Thus, dpϕ is essentially the same like the total
differential of ϕ at p.

Special case n = 1.
We assume that ϕ is a map

ϕ = ϕ1: Rm H R
Then dpϕ is  the linear map

dpϕ: Τp (Rm) H Τp (R) = R, ∂∂xi
 |p ! ∂ϕ∂xi

(p)

which maps the i-th generator of the tangent space to the i-th derivative of ϕ at p,  for
short

dpϕ: Τp (Rm) H R, ∂∂xi
  ! ∂ϕ∂xi

 .

Note that dpϕ is a linear functional on the tangent space Τp (Rm), i.e., an element of the
dual space,

dpϕ P Τp (Rm)*.
Consider the case that ϕ is the j-th coordinate function,

ϕ = xj: R
m H R, 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

u1
...
um

 ! uj ,

we get
dp xj (

∂
∂xi

) = δij .

We see that the differentials
dp x1 , ... , dp xm Τp (Rm)*

form a dual base of the base
∂
∂x1

 , ... , ∂
∂xm

 P Τp (Rm).

The dual tangent space Tp(M)* to a manifold M at a point p is also called cotangent
space of M at p. Its elements are called cotangent vectors or covectors to M at p.15

Example 3

Consider the 2-sphere in 3-space,
S2 := { x = (x1, x2 , x3) PR3 | F(x) = 0 } , F(x) = x2

1+x2
2+x2

3
                                                
15 Vectors have an invariant meaning, their coordinates are contravariant tensors. Similarly, covectors
have an invariant meaning, their coordinates are covariant tensors.
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and let ϕ be the natural inclusion
ϕ: S2 H R3, x !x.

T (S )
p

2
T (  )
p

3
dp

ϕ

Then for any smooth function fPO
R3,p

 defined on R3 near p, one has

dpϕ(X)(f) = X(f9ϕ) = X(f|
S2)

Let f := F. Then f|
S2 is identically zero on S2. Since tangent vectors are linear operators,

dpϕ(X)(F) = 0 for every tangent vector X P Tp(X).
For every vector

Y = (Y1, Y2, Y3) P Im(dpϕ(X))
one has

0 = Y(F) = ∑
i=1

3  ∂F(p)
∂xi

 Xi = 2p1Xi + 2p2X2 + 2p3X3
hence

0 = p1Xi + p2X2 + p3X3.

This is just the usual equation of the tangent space to S2 at the point p (where the point p
is considered to be the origin). In the coordinates of R2 (with the origin at (0, ... ,0)) we
obtain

0 = p1(Xi-p1) + p2(X2-p2) + p3(X3-p3).

A similar argument also works for submanifolds in Rn defined by more than one
equation. More precisely, if

M é Rn
is defined by the equations

f1(x1, ... , xn) = ... = fm(x1, ... , xn) = 0

that the tangent space Tp(M) é Tp(Rn) = Rn of M at pPM is defined by the linear
equations

dpf1(X1, ... , Xn) = ... = dpfm(X1, ... , Xn) = 0

Example 4
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Let I = (a, b) é R a  none empty open intervall and
x: I H M, t ! x(t),

a Cr map of Cr manifolds. In that what follows, such a map will be also called a Cr
curve. For every t0 we write

dx
dt  (t0) = (dt0

x)(∂∂t|t0
) P TpM,     p := x(t0),

for short
dx
dt  = dx (∂∂t).

T (M)
p

d   xp∂/∂t

T  (     )p

t 0
p

dx
dt

(t  )
0

This tangent vector is also called the derivative of the curve x at t0 or the tangent vector
of the curve x at x(t0). Note that dt0

x is a linear map

dt0
x: Tt0

(I) H Tx(t0)M

and ∂∂t|t0
 is a tangent vector at t0 ,

∂
∂t|t0

 P Tt0
(I).

In case, M is an open set in euclidian space, say
M é Rn open,

we obtain for every Cr function ϕPOM,x(t0) defined near x(t0):

(dt0
x)(∂∂t|t0

)(ϕ) = ∂∂t|t0
(ϕ9x) = ∑

i=1

n  ∂ϕ∂xi
 (x(t0)):

∂xi
∂t  (t0) = ( ∑

i=1

n  
∂xi
∂t  (t0): ∂∂xi

 |x(t0))(ϕ).

This holds for every ϕ, hence
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dx
dt  (t0) = (dt0

x)(∂∂t|t0
 ) = ∑

i=1

n  
∂xi
∂t  (t0): ∂∂xi

 |x(t0)

If we identify Tx(t0)M in the usual way with Rn (idenitying ∂∂xi
 |x(t0) with the i-th

standard unit vector), we obtain

dx
dt  (t0) = ∑

i=1

n  
∂xi
∂t  (t0):ei = 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

dx1/dt

...
dxn/dt

(t0),

We have proved, the above definition von dx
dt  coincides with the usual one, if M is an

open subset in euclidial space.

Example 5
Consider the differential equation

dx
dt  = X(x, t), x(t) PR, X(x,t) P R.

and let

{ (t, x(t))}

be an integral curve through a given point

(t0, x0) = ( t0 , x(t0)).

The differential equation tells us that the tangent line to the given integral curve in the
given point has slople X(x0,t0), i.e., is given by the equation

x - x0 = X(x0,t0)(t - t0).
We see that for every p = (x0,t0) the vector

⎝⎜
⎜⎛

⎠⎟
⎟⎞1

X(p)  = ∂∂t |p  + X(p): ∂∂x |p

is a tangent vector at (x,t) to the integral curves going throug p. Now consider the
coordinate functions

t: R2 H R , 
⎝⎜
⎜⎛

⎠⎟
⎟⎞u

v  ! u

x: R2 H R , 
⎝⎜
⎜⎛

⎠⎟
⎟⎞u

v  ! v

The values of their differentials at this tangent vector are

dpt 
⎝⎜
⎜⎛

⎠⎟
⎟⎞1

X(p)  = 1

dpx 
⎝⎜
⎜⎛

⎠⎟
⎟⎞1

X(p)  = X(p)

hence

dpx = X(p)dpt for ever point p



31

or
dx = X(p):dt.

In other words, the differential equation translates into a relation between differential
forms, the left hand side of the differential equation  can be considered as the quotient of
the two functions ‘dx’ and ‘dt’.

For example, the differential equation

dx
dt  = f(x)g(t)

translates into the relation

1
f(x) :dx = g(t):dt.

To understand why the calculations used to solve this differential equation, we have to
learn how to integrate differential forms.

1.4.4 Inverse function theorem16

Let
ϕ: M H M’

be a Cr map of Cr-manifolds (r ≥ 2) and p P M a point such that the linear map
dpϕ: Tp(M) H T

ϕ(p)(M’)

is bijective. Then there are neighbourhoods U é M and U’éM’ of p and ϕ(p) such
that
1. ϕ(U) = U’
2. ϕ|U: U H U’ is a diffeomorphism.

In particular, the inverse ϕ|-1U: U’ H U exists and is a Cr map.
Example 1
Consider the exponential map

ϕ: R H R
≥0, t ! et ,

Since its derivative dϕdt (t) = et is always > 0, this function is strongly monotone, hence
has an inverse,

ϕ-1: R
≥0 H R, t ! log(t).

Claim: this inverse is a Cr function for every r. To see this, consider the differential of ϕ
at a given point t = u. It is given by

duϕ: R H R, t ! (eu):t.

Since eu 0 0, this is an isomorphisms of vector spaces. Therefore, the exponential map
is a local diffeomorphism at every point, i.e. its inverse is a Cr function for every r.
Example 2
Consider the map

                                                
16 This theorem will be soon formulated and proved in the analysis course running parallel to these
lectures. Below we present a translation into the language of manifolds.
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ϕ: R H (-1, +1), t ! sin t ,
Its derivate satisfies

dϕ
dt (t) = cos t > 0 for -π/2 < t < +π/2,

hence is strongly monotone in this interval, i.e. there is an inverse
ϕ-1: (-1, +1) H (-π/2, +π/2), t ! arc cos t.

Claim: this inverse is a Cr function for every r. To see this, consider the differential of ϕ
at a given point t = u P (-π/2, +π/2). Is is given by

duϕ: R H R, t ! (cos u):t..
(1)

Since cos u 0 0, this is an isomorphism of vector spaces. Therefore, sin is a local
diffeomorphism at every point of the intervall (-π/2, +π/2), i.e. the inverse (1) is a Cr
function for every r.

1.4.5 Implicite function theorem17

Let
ϕ: M H M’

be a Cr map of Cr manifolds ( r ≥ 2) and
p P M, p’PM’, ϕ(p) = p’,

be points such that
dpϕ: Tp(M) H Tp’(M’)

is surjective. Then there is an open neightbourhood U é M such that
U , ϕ-1(p’)

is a submanifold of U (i.e. is locally  given by a system of linear equations for
approbriately chosen coordinate systems). In particular, this intersection is a Cr
manifold.

Example
Let

M = R3
M’ = R
ϕ: R3 H R, (x, y, z) ! x2- y2 - z2 - 1.

Then
S1 := ϕ-1(0) = { (x, y, z) P R3 | x2- y2 - z2 = 1}

is the unit sphere. For p = (u, v, w) P R3 the differential of ϕ at p is given by
dpϕ:R3 H R, (X, Y, Z) ! 2u:X + 2v:Y + 2w:Z, (1)

 For every p P N at least one coodinate is none-zero, i.e., the differential (1) is not the
zero map, and hence is surjective for every pP S1. By the implicite function theorem, for
every point p P S1 there is an open set U,

p P U é R3

                                                
17 ibid.
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such that S1,U is submanifold of U. Since this is true for every p, the unit sphere is a
Cr manifold (for every r).

Problem: how to find the charts of this manifold.

To illustrate how to find charts of S1 let us construct a charts which identifies the
northern hemissphere with the open unit disc in the plane. To be precise, consider the
map

ψ: U H V, (x, y, z) ! (x, y),
where

U := { (x,, y, z) P S1 | z > 0}
is the upper hemisphere and

V := { (x, y) P R2 | x2+ y2 < 1}
is the open unit disc in the plane.

We claim that this is a chart. The map is easily seen to be bijective. We have to prove
that it is a diffeomorphisms (i.e. the map and its invers are Cr maps). By the inverse
function theorem it is sufficient to show that the differential

dpψ: R2 = Tp(U) H Tp(V) = R2

is an isomorphism for every p P U. To prove this we may replace U with S1, V with R2

and factor ψ over R3:

ψ: S1 #i
 R3 $pr

 R2, (x, y, z) ! (x, y, z) ! (x, y),
i.e. i is the natural inclusion and  pr is the orthogonal projection of the 3-space to the
plane. The maps ψ, i and pr are obviously linear, hence coincide with their respective
linearizations:

dp ψ: R2 = Tp( S1) H
dp(i)

 R3 H
dp(pr)

R2, (X, Y, Z) ! (X, Y, Z) ! (X, Y).
To prove that this is an isomorphism, it is sufficient to prove injectivity.18 Thus it will be
sufficient to show that the kernel of this map is trivial. Note that

Ker(dp ψ) = { (X, Y, Z) P Tp( S1) | X = Y = 0}.

Since S1 is defined by the equation ϕ(x, y, z) = 0, the tangent space at p is defined by
Tp( S1): 0 = dpϕ (X, Y, Z) = 2u:X + 2v:Y + 2w:Z.

Therefore
Ker(dp ψ) = { (X, Y, Z) P R3 | 0 = X = Y = 2u:X + 2v:Y + 2w:Z }

= { (X, Y, Z) P R3 | 0 = X = Y = 2w:Z }
For p = (u, v, w) P U in the upper hemissphere one has w > 0, i.e.

Ker(dp ψ) = { (X, Y, Z) P R3 | 0 = X = Y = Z } = {(0,0,0)}.
The kernel is trivial. We have proved ψ is a chart identifying the upper hemis sphere
with the unit disc.

1.4.6 Vector fields and differential equations
Let M be a Cr manifold (r ≥ 2) and write
                                                
18 Since this is a linear map of vector space with equal dimension 2.
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T(M) := *pPM Tp(M)

for the disjoint union of all tangent spaces to M. This disjoint union is called tangent
bundle19 of M. A vector field on M is a map

X: M H T(M), p ! Xp ,

such that Xp P Tp(X), i.e. to every point p of M one associates a tangent vector Xp of M
at p.
Example 1
If M = S1, the tangent bundle can be identified with the cylinder over S1,

TM = S1;R .

S1

S1

T(S )
1

Similarly, if M = S1; S1 is a torus, the tangent bundle can be identified with
TM = M;Rn.

Note that the unit circle
S1 = { z P C |  |z| = 1 }

is a group with respect to complex multiplication. Hence the torus is a group, too. In
general, if the manifold is a Lie group with neutral element ePM, the tangent bundle can
be identified with the direct product

TM = M ; Te(M).

If M = S2, the tangent bundle cannot be identified with S2;R2,
M 0 S2;R2.

This is a corollary of a deep theorem, the hedgehog theorem: every continuous vector
field on the 2-sphere has at least one zero. “There is no haircut for a hedgehog: there
will always remain a whirl”.

                                                
19 One can prove that T(M) is a Cr-1 manifold.
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Example 2
Let M = Rn and

xi: M H R,, 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

u1
...
un

 ! ui ,

the i-th coordinate function. Then
∂
∂xi

 : M H T(M), p ! ∂∂xi
|p .

is a vector field associating to every point p P M the i-th standard unit vector at. It is
called the i-the standard unit vektor field.
Example 3
Let

x: U H V é Rn, u ! 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

x1(u)

...
xn(u)

be a chart of the Cr manifold M (r ≥ 2). Then, for i = 1, ... , x, one have a vector field on
U,

∂
∂xi

 : U H T(U), u ! ∂∂xi
|p ,

associating with each point p P U the unit vector at p in the direction of the i-th
coordinate axis. It is called the i-th standard unit vector field of this coordinate system.
Remarks
(i) Let

X: M H T(M)
be a vector field on a Cr manifold and

x: U H V é Rn, u ! 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

x1(u)

...
xn(u)

be a chart of M. For every p P U,

Xp P Tp(X) = R: ∂∂x1
|p + ... + R: ∂∂xn

|p .
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Since the vectors ∂∂xi
|p form a basis of Tp(X),

Xp = f1(p): ∂∂x1
|p + ... + fn(p): ∂∂xn

|p

with uniquely determined real numbers fi(p) P R. Thus the restriction of the
vector field X to U can be written

X | U = f1: ∂∂x1
 + ... + fn: ∂

∂xn
with uniquely determined functions

f1 , ... , fn : U H R,
which are called the coordinate functions of the vector field X with respect to the
given chart x: U H V. Note that, since the covectors dpxj form a dual basis,

dpxj(Xp) = fi(p) = Xp(xi)

(ii) The vector field X is called a Cs vektor field at p P U (for s < r), if its coordinate
functions fi are s times continuously differentialble at p ( analytic at p in case s = r
= ω), i.e. if

U H R, u ! Xu(xi),

is a Cs function at p for i = 1, ... , n. This is equivalent to the condition that20

U H R, u ! Xu(f),

is a Cs function  at p for every Cs+1 function f: U H R (the latter condition
being independent upon the choise of the chart x: U H V. A Cs vector field on
M is a vector field on M which is Cs at every point of M. In case s = 0 one obtains
the notion of continuous vector field, in case r = § one obtains the one of smooth
vector field and in case r = ω the notion of analytic vector field.

(iii) We are now ready to define the notion of differential equation in the context of
manifolds. Let

X: M H T(M)
be a Cs vector field on the Cr manifold M (s < r). A solution of the differential
equation

dx
dt  = X (1)

is a Cs+1 curve
x: I H M, t ! x(t), (2)

                                                
20 The condition is obviously sufficient: if it holds for every f, it also holds for f = x1 , ...

, xn. Lets prove that it is necessary. For every Cs+1-function f: U H R one has

Xu(f) = ( ∑
i=1

n fi(u): ∂∂xi
|u) (f) = ∑

i=1

n  fi(u): ∂f
∂xi

 (u)

But this is a Cs function of u , provided so is fi(u) = Xu(xi) for every i.
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such that
dx
dt  (t) = X(x(t)).

for every t P I. If x(t0) = x0 for some t0PI and some x0 P M, the map (2) is also
called a solution of the initial value problem

dx
dt  = X, x(t0) = x0 (3)

Differential equations of type (1), where the vector field X does not depent upen t,
are called autonomic.

(iv) The vector Cs field
X: M H T(M), x ! X(x),

on the phase space defines a vector field
+X: M;R H T(M;R) = T(M);R, (x, t) H (X(x), 1),

on the extended phase space which is called direction field associated with X.
Every solution

x: I H M,, t, ! x(t),
of the differential equation (1), defines a curve in the extended phase space,

+x : I H M;R, t ! (x(t), t),
(whose image is the associated integral curve). The differential equation (1) is
equivalent to the differential equation

d+x
dt  = (dx

dt  , 1) = (X(x), 1) = +X.
The initial value problem (3) is equivalent to the initial value problem

d+x
dt   = +X , +x (t0) = (x(t0), 1).

(v) Directional fields have the advandage that they have no zeroes.

(vi) The use of the extended phase space has the advandage that one can easily replace
the vector field X: M H TM by a time dependent vector field

X: M ; I H T(M), (x, t) ! X(x,t),
( I é R open) without changing anything in the above calculations. This way,
none-autonomic differential equations on the phase space become autonomic
differential equation on the extended phase space.

1.4.7 Differential forms
Let M be a Cr manifold (r ≥ 2) and write

T(M)* := *pPM Tp(M)*

for the disjoint union of all dual tangent spaces to M (the cotangent spaces). This
disjoint union is called cotangent bundle21 of M. A differential form on M is a map

ω: M H T(M), p ! ωp ,

                                                
21 One can prove that T(M) is a Cr-1 manifold.
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such that ωp P Tp(X)*, i.e. to every point p of M one associates a covector ωp of M at
p.
Remarks
(i) Let

ω: M H T(M)*, p ! ωp ,

be a differential on a Cr manifold and

x: U H V é Rn, u ! 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

x1(u)

...
xn(u)

be a chart of M. For every p P U,
ωp P Tp(X)* = R: dpx1 + ... + R: dpxn .

Since the covectors dpxi form a basis of the cotangential space,

ωp = f1(p): dpx1 + ... + fn(p): dpxn
with uniquely determined real numbers fi(p) P R. Thus the restriction of the
differential form ω to U can be written

ω | U = f1: dx1 + ... + fn:dxn
with uniquely determined functions

f1 , ... , fn : U H R,
which are called the coordinate functions of the differential form ω with respect to
the given chart x: U H V. Note that, since the vectors ∂∂xj

 |p form basis of the

tangent space at p which is dual to the basis {dpxi}i=1,...,n,

ωp( ∂∂xj
 |p) = fi(p).

(ii) The differential form ω is called a Cs differential form at p P U (for s < r), if its
coordinate functions fi are s times continuously differentialble at p ( analytic at p
in case s = r = ω), i.e. if

U H R, u ! ωp( ∂∂xj
 |p),

is a Cs function at p for i = 1, ... , n. This is equivalent to the condition that22

                                                
22 The condition is obviously sufficient: if it holds for every X, it also holds for

X = ∂
∂x

i
 |
p

  i = 1, ... , n.

Lets prove that it is necessary. Let

X = ∑
i=1

n
  f

i
: ∂
∂x

i

be a vector field on U, which is of class Cs at p, i.e., each f
i
 is a Cs function at p. Then
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U H R, u ! ωp(Xp),

is a Cs function at p for every vector field X on U, which is of class Cs at p. This
latter condition is independent upon the choise of the chart x, i.e. the notion of Cs

differential form of class Cs has an invariant meaning. In casse s = 0, one obtains
the notion of continuous differential form. In case s = r = §, the differential form
is called smooth and in case r = s = ω it is called analytic.

(iii) Let
ϕ: M H R

be a Cs function on M. Then dpϕ P Tp(M)*, hence as above

dpϕ = f1(p): dpx1 + ... + fn(p): dpxn
for ever pPU and

dϕ = f1(p): dpx1 + ... + fn(p): dpxn
with uniquely determined coordinate functions fi: U H R. By Example 2 of 1.4.3
(Special case n = 1) we see

∂ϕ
∂xi

(p) = dpϕ (
∂
∂xi

 |p) =  fi(p),

hence
dϕ = ∂ϕ∂xi

: dpx1 + ... + ∂ϕ∂xi
: dpxn

in particular, the map
dϕ: M H T(M)*, p ! dpϕ,

is a differential form of class Cs-1. Differential forms ω of this type, i.e. such that
ω = dϕ for some ϕ

are called exact.

1.4.8 Integration
Let

ω: M H T(M)*
be a continuous differential form on a Cr manifold (r ≥ 2) and

γ: I H M, I = [a, b] é R
a piecewise continuously differentiable curve. Then in terms of a local coordinate system

x: U H V é Rn
one can write

                                                                                                                                           

ω
p

(X
p

) = ∑
i=1

n
  f

i
(p): ω

p
( ∂
∂x

i
 |
p

).

and, as a function of p, the left hand side is of class Cs,  provided so is ω
p

( ∂
∂x

i
 |
p

) for every i.
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γ(t) = 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

γ1(t)

...
γn(t)

and

dγ
dt = dγ (∂∂t ) = 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

dγ1(t)/dt

...
dγn(t)/dt

 = ∑
i=1

n  
dγi
dt (t) : ∂∂xi

 |
γ(t) P T

γ(t)M

In particular, the coordinate functions of dγdt are piecewise continuous functions of t. The
coordinate functions of ω,

ω = ∑
j=1

n  fj(p) dxj P Tp(M)*

are continuous functions of p. Therefore,

ω(dγdt (t)) =23 ( ∑
j=1

n  fj(γ(t)) dxj) (
dγ
dt(t))

= ∑
j=1

n   ∑
i=1

n  fj(γ(t)) 
dγi
dt (t) dxj(

∂
∂xi

 |
γ(t))

= ∑
i=1

n  fi(γ(t)) 
dγi
dt (t)

is piecewise continuous as a function of t,
I H R, t ! ω(dγdt |t).

Hence the integral

⌡⌠
γ

 
 ω := ⌡⌠

a

b
  ω(dγdt |t) dt

is well defined. It is called integral over the differential form ω along the curve γ.
Example
Let M = R  and

ω = f(x)dx,
where f is a continuous function

 f: M H R.
Moveover, let

γ: [a, b] H M, t ! t,
be the identity map. Then

ω(dγdt|t) = f(γ(t)) dx (dγ (∂∂t)) =
24 f(γ(t)) dx ( ∂∂x) = f(t)

                                                
23 dγ

dt
 = dγ

dt
(t) P T

γ(t)(M).

24 For every function ϕ = ϕ(x) defined near γ(t) one has

dγ (∂
∂t

 |
t
)(ϕ) = ∂

∂t
 |
t
(ϕ9γ) = ∂ϕ

∂x
 |
γ(t)

 : ∂γ
∂t

 (t) = ∂ϕ
∂x

 = ∂
∂x

 |
γ(t)

 (ϕ),

hence

dγ (∂
∂t

 |
t
) = ∂

∂x
 |
γ(t)
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Hence, by definition

⌡⌠
γ

 
 ω = ⌡⌠

a

b
 f(t)dt

Remark
Let

ϕ: [c, d] H [a, b]
be a condinous map, which induces a diffeomorphisms (c, d) H (a, b). Then

⌡⌠
γ

 
 ω = ⌡⌠

γ9ϕ

 
 ω,

i.e., the integral does not depent upon the parametrization of the curve γ. To prove this,
we may assume that γ is of class C1 everywhere on the open intervall (a, b).25 Then

⌡⌠

γ9ϕ

 
 ω, = ⌡⌠

c

d
 ω(dγ9ϕdt  |t) dt

By definition, for every C1 function α defined near γ(ϕ(t)) one has

dγ9ϕ
dt  (α) = d(γ9ϕ)(∂∂t)(α) (definition of ddt )

= ∂∂t (α9γ9ϕ) (definition of d(γ9ϕ))

= ∂ϕ∂t  : ∂∂ϕ (α9γ) (chain rule)26

= ∂ϕ∂t  :dγ( ∂∂ϕ) (α) (definition of dγ )

= ∂ϕ∂t  :dγ
dϕ (α) (definition of d

dϕ)
Therefore,

dγ9ϕ
dt = ∂ϕ∂t  :dγ

dϕ . ( ∂ϕ∂t  P R, dγdϕP T
γ(t)(M) )

Since ω is a linear function at every point,

ω(dγ9ϕdt  |t) = ∂ϕ∂t  (t):ω(dγ
dϕ |

ϕ(t)),
hence

⌡⌠

γ9ϕ

 
 ω, = ⌡⌠

c

d
  ω(dγ

dϕ |
ϕ(t)): 

dϕ
dt |t:dt = ⌡⌠

a

b
  ω(dγ

dϕ |
ϕ

) dϕ = ⌡⌠
γ

 
 ω.

                                                
25 Otherwise we could divide the intervall into finitely many pieces where this condition is satisfied.
26 Note that the functions ϕ and α9γ both are maps between open subsets of the real line. We consider
γ as a function of the variable ϕ.
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2. The fundamental theorems

2.1 Statement of the theorems

2.1.1 Recifiable vector fields
Let M be a Cr manifold (r ≥ 2),

X: M H TM
a Cs vector field on M (0 ≤ s < r)27 and

p P M
be a point. The point p is called a singular point of X and X is called singular at p if the
vector of X at p is the zero vector,

Xp = 0.

p

A singular point of vector field

The vector field X is called (locally) rectifiable at p, if there is a chart

x: U H V é Rn, u ! 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

x1(u)

...
xn(u)

such that p P U such that all coordinate functions of X|U with respect to x are constant,

X(x1) = c1 , .... , X(xn) = cn  , c1 , ... , cn P R.

                                                
27 In case r = § or r = ω we allow s = r.



43

A constant vector field

With other words, X|U is a constant vector field in the given coordinate system: all
vector have the same direction and the same length. In this situation, x is called a
rectifying chart for X at p and one says the chart x rectifies X at p.

M

U

x

V

A rectifiable vector field

The vector field X is called (globally) rectifiable, if there is a diffeomorphismus
ϕ: M H V ( é Rn)

with an open subset V of euclidian space such that dϕ(X) is a constant vector field on V.

Remark
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(i) Every constant vector field on Rn is rectifiable. In particular, the standard vector 
fields

∂
∂xi

 : Rn H T Rn

are rectifiable.
(ii) The rotational vector field

R2 H T R2, p = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞x

y  ! x: ∂∂y  - y: ∂∂x |p
is singular at the origin. It is not rectifiable at p : its vector at p is zero in every 
coordinate system, all other vectors are none-zero (in every coordinate system).

(x, y)

(-y, x)

(iii) If the vector field is rectifiable and none singular at p, the coordinate system
x: U H V

can be always chosen such that X|U becomes the i-th standard vektor field,

X|U = ∂∂xi
(for every given i). Just compose the given chart with a linear transformation

Rn H Rn
mapping the constant none-zero vektor

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

c1
...
cn

to the i-th standard vektor ei.

(iv) If X is rectifiable at p and ϕ: U H V is a rectifying coordinate system at p, then
dϕ (X)

is a constant vetor field on V, i.e. X|U is globally rectifiabel.
(v) The direction field of a differential equation (in the extended phase space) is 

none-singular at every point: ist t-coordinate is equal to 1 at every point.

2.1.2 The rectification theorem for vector fields
Let

X : M H TM
be a Cs vector field with s ≥ 1 on the smooth manifold M which is none-singular at a
point

p P M.
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Then there is a Cs chart of M near p which rectifies X at p.28

Warning
The assertion is in general wrong in case s = 0. There are continuous vektor fields which
cannot be rectified (we will see this later).

2.1.3 The rectification theorem for direction fields
Every direction field of a differential equation

dx
dt  = X(t, x)

on a smooth manifold M with X smooth is (loaclly) rectifyable at every point.29

2.1.4 Simplification theorem
Every differential equation

dx
dt  = X(x, t) (1)

associated to a Cs vector field X  with s ≥ 1 is locally equivalent to a differential equation
of type

dx
dt   = e1 (2)

in euclidian space30, i.e. to a system
dx1
dt   = 1

dx2
dt   = 0 (3)

...
dxn
dt   = 0

Remark
Note that the initial value problem

x(t0) = x0
of the differential equation (2) has the unique solution

x(t) =x0 + (t - t0):e1
(which is defined for every t).

2.1.5 Local existence and uniqueness theorem
Consider the differential equation

dx
dt  = X(t, x).

                                                
28 If M is a Cr manifold and X is a Cs vector field which is none-singular at p (with r and s as usual,

i.e. r ≥ 2 and 0 < s < r where s = r is allowed in the cases r = § and r = ω), then there is a Cs chart of
M at p which is retifying for X.
29 If M a a Cr manifold and X is a Cs vector field with r and s as usual(in particular s ≥ 1, then for

every point p of the extended phase space there is a Cs chart at p which is rectifying for the direction
field at p.
30 i.e. there are diffeomorphisms of class Cs transforming the direction field of this differential equation
locally into this simplified form.
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where X is a Cs vector field with s ≥ 1 on a smooth Manifold M. Then for every point
x0 P M and every t0PR the solution of the initial value problem

x(t0) = x0
exists and is unique in the sense that any two such solutions coincide on the intersection
on their intervalls of definition.31

Proof: This is trivial for constant vector fields X(t, x), hence follows from the
simplification theorem.
QED.

2.1.6 Dependency upon the initial values
Consider the initial value problem

dx
dt  = X(t, x), x(t0) = x0 (1)

where X is a Cs vector field with s ≥ 1 on a smooth Manifold M.32 Then there is an open
intervall I é R containing t0 and a neighbourhood U é M containing x0 such that the
map

I;I;M H M, (t, t0 , x0 ) ! x(t, t0 , x0),

is well defined and of class Cs, where
x = x(t, t0 , x0): I H M

denotes the solution of the initial value problem (1).

In other words, the solution x = x(t, t0 , x0) of the initial value problem (1) is of class Cs

as a function of t, t0 and x0.

Proof: The claim is trivial for constant vector fields X(t, x), hence follows from the
simplification theorem.
QED.

2.1.7 Dependency upon parameters
Consider the initial value problem

dx
dt  = X(t, x, λ), x(t0) = x0 (1)

where X is a Cs vector field with s ≥ 1 on a smooth Manifold M depending upon a
parameter λPV varying in a open set V é R.33

                                                
31 A solution is considered to be a function x: I H M, which is defined on an open intervall I = (a, b)
of the real line.
32 i.e. there is an open interval I é R containing t

0
 P R and an open neighbourhood U é M of the

point x
0

 P M such that the associated vector field in the extented phase space

I;U H T(I;U) = R;TU, (t, u) ! (1, X(t,u)),

is of class Cs.
33 i.e. for every λ

0
PV there is a neighbourhood V’ é V of λ

0
, an open interval I é R containing t

0
P R and an open neighbourhood U é M of the point x

0
 P M such that the associated vector field

I;U;V’ H T(I;U;V’) = R;TU;Rm, (t, u, λ) ! (1, X(t,u, λ), λ),
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Then for every λ0PV there is a neighbourhood V’éV of λ0, an open intervall I é R

containing t0 and a neighbourhood U é M containing x0 such that the map

I;I;M;V’ H M, (t, t0 , x0 , λ) ! x(t, t0 , x0, λ),

is well defined and of class Cs, where
x = x(t, t0 , x0, λ): I H M

denotes the solution of the initial value problem (1).

In other words, the solution
x = x(t, t0 , x0 , λ)

 of the initial value problem (1) is of class  Cs as a function of t, the intial values t0 , x0
and the parameters λ.
Proof:. Consider the system of differential equations

dx
dt = X(t, x, λ)
dλ
dt = 0.

on the manifold M;V. A solution of this equation is a pair
(x(t), µ0)

where x(t) is a solution of the original equation (1) and µ0 is any point of U. The initial
value problem

x(t0) = x0
λ(t0) = λ0

has a solution, which is a Cs  function of t, t0 , x0 and λ0.
QED.

2.1.8 Local phase flow theorem
Let

X: M H TM
be a Cs vector field with s ≥ 1 on a smooth manifold M and p P M be a point. Then
there is a neighbourhood U containing p,

p P U é M
an open Intervall I = (-ε, +ε) é R containing 0,

0 P I é R
and a Cs map

g: I ; U H M, (t, x) ! gtx,
such that the following conditions are satisfied.
(i) For every x0 P U the map

I H M, t ! gtx0
                                                                                                                                           
defined by X is of class Cs.
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is a solution of the (autonomous) initial value problem
dx
dt  = X(x), x(0) = x0 .

(ii) For arbitraryf x P U, s,t P I such that s+t P I one has
gtgsx = gt+sx.

Proof. By the rectification theorem we may assume that M is an open subset of Rn and
X is constant. The map

ϕ: R;Rn H Rn, (t, x) ! x + X:t
is continuous, hence ϕ-1(M) is an open subset of R;Rn containing the point

(0, p) P R;M.
Thus, there is some reel ε > 0 and an open neighbourhood U é M of p such that

I ; M é ϕ-1(M).
Then the restriction

I ; M H M, (t, x) ! gtx := x + X:t ,
of ϕ satisfies the requirements of the theorem. Note that

gtgsx = gt( x + X:s) = (x + X:s) + X:t = x + X:(s+t) = gs+tx.
QED.
Remark
All the theorems above we deduced from the rectification theorem, except for the
implication

2.1.6 ⇒ 2.1.7
(depency upon initial values implies the depency upon parameters)

Roughly speaking, all the theorems above can be derived from each other. For example,
one has obviously34 the implication

2.1.6 (+ 2.1.5) ⇒ 2.1.8
(depency upon initial values implies the local phase flow theorem)

Since this will be important for the final proof of these theorems, we will give below the
proofs for two further implications:

2.1.8 ⇒ 2.1.3
2.1.8 ⇒ 2.1.2

This will reduce the proofs of all the theorems above to prove of existence and
uniquenes and of the Cs dependency upon the initial values.

2.1.9 The local phase flow theorem implies the rectification theorem for
direction fields
Passing to the extended phase space we may assume the differential equation in 2.1.3 is
autonomous,

dx
dt  = X(x),

                                                
34 If gtx

0
 denotes the solution of the initial value problem x(0) = x

0
 then

gtgsx
0

 and gt+sx
0

both denote solutions of the intial value problem x(0) = gsx
0

, hence must be equal.
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i.e., X: M H TM is a Cs vector field with s ≥ 1 on a smooth manifold M. Since the
claim is of local nature, we may assume that the manifold M is an open subset of
euclidian space, say

M é Rn.
For a given point p P M consider the phase flow as in 1.5.8, say

g: I ; U H M, (t, x) ! gtx,
with U é M open with p P U and I = (-ε, +ε) é R . Consider the induced map in the
extended phase space

+g :I ; U H I ; M, (t, x) ! (t, gtx).
This is a Cs map (by 1.5.8). It will be sufficient to prove that the following.

1. Locally at (0, p) the map +g  is a diffeomorphism (hence its inverse can be used as a

chart of I;M near +g (0, p) = (0, p).
2. The standard vector field ∂∂t on I;U corresponds to the vector field

+X: I;M H T(I;M) = R;T(M), (t, x) ! (1, X(x)).
Proof of 1. By the inverse function theorem, it will be sufficient to show that the

Jacobiam matrix J(+g ) of +g  at (0, p) is invertible. One has

J(+g ) = ∂(t,gtx)
∂(t,x)  = 

⎝⎜
⎜
⎜
⎜
⎜
⎜
⎜⎛

⎠⎟
⎟
⎟
⎟
⎟
⎟
⎟⎞

∂t
∂t

∂t
∂x1

... ∂t
∂xn

∂(gtx)1
∂t  

∂(gtx)1
∂x1

...  
∂(gtx)1
∂xn

... ... ... ...

 
∂(gtx)n
∂t  

∂(gtx)n
∂x1

...  
∂(gtx)n
∂xn

(0,p)

Here we denote by (gtx)i the i-th coodinate of the vector gtx P M é Rn .Now, by

definition g0x = x, hence the submatrix formed by the n bottom and right rows and
columns is the unit matrix, i.e.,

J(+g ) = 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

1 0 ... 0
* 1 ... 0
... ... ... ...
* 0 ... 1

is invertible.
Proof of 2. It will be sufficient to show that

(d(t,x)
+g )(∂∂t) = +X(+g (t,x))

The vector on the left hand side is the product of the Jacobian matrix of +g   at (t, x) with
the first standard unit vector e1 = ∂∂t , i.e. it is the first column of the Jacobian matrix,
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(d(t,x)
+g )(∂∂t) = 

⎝⎜
⎜
⎜
⎜
⎜⎛

⎠⎟
⎟
⎟
⎟
⎟⎞

1

 
∂(gtx)1
∂t
...

 
∂(gtx)n
∂t

 = 
⎝
⎜
⎜
⎜
⎜
⎛

⎠
⎟
⎟
⎟
⎟
⎞1

 ∂(gtx)
dt

 = 
⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞1

X(gtx)
 = +X(+g (t,x))

QED.

2.1.10 The local phase flow theorem implies the rectification for vector fields
Let

X: M H TM, u ! Xu
be a Cs vector field with s ≥ 1 on the smooth manifold M, which is none-singular at the
point p P M, i.e.,

Xp 0 0.

We have to prove that X is rectifiable at p (by a Cs chart of M).

Since the assertion to be proved is local in nature, we may assume that M is an open
subset in euclidian space, say

M é Rn open.

Moreover, using a translation of the euclidian space, we may assume that the given point
p is the origin,

p = o = 
⎝⎜
⎜
⎜
⎜⎛

⎠⎟
⎟
⎟
⎟⎞0

...
0

 P M é Rn.

By assumption, the vector Xp is none-zero. Using a linear (invertible) transformation35,
we may assume the Xp is the last standard unit vector,

Xp = en = 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

0
...
0
1

 P Tp(M) = Tp( Rn) = Rn

Consider the Cs map
g: I ; U H M, (t, x) ! gtx,

of the local phase flow theorem, where U is a neighbourhood of p P M,
p P U é M é Rn.

and I é R is an open intervall containing 0,
0 P I é R.

                                                
35 For example, a  rotation followed by a multiplication with a none-zero constant.
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In particular, the map I H M, t ! gtx0 , is a solution of the initial value problem
dx
dt  = X(x), x(0) = x0 . (1)

for every x0 P U.

Identify Rn-1 with the hyperplane in Rn which is orthogonal to en ,

Rn-1 é Rn , 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

u1
...

un-1

 ! 

⎝⎜
⎜
⎜
⎜⎛

⎠⎟
⎟
⎟
⎟⎞

u1
...

un-1
0

,

an write
U’ := U , Rn-1.

It will be sufficient to prove that restriction of g to I;U’, i.e., the map
+g :I;U’ H M, (t, x) ! gtx,

satisfies the following conditions.

1. +g  is a local diffeomorphism at (0, p) and maps (0, p) to p (hence its inverse can be
used as a chart of M in a neighbourhood of p).

2. The first standard vector field e1 on

I;U’ é R;Rn-1 = Rn
corresponds to the vector field X on U (in a neighbourhood of p).

Proof of 1. Obviously
+g (0,p) = g0p = p.

By the inverse function theorem it will be sufficient to show that the Jacobian matrix

J(+g )

of +g  at (0, p) is invertible. By definition

J(+g ) = 

⎝⎜
⎜
⎜
⎜
⎜⎛

⎠⎟
⎟
⎟
⎟
⎟⎞∂(gtx)1

∂t  
∂(gtx)1
∂x1

...  
∂(gtx)1
∂xn-1

... ... ... ...

 
∂(gtx)n
∂t  

∂(gtx)n
∂x1

...  
∂(gtx)n
∂xn-1

 (0, p).

Since t ! gtx0 is the solution of the initial value problem (1), the first colum of this

matrix is equal to Xp = en. Since x ! g0x is the identity map,

∂(g0x)i
∂xj

 = δij
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i.e., the submatrix of J(+g ) formed by the first n-1 rows and last n-1 columns, is the
identity matrix. Therefore,

J(+g ) = 

⎝⎜
⎜
⎜
⎜⎛

⎠⎟
⎟
⎟
⎟⎞

0 1 0 ... 0
0 0 1 ... 0
... ... ... ... ...
0 0 0 ... 1
1 * * ... *

is invertible.

Proof of 2. It will be sufficient to show that

(d(t,x)
+g )(∂∂t) = X+g (t,x)

for every t P I and every x P U’. The vector on the left hand side is just the first column

of the Jacobian matrix of +g  at 
⎝⎜
⎜⎛

⎠⎟
⎟⎞t

x , which is the value of the vector field X at +g (t, x).

QED.

Remark
 The proofs of the theorems formulated in this section is now reduced to the proof of the
theorems about local existence and uniquenes and about the depency upon the initial
values (theorems 1.5.5. and 1.5.6).

2.1.11 Rectification examples

A. Rectification of direction fields
Consider the vector field

X: R2 H TR2
with

X(t, x) = 
⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞1

cos2 x
 = ∂∂t + cos2(x): ∂∂x

This is the direction field of the differential equation
dx
dt  = cos2 x

The solution of the initial value problem x(0) = x0 is given by

⌡⌠
x0

x
 dx
cos2 x

 = ⌡⌠
0

t
  dt

[tan(x)]
x
x0

 = t

tan x - tan x0 = t
tan x = tan x0 + t
x = arc tan (t + tan x0)

Thus the phase flow is the map
R;R H R, (t, x) ! gtx = arc tan (t + tan x)

Denote the new rectifying coordinates by t’ and x’. Then the rectifying transformation is

R2 H R2, 
⎝⎜
⎜⎛

⎠⎟
⎟⎞t’

x’  ! 
⎝⎜
⎜⎛

⎠⎟
⎟⎞t’

arc tan(t’ + tan x’)



53

i.e.

t = t’
x = arc tan(t’ + tan x’)

To get the rectifying coordinate system, we have to inverte this map:
tan x = t’ + tan x’
tan x’ = tan x - t’
x’ = arc tan (tan x - t’)

Thus, the rectifying chart is given by.

t’ = t
x’ = arc tan(tan(x) - t)

i.e. it is the map

R2 H R2, 
⎝⎜
⎜⎛

⎠⎟
⎟⎞t

x  ! 
⎝⎜
⎜⎛

⎠⎟
⎟⎞t

arc tan( tan(x) - t)

Let check whether this chart is really rectifying. From the above coordinate changes we
get (by the chain rule)

∂
∂t’ = ∂t

∂t’:
∂
∂t + ∂x

∂t’:
∂
∂x

=∂∂t + ∂x
∂t’:

∂
∂x

Note that
arc tan tan x = x
d arc tan

dx  (tan x) : 1
cos2x

 = 1

d arc tan
dx  (tan x) = cos2 x =36 1

1+tan2x
d arc tan(x)

dx = 1
1+x2

∂x
∂t’ = 1

1+(t’+tan x’)2

= 1
1+(tan x)2

= cos2 x
Therefore

∂
∂t’ = ∂∂t + cos2 x: ∂∂x = X(t,x)

The given vector field X , expressen in the new coordinates t’, x’, is just the constant
vector field in the direction of the t’-axis.

B. Rectification of none-singular vector fields

Problem: find a recifying coordinate system at the origin 
⎝⎜
⎜⎛

⎠⎟
⎟⎞0

0  for the vector field

                                                
36 tan2x:cos2x = sin2x = 1 - cos2x, hence (tan2x + 1):cos2x = 1.
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X: R2 H TR2, 
⎝⎜
⎜⎛

⎠⎟
⎟⎞x

y  ! X
⎝⎜
⎜⎛

⎠⎟
⎟⎞x

y  := cos2(x): ∂∂x + cos2(y): ∂∂y

The vector field is none-singular at the origin (and of class C1),

X
⎝⎜
⎜⎛

⎠⎟
⎟⎞0

0  = ∂∂x + ∂∂y  = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞1

1  0 0,

hence a rectifying coordinate systeam exists.
The differential equation defined by the vector field is the following system.

dx
dt = cos2(x)
dy
dt = cos2(y)

Its general solution is given by

⌡⌠
 

 
 dx
cos2x

 = ⌡⌠
 

 
 dt

⌡⌠
 

 
 dy
cos2y

 = ⌡⌠
 

 
 dt

i.e.
tan x = t + const
tan y = t + const

i.e.
x = arc tan (t + C1) + π,m , m P Z

y = arc tan (t + C2) + πn, n P Z
To calculate the phase flow, we consider the initial value problem

x(0) = x0 , y(0) = y0
For the constants C1 and C2 we get

x0 = arc tan C1 + π,m
y0 = arc tan C2+ π,n

i.e.,
C1 = tan x0
C2 = tan y0

Hence the phase flow is given by

gt
⎝⎜
⎜⎛

⎠⎟
⎟⎞x

y = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞arc tan(t + tan(x))+πm(x)

arc tan(t + tan(y))+πn(y)

where the integers
m = m(x)
n = n(y)

are such that
x = arc tan(tan(x)) + πm
y = arc tan(tan(y)) + πn

The above formula assumes that x, and y are in the domain of definition of ‘tan’, i.e.
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x 0 (2k+1):π2
y 0 (2k+1):π2

If x is an odd multiple of π2 we define the expression
arc tan( t + tan(x)) + πm(x) := x

to be x independently upon the value of t. An similarly
arc tan( t + tan(y)) + πm(y) := y

Then the above formula gives the phase flow for every point in R2.

g: R;R2 H R2, (t, 
⎝⎜
⎜⎛

⎠⎟
⎟⎞x

y ) ! gt
⎝⎜
⎜⎛

⎠⎟
⎟⎞x

y .

To get the rectifying transformation at p := 
⎝⎜
⎜⎛

⎠⎟
⎟⎞0

0 , we have to restrict g to a subspace

R;H é R;R2,

where H é R2 is a hyperplane through p, which is transversal37 to Xp = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞1

1 .

Xp
= ( )1

1

x

y

( )-1
1

Choose, for example, the straight line through the origine in the direction of 
⎝⎜
⎜⎛

⎠⎟
⎟⎞-1

1 . Let s

denote the coordinate on this line. Then the rectifying transformation is given by

ψ:R2 H R2 , 
⎝⎜
⎜⎛

⎠⎟
⎟⎞t

s  ! gt(s: 
⎝⎜
⎜⎛

⎠⎟
⎟⎞-1

1 ) = gt
⎝⎜
⎜⎛

⎠⎟
⎟⎞-s

s ,

i.e.

ψ
⎝⎜
⎜⎛

⎠⎟
⎟⎞t

s = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞arc tan(t - tan(s))+πm(-s)

arc tan(t + tan(s))+πn(s)

i.e.

x = arc tan(t - tan(s)) + πm(-s)
y = arc tan(t + tan(s)) + πn(s)

                                                
37 i.e. the straigh line through p in the direction von X

p
 is not contained in H.
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The coordinate system, we are looking for, is locally at the origine the inverse
ϕ = ψ-1

of ψ. Let calculate this inverse.
tan(x) = t - tan(s)
tan(y) = t + tan(s)
tan(y) + tan(x) = 2t
tan(y) - tan(x) = tan(s)

t = 12 (tan(y) + tan(x))

s = arc tan(tan(y) - tan(x)) + πl(s)
where the integer l is such that s - πl(s) is in the domain of definition of the arc tan
function. Near the origin we can take ls) = 0. Thus our chart is given  by

t = 12 (tan(y) + tan(x))
s = arc tan(tan(y) - tan(x))

ore

ϕ
⎝⎜
⎜⎛

⎠⎟
⎟⎞x

y = 
⎝⎜
⎜
⎜
⎜⎛

⎠⎟
⎟
⎟
⎟⎞1

2(tan(y) + tan(x))

arc tan(tan(y) - tan(x))

Let’s check whether we got what we want:

∂
∂t = ∂x

∂t  : ∂∂x + ∂y
∂t  : ∂∂y

∂x
∂t = ∂∂t ( arc tan (t-tan(s))

= 1
1 + (t - tan(s))2

= 1
1 + tan2x

= cos2x
∂y
∂t = ∂∂t (arc tan(t + tan(s)))

= 1
1 + (t + tan(s))2

= 1
1 + tan2y

= cos2y
Together we get

∂
∂t = cos2(x): ∂∂x + cos2(y): ∂∂y = X

⎝⎜
⎜⎛

⎠⎟
⎟⎞x

y .

In the coordinate system with the new coordinates s,t, the given vector field X is just the
standard vector field ∂∂t  in the direction of the t-axis (near the origin).
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We conclude this section with a slightly different version of the local phase flow
theorem: the small interval of 0 in the above formulation can be replaced with a small
interval containing a precribed value t0 P R and the vector field can be  replaced with a
time dependent vector field. The price for this generalization: we have to skip the local 1-
parameter group property.

2.1.12 Local phase flow theorem II
Let I = (a,b) é R be an interval and

X: I ; M H TM
be a time dependent Cs vector field38 with s ≥ 1 on a smooth manifold M. Further let

t0 P R and p0 P M.
Then there are an open interval containing 0 and a neighbourhood containing p0, say

t0 P  I = (t0 - ε, t0 + ε) and p0 P U é M,

and a Cs map
g: I ; U H M, (t, x) ! gtx,

such that the map
I H M, t ! gtx0

is a solution of the initial value problem
dx
dt  = X(t, x), x(t0) = x0 ,

for every x0 P U.
Proof. We pass to the extended phase space and replace the given differential equation
by the equivalent equation

d
dt ⎝⎜
⎜⎛

⎠⎟
⎟⎞s

x  = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞1

X(s,x)
i.e.,

ds
dt = 1 and dx

dt  = X(s, x).
This way we may assume the differential equation is autonomous.:

dx
dt  = X(x),

with a Cs vector field
X: M H TM

which does not depend upon the time. From the local phase flow theorem 2.1.8 we know
that there is a Cs map

+g : +I  ; U H M, (t, x) ! +g tx,

where +I  = (-ε , +ε) is an open interval containing 0 and U é M is an open subset
containing p0 such that

+I  H M, t ! +g tx0 ,

                                                
38 i.e. the locally given coordinate functions of X are Cs functions of tPI and xPM.
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is a solution of the intial value problem
dx
dt  = X(x), x(0) = x0.

Let
I := (t0 - ε, t0 + ε)

and consider the Cs map

g:I ; U H M, (t, x) ! gtx := +g
t-t0x.

For every x0 P U one has

g
t0x0 = +g 0x0 = x0.

Moreover,
d
dt (g

tx) = ddt 
+g

t-t0x = X(+g
t-t0x) = X(gtx),

i.e.
I H M, t ! gtx0,

is a solution of the initial  value problem x(t0) = x0.
QED.

2.2 Extension theorems
We have yet to prove theorems 2.1.5 and 2.1.6 (existence and uniquenes and
dependency upon initial values). But before giving these proofs, we want to turn to the
question how to derive from the above theorems assertions of none-local nature.

Up to now all we know is that the solutions exist some small intervals, and we do not
know how small the intervalls must be chosen. The aim of this section is to fill this gap
(at least to some extent). The proofs of this section are based on the theorems
formulated in 2.1.

To illustrate what we have in mind, we start with an example.

2.2.1 Linear systems

A. Existence and uniqueness for homogeneous systems
Let I = (a, b) é R be an open intervall,

A: I H Rn;n, t ! A(t),
a Cs map with s ≥ 1 associating with each t P I an n;n-matrix A(t) of real numbers.
Consider the differential equation

dx
dt  = A(t):x

on the manifold M = Rn. Then there is a Cs map
g: I;I;M H M, (t, t0 , x0) ! g(t, t0 , x0),

such that
I H M, t ! g(t, t0 , x0),

is a solution of the intial value problem x(t0) = x0. The solution of the initial value
problem
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dx
dt  = A(t):x, x(t0) = x0 ,

is unique (for every t0 P I and every x 0 P Rn) in the sence that any two solutions
coincide on the intersection of their domains of definition.

Remark
Note that this assertion is a global theorem. It does not claim that there is an interval,
where a solution is defined without saying how large or small this intervall is. Quite the
contrary, is asserts much more: it gives explicitly the domain of definition of all
solutions.
Proof. Uniquess. Let x = x(t) and y = y(t) be two solutions of the intitial value problem

dx
dt  = A(t):x, x(t0) = x0 ,

(defined on certain intervalls containing t0). We have to prove, they are equal on the
intersection of their domains of definition. Replacing these domains by their intersecion,
we may assume their domains of defintion are equal, say equal to an intervall J é R
containing t0 ,

x: J H Rn, y: J H Rn.
By the local uniqueness theorem 2.1.5 the solutions must be equal on a small intervall
containing t0, say

x|(t0 - ε, t0 + ε) = y|(t0 - ε, t0 + ε) for some ε > 0.

Assume there is some a P J such that
x(a) 0 y(a).

Then either
a ≤ t0 - ε or t0 + ε ≤ a.

In what follows we will assume
t0 + ε ≤ a

(the case a ≤ t0 - ε is treated in the same way). Consider the set of t to the right of t0
where x and y are different and take the largest lower bound for this set, say

b := inf {t P J | t0 + ε ≤ t, x(t) 0 y(t)}.
Since the set in consideration contains a (hence is none-empty), we get

t0 + ε ≤ b
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γ

t

t0 b

t   +
0 ε

n

By the choise of b we have
x(t) = y(t) for every t P (t0 - ε, b).

Since x and y are continuous,
x(b) = y(b).

By the local uniqueness theorem 2.1.5 the two solutions must coincide on the small
intervall containing b, i.e. there is some real δ > 0 such that

x(t) = y(t) for every t P (t0 - ε, b + δ).
However, this contradicts the choise of b as a largest lower bound. This contradiction
shows that there is now a P J to the right of t0 where x and y are different. The case that
a is a value to the left of t0 is treated in the same way.

Existence. The idea of the proof is to glue together the local solutions and to use for this
the fact that the unit sphere in n-space around the origin is compact. Denote by

S := Sn-1 é Rn
this unit sphere, i.e.,

S := {x = 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

x1
...
xn

 P Rn | x2
1 + ... + x2

n = 1}.
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This set is bounded and closed, hence it is compact. For every t0 P I and every x0 P S
consider the map

gt0,x0
: It0,x0

; Ut0,x0
 H M, (t, x) ! g t    

t0,x0
x,

where It0,x0
 é R is an interval containg t0 and Ut0,x0

 é M is an open set containing

x0 such that

It0,x0
 H M, t ! g t    

t0,x0
y , (1)

is a solution of the initial value problem x(t0) = y for every y P Ut0,x0
.

If the point x0 varies on S, the open sets Ut0,x0
 cover the unit sphere S. Since S is

compact, a finite number of these open sets do, say
S é Ut0,x1

 Õ ... Õ Ut0,xn
 , x1 , ... , xn P S.

Consiter the intersection of time intervals associated to the points x1 , ... , xn , say

It0
 := It0,x1

 , ... , It0,xn
.

Then for x0 P {x1 , ... , xn} the maps (1) can be  restricted to It0
 and give solutions of

the initial value problem x(t0) = y. From the uniqueness assertion proved above we see
that

g t    
t0,xi

y = g t    
t0,xj

y for t P It0
 y P Ut0,xi

 , Ut0,xj
(solutions of the same initial value problem coincide on the intersection of their domains
of definition). With other words, any two of the maps

gt0,xi
: It0

; Ut0,xi
 H M, (t, x) ! g t    

t0,xi
x,

coincide on the intersections of their domains of defintion. Hence they glue together to a
Cs map

+g t0
: It0

 ; S H M, (t, x) ! +g t    
t0

x,

such that

It0
 H M, t ! +g t    

t0
y,

is a solution of the intial value problem x(t0) = y for every y P S. To get rid of the
restriction to the unit sphere, consider the map

gt0
: It0

 ; M H M, (t, x) ! gt    
t0

x,

with
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gt    
t0

x := 
⎩⎪
⎨
⎪⎧ 0 if x = 0

|x|:gt  
t0

( 1
|x|:x) otherwise

Here

|x| := x2
1 + ... + x2

n  (if x = 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

x1
...
xn

)

denotes the euclician norm of the vector x. Note that

g
t0
t0

x = |x|: +g
t0
t0

( 1
|x| :x) = |x|: 1

|x| :x = x

Moreover,
d
dt (g

t    
t0

x) = ddt (|x|: +g t    
t0

( 1
|x| :x))

= |x|:d
dt 

+g t    
t0

( 1
|x| :x))

= |x|: A(t): ( 1
|x| :x)

= A(t):x
We see that the map

It0
 H M, t ! gt    

t0
y, (2)

is a solution of the intial value problem x(t0) = y (for every y P M). To prove the claim
of the theorem, we have to show that in the definition of the map

gt0
: It0

 ; M H M, (t, x) ! gt    
t0

x, (3)

the interval It0
 é I can be replaced with I. To see this consider all maps of type (3) such

that (2) gives a solution of the initial value problem x(t0) = y (with all possible intervalls
It0

  - we know at least one such map exists). From the uniqueness assertion proved

above we know that two such maps coicide on the intersection of their domains of
definition. Hence these maps glue together to a map

gt0
: Imax

t0
 ; M H M, (t, x) ! gt    

t0
x, (4)

where the interval Imax
t0

 is the union of all possible intervals It0
, i.e. it is the largest

possible one. It will be sufficient to show
Imax

t0
 = I.

Assume the converse, i.e.
Imax

t0
 = (a’, b’) Ù I = (a, b)

is strictly contained in I, i.e.
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a < a’ or b’ < b.
In case

b’ < b
one has b’ P I and by the above there is a local phase flow map

gb’: I
max
b’  ; M H M, (t, x) ! gt

b’x,(4)

where Imax
b’  é R is a open interval containing b’. In particular it has a non-empty

intersection with Imax
t0

 ,

 d:= Imax
t0

 , Imax
b’  0 $.

For every (s, y) P d;M the two integral curves through (s,y) defined by the two local
phase flows gt0

 and gb’ must be equal (the uniqueness assertion proved above), i.e.,

{(t , gt    
t0

y) | t P d } = {(t , gt
b’y) | t P d },

i.e.
(t , gt    

t0
y) = (t , gt

b’y) for t P d

i.e.
gt    

t0
y = gt

b’y for t P d .

We see that gt0
 and gb’ coincide a every point where both maps are defined. Hence they

clue together to give a local phase flow map
(Imax

t0
 Õ Imax

b’ ) ; M H M.

But this contradicts the maximality of the interval Imax
t0

. This contradiction shows

b’ = b.

The case a < a’ is treated in the same way.

QED.

B. The structure of the solution set
As above let I = (a, b) é R be an open intervall,

A: I H Rn;n, t ! A(t),
a Cs map with s ≥ 1 associating with each t P I an n;n-matrix A(t) of real numbers.
Further let

S = S(I, A)
denote the set of solutions

x: I H Rn
(defined on I) of the differential equation
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dx
dt  = A(t):x

Then:
(i) S is a real vector space of dimension n.
(ii) For every t0 P I the map

ϕ:S H Rn, x ! x(t0),
is an isomorphisms of vector spaces.

(iii) For every t0 P I the solutions x1, ... , xm P S are linear independent if and only if

the vectors x1(t0), ... , xm(t0) P Rn are independent.

Proof. S is a vector space. Let x, y P S be two solutions and c, dPR be constants. We
have to prove that

c:x + d:y P S.
One has

d
dt (c:x(t) + d:y(t)) = c: ddtx(t) + d: ddty(t)

= c: A(t):x(t) + d: A(t):y(t) (for, x,, y P S)
= A(t)( c:x(t) + d:y(t)).

We have proved, c:x + d:y is a solution. To complete the proof of the theorem, it is
sufficient to prove assertion (ii).

The map ϕ of assertion (ii) is linear. For x, y P S and c, dPR one has
ϕ(c:x + d:y) = (c:x + d:y)(t0)

= c:x(t0) + d:y(t0)

= c:ϕ(x) + d:ϕ(y).
The map ϕ of assertion (ii) is surjectiv. This follows from the existence assertion of the
previous theorem.

The map ϕ of assertion (ii) is injectiv. This follows from the uniqueness assertion of the
previous theorem.

QED.

C. Fundamental systems
As above let I = (a, b) é R be an open intervall,

A: I H Rn;n, t ! A(t),
a Cs map with s ≥ 1 associating with each t P I an n;n-matrix A(t) of real numbers. A
fundamental system of the differential equation

dx
dt  = A(t):x (1)

is a matrix
X(t) = (x1(t), ... , xn(t))

such that the columns x1, ... , xn form a basis of the space S = S(I, A) of solutions of the
differential equation (1).
Properties of fundamental systems
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(i) d
dt X(t) = A(t):X(t).

(ii) For every invertible matrix C P Rn;n, the production X(t):C is again a
fundamental system.

(iii) Every fundamental system of (1) is obtained as in (ii) from a single one.
Proof. Assertion (i). One has

d
dt X(t) = ddt (x1(t), ... , xn(t))

= (d
dtx1(t), ... , ddtxn(t))

= (A(t):x1(t), ... , A(t):xn(t))

= A(t):(x1(t), ... , xn(t))

= A(t):X(t).
Assertion (ii). Let

Y(t) := X(t):C
and denote by yi(t) the i-th column of Y(t). Further let cij the entry of C in Position (i, j).
Then

(x1(t), ... , xn(t)) = (x1(t), ... , xn(t)):C
hence

yi(t) = ∑
j=1

n xj(t):cji P S

In a similar way one sees from Y(t):C-1 = X(t) that the xi’s can be written as a linear
combination of the yi’s. Since the former are a basis of S, the same is true for the latter.
Therefore Y(t) = (y1(t), ... , yn(t)) is a fundamental system.
Assertion (iii). Let be

Y(t) = (y1(t), ... , yn(t))
be a matrix whose columns are in S. Since X(t) = (x1(t), ... , xn(t)) is a fundamental
system, the yi’s are linear combination of the xi’s, say

yi(t) = ∑
j=1

n xj(t):cji P S

with uniquely determined cji P R.
But than,

Y(t) = X(t):C

where C is the matrix whose entry at position (i, j) is C. If, moreover, Y(t) is a
fundamental system, then the same reasing as above gives a matrix D P Rn;n with

X(t) = Y(t):D.
In particular

X(t) = X(t)CD.
Since the colums of X(t) are linear independent (for evey t P I), the matrix X(t) is
invertible, i.e. CD is the unit matrix and



66

1 = det(CD) = det C : det D.

Therefore, det (C) is none-zero and C is invertible.

QED.

D. Wronski determinants
As above let I = (a, b) é R be an open intervall,

A: I H Rn;n, t ! A(t),
a Cs map with s ≥ 1 associating with each t P I an n;n-matrix A(t) of real numbers.
Moreover, let

x1, ... , xn : I H Rn (1)
be solutions of the differential equation

dx
dt  = A(t):x (2)

The Wronski determinant of the solutions x1, ... , xn is by definition the determinant
W(x1.---.xn) := det (x1.---.xn)

of the matrix, whose columns are the solutions (1).

Properties of Wronski determinants

(i) For x1, ... , xn P S(I, A) the following assertions are equivalent.
1. X(t) = (x1(t), ... , xn(t)) is a fundamental system.
2. x1, ... , xn are linear independent elements of S = S(I,A).

3. W(x1, ... , xn)(t0) 0 det X(t0) = 0 for every t0 P I.

4. W(x1, ... , xn)(t0) 0 det X(t0) = 0 for a single t0 P I
(ii) Every Wronski determinant W(t) of the system (1) satisfies

d
dt W(t) = tr(A(t)):W(t)

where tr(M) denotes the trace of the square matrix M, i.e. the sum of the entries on
the main diagonal.

Proof. Assertion (i). By the definition of the notion of fundamental system, the first two
assertions are equivalent. Since the map

S H Rn, x ! x(t0),
is an isomorphism, one has

x1, ... , xn linear independent

$ x1(t0), ... , xn(t0) linear independent

$ det X(t0) 0 0
This shows that 2. is equivalent ot 3. and to 4.
Assertion (ii). Fix some

t0 P I
and consider the fundamental system
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Y(t) = (y1(t), ... , yn(t))
such that

Y(t0) = Id.
is the unit matrix Id. Then

d
dt Y(t) = A(t)Y(t) (3)

and
d
dt det Y(t) = ∑

i=1

n  det (y1(t), ... , yi-1(t), ddt yi(t) ,yi+1(t), ... , yn(t))

= ∑
i=1

n  det (y1(t), ... , yi-1(t), A(t)yi(t) ,yi+1(t), ... , yn(t))

In particular, for t = t0 we obtain

d
dt det Y(t)|t=t0

 = ∑
i=1

n  det (e1, ... , ei-1(t), A(t0)ei(t) ,ei+1(t), ... , en(t))

= tr(A(t0))
i.e.

d
dt det Y(t)|t=t0

 = tr(A(t0)) (4)

Now let X(t) be an arbitrary square matrix whose columns are solution of the system (2)
and write

X(t) = Y(t):C with C P Rn;n
W(t) := det X(t).

Then
X(t0) = Y(t0):C = Id:C = C

hence
X(t) = Y(t):X(t0)

and
W(t) = det Y(t):W(t0).

Therefore
d
dt W(t) = ddt Y(t) : W(t0)

From (4) we see that
d
dt W(t)| t=t0

= ddt Y(t) t=t0
 : W(t0)

= tr(A(t0)):W(t0)
i.e.

d
dt W(t)| t=t0

= tr(A(t0)):W(t0).

The last identity is true for evey t0, i.e., assertion (ii) is true.
QED.
Remark
If A P R is a real constant, the differential equation

dx
dt  = A:x
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for functions x = x(t) with values in the 1-dimensional euclidian space allows to separate
variables, and we know that the solutions are given by

⌡⌠
 
 dx
x  = ⌡⌠

 
 Adt

i.e.
x(t) = C:eA:t with C P R.

It turns out that the same method of solution works is a much more general context.
Recall that the exponential function can be written as a power series

ex = ∑
i=0

§  1i! x
i

which converges (absolutely) for every x P R.

E. The exponential function of a square matrix
For every n:n matrix A with real or complex entries one writes

eA := ∑
i=0

§  1i! A
i

Example 1.

For A = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞a 0

0 b  one has

eA = ∑
i=0

§  1i! ⎝⎜
⎜⎛

⎠⎟
⎟⎞a 0

0 b
i

= ∑
i=0

§  
⎝
⎜
⎜
⎜
⎜
⎛

⎠
⎟
⎟
⎟
⎟
⎞1

i!:a
i 0

0 1
i!:b

i

= 

⎝⎜
⎜
⎜
⎜⎛

⎠⎟
⎟
⎟
⎟⎞∑

i=0

§ 1i!:a
i 0

0 ∑
i=0

§ 1i!:b
i

= 
⎝⎜
⎜
⎜
⎜⎛

⎠⎟
⎟
⎟
⎟⎞ea 0

0 eb
Example 2.
For

A := 

⎝
⎜
⎜
⎜⎛

⎠
⎟
⎟
⎟⎞

2
3  0 -2

3

0 -2
3

1
3

1
3

-2
3  0

By direct calculation one sees
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A2 = 

⎝
⎜
⎜
⎜⎛

⎠
⎟
⎟
⎟⎞

2
9

4
9

-4
9

1
9

2
9

-2
9

2
9

4
9

-4
9

 ,    A3 = 
⎝⎜
⎜
⎜
⎜⎛

⎠⎟
⎟
⎟
⎟⎞0 0 0

0 0 0
0 0 0

hence
et:A = Id + t:A + 12:t2A2

hence
d
dt e

t:A = A + t:A2

= A:(Id + t:A)
= A:(Id + t: A + 12:t2 A 2) (since X3 = 0)

= A: et:A,
Thus

x(t) := et:A
is a solution of the differential equation

dx
dt  = A:x.

Properties of the exponential function

(i) eX := ∑
i=0

§  1i! X
i converges absolutely for every X P Cn;n.39

(ii) eX+Y = eX:eY for every two commuting n;n matrices X and Y.40

(iii) eX:Y:X-1
 = X:eY:X-1 for arbitrary square matrixes X and Y with X invertible.

(iii) e(s+t):X = es:X:et:X for arbitrary square matrices X and arbitrary complex
number s and t.

(iv) d
dt (e

t:X) = X:et:X for arbitrary square matrices X and arbitrary real variables t.j

Proof. The proofs are essentially the same like for the usual exponential function. As for
(iii) note that

(X:Y:X-1)i = (X:Y:X-1):(X:Y:X-1):...:(X:Y:X-1)
= X:Yi:X-1

hence

∑
i=0

n 1i!:(X:Y:X-1)i = X:( ∑
i=0

n 1i!:Y
i):X-1.

                                                
39 with respect to the norm

||X|| = ∑
i,j=1

n
 x2

ij

where x
ij

 denotes the entry of the matrix X at position (i,j).
40 We say that X and Y commute if X:Y = Y:X. Without this assumption the above identity does not
hold in general.
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Passing to the limit n H § gives assertion (iii).
QED.

F. Linear homogeneours systems with constant coefficients
Definition. A linear homogeneous differential equation with constant coefficients is a
differential equation of type

dx
dt  = X:x,

where
X P Cn;n

is a matrix whose entries are constant (i.e. real or complex numbers).

The most important fact for the solution of such equations is the following lemma.

Lemma.
Let A, B, C be n;n matrices with C invertible and

B = C:A:C-1
Then for

x: I H Rn
the following assertions are equivalent.
(i) x is a solution of dx

dt  = A:x.

(ii) y(t) = C:x(t) is a solution of dy
dt  = B:y.

Proof. Consider the change of coordinates defined by the invertible matrix C,
y = Cx.

Then
x = C-1y,

and substituting into the differential equation
dx
dt  = A:x.

gives
d
dt (C

-1y) = A: C-1y

C-1d
dt (y) = A: C-1y

dy
dt  = (CAC-1):y.
dy
dt  = B:y.

This proves (i) ⇒ (ii). The converse implication follows by symmetry.
QED.
Example.

Consider the system of differential equations
dx1
dt = x1 + 2x2

dx2
dt = 2x1 + x2

i.e.
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dx
dt = A:x with A := 

⎝⎜
⎜⎛

⎠⎟
⎟⎞1 2

2 1 .

Since A is symmetric, the matrix can be diagonalized. From

 det(A - T:Id) = det 
⎝⎜
⎜⎛

⎠⎟
⎟⎞1 - T 2

2 1 - T  = (1 - T)2 - 4 = T2 - 2T - 3 = (T + 1)(T - 3).

we see that A has eigen values 3 and -1.
The eigen vectors for the eigen value 3 are given by

⎝⎜
⎜⎛

⎠⎟
⎟⎞-2 2

2 -2
⎝⎜
⎜
⎜
⎜⎛

⎠⎟
⎟
⎟
⎟⎞x1

x2
 = 0.

The eigen space is generated by

v1 = 1
2⎝⎜
⎜⎛

⎠⎟
⎟⎞1

1
The eigen vectors for the eigen value -1 are given by

⎝⎜
⎜⎛

⎠⎟
⎟⎞2 2

2 2
⎝⎜
⎜
⎜
⎜⎛

⎠⎟
⎟
⎟
⎟⎞x1

x2
 = 0.

The eigen space is generated by

v2 = 1
2⎝⎜
⎜⎛

⎠⎟
⎟⎞1

-1 .

Using v1, v2 as a new coordinate sysstem,

v1 = 1
2
:e1 + 1

2
 : e2 (1)

v2 = 1
2
:e1 - 1

2
 : e2

the corresponding coordinate transformation is given by
x1e1 + x2e2 = y1v1 + y2v2,

i.e.,
x1 = 1

2
 v1 + 1

2
 v2

x2 = 1
2
 v1 - 1

2
 v2

i.e.

⎝⎜
⎜
⎜
⎜⎛

⎠⎟
⎟
⎟
⎟⎞x1

x2
= 1

2⎝⎜
⎜⎛

⎠⎟
⎟⎞1 1

1 -1
⎝⎜
⎜
⎜
⎜⎛

⎠⎟
⎟
⎟
⎟⎞y1

y2
i.e.,

x = C:y
with

C = 1
2
:
⎝⎜
⎜⎛

⎠⎟
⎟⎞1 1

1 -1

Substitution of x = Cy into the given differential equation dx
dt = A:x yields

d
dt (Cy) = A:Cy

C:dy
dt = (AC)y

dy
dt = (C-1AC)y
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dy
dt = B:y

with

B = C-1AC = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞3 0

0 -1
We are reduced to solve the equation

dy1
dt = 3y1

dy2
dt = -y2

The general solution of this system is
y1(t) = C1:e3t

y2(t) = C2:e-t

A fundamental system for this equation is, for example,

Y(t) = 
⎝⎜
⎜
⎜
⎜⎛

⎠⎟
⎟
⎟
⎟⎞e3t 0

0 e-t
 (the determinant is none-zero). The corresponding fundamental system of the original
equation is (as seen from the above relation between x and y).

X(t) = C:Y(t) = 1
2
:
⎝⎜
⎜⎛

⎠⎟
⎟⎞1 1

1 -1
⎝⎜
⎜
⎜
⎜⎛

⎠⎟
⎟
⎟
⎟⎞e3t 0

0 e-t  = 1
2
 
⎝⎜
⎜
⎜
⎜⎛

⎠⎟
⎟
⎟
⎟⎞e3t e-1

e3t -e-1
Lets check wether the columns are solutions:

dX(t)
dt = 1

2
 
⎝⎜
⎜
⎜
⎜⎛

⎠⎟
⎟
⎟
⎟⎞3e3t -e-1

3e3t e-1

A:X(t) = 1
2⎝⎜
⎜⎛

⎠⎟
⎟⎞1 2

2 1
⎝⎜
⎜
⎜
⎜⎛

⎠⎟
⎟
⎟
⎟⎞e3t e-1

e3t -e-1  = 1
2
 
⎝⎜
⎜
⎜
⎜⎛

⎠⎟
⎟
⎟
⎟⎞3e3t -e-1

3e3t e-1  = dX(t)
dt

Note that X(t) is a fundamental system since

det X(0) = det 1
2
 
⎝⎜
⎜⎛

⎠⎟
⎟⎞1 1

1 -1  = 2:(1:(-1) - 1:1) = - 4 0 0.

Remarks
(i) To solve a differential equation of the type

dx
dt  = A:x (1)

one should try to diagonalize the matrix A and solve the system for the resulting
diagonal matrix. The solutions of the original equation (1) are obtained from those
of the new system by change of coordinates.

(ii) Unfortunately, there are matrices which cannot be diagonalized. The best one can
get by conjugation is the Jordan normal form of the matrix X, i.e. one of the type

C:A:C-1 = 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

J1 0 ... 0

0 J2 ... 0

... ... ... ..
0 0 ... Jl
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where each Ji is a Jordan block, i.e.

Ji = 

⎝
⎜
⎜
⎜
⎜
⎛

⎠
⎟
⎟
⎟
⎟
⎞λi 1 0 ... 0 0

0 λi 1 ... 0 0

... ... ... ... ... ,,,
0 0 0 ... λi 1

0 0 0 ... 0 λi

 , λi P C.

This reduces the solution of (1) to the case that A is a Jorden block, say

A = A(λ) = 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

λ 1 0 ... 0 0
0 λ 1 ... 0 0
... ... ... ... ... ,,,
0 0 0 ... λ 1
0 0 0 ... 0 λ

In this case one has

et:A = 

⎝
⎜
⎜
⎜
⎜
⎜
⎛

⎠
⎟
⎟
⎟
⎟
⎟
⎞eλt t: eλt t2

2!: e
λt ... tn-2

(n-2)!: e
λt tn-1

(n-1)!: e
λt

0  eλt t:eλt ...  tn-3
(n-3)!: e

λt  tn-2
(n-2)!: e

λt

... ... ... ... ... ,,,
0 0 0 ...  eλt  t:eλt

0 0 0 ... 0  eλt
Proof. Let f (t) denote the matrix on the right hand side. Then

ei : 
d
dt  f (t) = i-th row of f (t)

= λ: ei : fn (t) + ei+1: f(t)

= (λ: ei + ei+1): f(t)

= (i-th row of A(λ)):f(t)
=  ei:A(λ):f(t).

This is true for every i. So
d
dt  f (t) = A(λ):f(t),

i.e. the columns of f(t) are solutions of dx
dt  = X(λ):x. Moreover, det f(t)00 (for example

at t = 0), i.e., f(t) is a fundamental system.
QED.

G. Inhomogeneours systems
Let I = (a, b) é R be an open intervall and

A: I H Rn;n, t ! A(t),
B: I H Rn, t ! B(t),

be Cs maps with s ≥ 1. Moreover, let
X: I H Rn;n

be a fundamental system of the differential equation
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dx
dt  = A(t):x.

Then the solutions of the inhomogeneous system
dx
dt  = A(t):x + B(t)

can be obtained via variation of constants:

Y(t) = X(t)(⌡⌠
 

 
 X(t)-1B(t) dt + C0), C0 P Rn.

Bemerkung
Man beachte, für je zwei Lösungen u(t) und v(t) des inhomogenen Systems

dx
dt  = A(t):x + B(t)

ist u(t) - v(t) eine Lösung des inhomogenen Systems.

Proof. Given a solution y(t) of the inhomogeneous system, we assume that it can be
written

y(t) = X(t)c(t), c(t) P Rn. (2)
Then

A(t)y(t) + B(t) = ddt y(t) = (d
dt X(t)):c(t) + X(t): ddt c(t)

i.e.
A(t)X(t)c(t) + B(t) = A(t)X(t)c(t) + X(t): ddt c(t)

i.e.
B(t) = X(t): ddt c(t)

B(t):Y(t)-1 = ddt c(t)

c(t) = ⌡⌠
t=t0

t
  B(t):X(t)-1dt + C0

Substittuting into (2) we get the claim.
QED.

2.2.2 Extendable integral curves
Let M be a smooth manifold,

X: I; M H TM, (t, x) ! X(t,x),
a time dependent Cs vector field with s ≥ 1 and

t0 P I, x0 P M.
Further let

S é R;M
be a set of the extented phase space. An integral curve γ through (t0,x0) of the
differential equation

dx
dt  = X(t,x)

is extendable forward to S (resp. extendable backward to S), if there is an integral curve
of this differential equation containing γ which intersects S for some time value t ≥ t0
(resp. t ≤ t0). Such an integral curve is called extension of γ to S.
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Γ
x

γ S

( t, x(t))

(t   , x   )0 0

t

x

t 0 t
A forward extendable integral curve γ

Equivalently, there is a solution
x: J H M, t ! x(t),

of the differential equation whose graph contains γ,
(t0,x0) P γ é Γx := { (t, x(t)) | t P J},

such that

(t, x(t)) P S
for some t ≥ t0 (resp. t ≤ t0).

Let us recall two notions used in the next theorem.

A subset K of a topological space is called compact, if for every covering of K by open
sets one can find a finite subcovering. In euclician space a set is compact, if and only if it
is closed and bounded.
A point

p P X
of a topological space X is called a boundary point of a subset

S é X,
if every neighbourhood of p contains points of S and the complement X - S. The set of
boundary points of S is denoted

∂S.
Examples
The boundary of the open or closed unit disc in the plane is the unit circle.
The boundary of the euclidian space is the empty set.
The boundary of every set is closed.
The boundary of a boundary is the whole set, ∂∂S = ∂S.
The boundary of a compact set is compact (since it is a closed subset).
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2.2.3 Extension theorem for integral curves
Let M be a smooth manifold,

X: I; M H TM, (t, x) ! X(t,x),
a time dependent Cs vector field with s ≥ 1 and

p0 = (t0 , x0) P K é I;M
be a point of a compact set K. Then every integral curve through p0 of the differential
equation

dx
dt  = X(t, x)

is extendable forward and backward to the boundary ∂K of K.

The extensions are unique in the sense the corresponding solutions of the differential
equations coincide on the intersections of their domains of definition.

γ

K

Proof. We restict the question of forward extentability. The backward case is treated in
the same way.

1. Uniqueness of the integral curve through p0. Consider two integral curves through p0
. Let

x: I H M and y: J H M
be the solutions of the differential equations defining these integral curves. By
assumption

t0 P I , J and x(t0) = x0 = y(t0).
By the local uniqueness theorem 2.1.5 these solutions coincide in on small intervall
containing t0, say

x(t) = y(t) for t P (t0 - ε, t0 + ε) é I , J.
Assume that there is some

t P I , J, t0 ≤ t ,

with x(t) 0 y(t). Consider the set of all these values of t and take its infimum, say
b := inf {t P I,J | x(t) 0 y(t), t0 ≤ t}
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γ

t

x

t0 b

t   +
0 ε

Then
t0 < t0 + ε ≤ b

and
x(t) = y(t) for every t P (t0 - ε, b).

Since x(t) and y(t) are continuous, they must be equal also at b,
x(b) = y(b).

But then, x(t) and y(t) must be equal in a small open interval containing b (by the local
uniqueness theorem 1.4.5): there is some δ > 0 with

x(t) = y(t) for every t P (t0 - ε, b + δ).

But this contracticts the definiton of b. Hence there is no t P I,J the right of t0 where
x(t) and y(t) are different.
2. Existence of the extension
For every point

p = (s, y) P K
apply the local phase flow theorem 2.1.8 to the differential equatin

ds
dt = 1
dx
dt = X(s, x)

to get a map
gp: Ip;Up H M, (t, (s,x)) ! pgt(s,x) ,
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where Ip é R is an interval containing 0 and Up é I;M is an open set containing p
such that

Ip H M, t ! pgt(s,x),
is a solution of the intial value problem

dx
dt = X(t, x), x(s) = y, (1)

for every (s,y) P Up. The open set Up cover K, hence finitely many of them do, say

K é Up1
Õ ... Õ Upn

 := U

Choose ε > 0 so small that
I := (-2ε, +2ε) é Ip1

 , ... , Ipn
and replace each Ipi

 with I ( i = 1, ... , n). Then any two of the maps

gpi
: I;Upi

 H M, (t, (s,x)) ! pi
gt(s,x) ,

coincide at every point where both are defined, for they provide solution for the same
initial value problems at that point. Hence the maps gpi

 glue together to give a map

g: I ; U H M, (t, (s,x)) ! gt(s,x),
such that

I H M, t ! gt(s,x),
solves the initial value problem (1).
We use this map g to construct a sequence of solutions

ξi: I H M, t ! xi(t), i = 0, 1, 2, ....
Let x0 be the map

ξ0: I = (-2ε, +2ε) H M, t ! gt(t0,x0),
and define

(t1,x1) = gε(t0,x0).

If (t1,x1) is in K é U, let ξ1 be the map

ξ1: I = (-2ε, +2ε) H M, t ! gt(t1,x1).
Assume we have already constructed ξ0, ... , ξn-1. Define

(tn,xn) = gε(tn-1,xn-1).

If (tn,xn) is in K é U, let ξn be the map

ξn: I = (-2ε, +2ε) H M, t ! gt(tn,xn).
By construction

ξn (0) = g0(tn,xn) = (tn,xn) = gε(tn-1,xn-1) = ξn-1(ε)
From the uniquenes assertion of the first step we see that

ξn(t) = ξn-1(ε+t) for t P (-2ε, +ε).
Hence the solutions ξi glue together to give a solution
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ξ: (-2ε, nε) H M
with

ξ(t) = ξi(t - iε) for t P ((i-2)ε, +(i+2)ε), i = 0, ... ,n.
This construction continues as long as the point (tn,xn) is in K. If this point is not in K,
the integral curve

{(t, ξ(t)) | t P (-2ε, (n+1)ε)} (2)
contains points both in K and not in K (t = 0 gives (t0,x0) and t = n-1 gives (tn,xn)).
Hence it contains boundary point of K, and the proof of the theorem is complete.

Assume that the process does not stop. Then K contains the integral curves (2) for
arbitrary natural numbers n. This implies image of K under the projection

ϕ:K é R;M H R, (t, x) ! t,
contains the intervalls

(-2ε, (n+1)ε) é ϕ(K).
But the image ϕ(K) of the compact set K is compact, hence bounded in R. Thus this
inclusion cannot hold for every n.

QED.

2.2.4 Extendable solutions
Let M be a smooth manifold,

X: M H TM, x ! X(x),
a Cs vector field with s ≥ 1 and

t0 P R, x0 P M.
Further let

S é M
be a set of the phase space. A solution

x: I H M
of the initial value problem

dx
dt  = X(t,x), x(t0) = x0 (1)

is extendable forward to S (resp. extendable backward to S), if there is a solution
y: J H M

of the initial value problem (1) such that
I é J, y|I = x

and such that
y(t) P S

for some t ≥ t0 (resp. t ≤ t0) in the interval J. Such a solution is called extension of x to
S. The solution x is called infinitely extendable forward (resp. infinitely extendable
backward), if there is a solution

y: J = (a, §) H M (resp. y: J = (-§, b) H M)
of the initial value problem (1) such that

I é J, y|I = x.
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In this situation, the solution y is called an extension of the the solution x.

2.2.5 Extension theorem for solutions
Let M be a smooth manifold,

X: M H TM, x ! X(x),
a Cs vector field with s ≥ 1 and

x0 P K é M
be a point of a compact set K. Then every solution of the initial value problem

dx
dt  = X(t, x), x(t0) = x0

is extendable forward (resp. backward) either infinitely or to the boundary ∂K of K.

The extensions are unique in the sense that any two extensions of a given solution
coincide on the intersection of their domains of definition.

K x(t)

x(t)

K

Proof. Let
x: I H M

be a solution of the intial value problem
x(t0) = x0.

Consider the associated integral curve
{(t, x(t)) | t P I} (1)

For arbitrary real numbers
a, b P R

such that
a < t0 < b

the set
[a, b] ; K é M

is a compact. By 2.2.3 every integral curve through
(t0, x0) P I;K

is uniquely extendable forward to the boundary
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∂([a, b];K) = (∂[a, b]);K Õ [a,b];(∂K) = {a};K Õ {b};K Õ [a, b];∂K

[a,b]xKI

b

a

{b]xK

{a}xK

[a,b]x∂K

In particular, there is a unique forward extension
{(t, y(t)) | t P J} (2)

of the integral curve (1), which contains a point of the above boundary, say
(t, y(t)) P  ∂([a, b];K. for some t P J such that t0 < t.

Since a < t0 < t, this point cannot be in {a};K, i.e.

(t, y(t)) P {b};K Õ [a, b];∂K

There are two possibilities.
1. Case. For every b > t0 the integral curve intersects {b};K.

Then, for evey b > t0, there is an extension y: J H M of x such that b P J. The solution
x is infinitely extentable backward.

2. Case. There is some b > t0 such that the integral curve does not intersect {b};K.

Then the forward extension y of x to the boundary of [a,b];K satisfies
(t, y(t)) P [a, b];∂K

for some t, hence
y(t) P ∂K.

The solution x is extendable to the boundary of K.

We have proved the claim of the theorem concerning forward extendability. The case of
backward extendability is treated in the same way.
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The uniqueness assertions follows from the uniqueness assertions for the integral curves
in 2.2.3.
QED.

2.2.6 The global phase flow theorem
Let

X: M H TM
be a Cs vector field on the smooth manifold M with s ≥ 1. Suppose the X is a vector
field with compact support.41

 Then there is a unique Cs map
R;M H M, (t, x) ! gtx,

such that the following is satisfied.
(i) For every x0 P M the map

R H M, t ! gtx0 ,

is a solution of the initial value problem dx
dt  = X(x), x(0) = x0.

(ii) gsgtx = gs+tx for arbitrary x P M and s,t P R.

Proof. The proof is divided into severy steps.
3. Step. Uniqueness of the map g.

It is sufficient to show that any two solutions of the initial value problem
dx
dt  = X(x), x(0) = x0 (1)

coincide on the intersection of their domains of definition. But this is proved as
uniquesness in the proof of 2.2.3: consider two solutions of the initial value problem. By
local uniqueness they must coincide on a small time interval containing 0. Consider the
largest lower bound of all positive time values where the two solutions have different
values. As in 2.2.3 on sees the two solutions must have the same value at this largest
lower bound, hence must coincide on a small interval around this largest lower bound.
This gives the disired contradiction.
1. Step. Every solution of dx

dt  = X(x), x(0) = x0 is extentable infinitely forward and
backward.

Let K denote the support of the vector field X,

K = supp X.

In case x0 is outside K, the vector field X is zero at x0. Hence the constant function

                                                
41 This means that there is a compact subset K é M such that X is zero outside K,

X
p

 = 0 for every p P M - K.

Equivalently on can require that the   support   supp X of X is compact, where supp X is defined to be the
closure of the set

{x P M | X(x) 0 0}.
The condition is satisfied for every vector field on a compact manifold.
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x(t) = x0
is a solution of the initial value problem, which is trivially extentable infinitely (and by
local uniqueness all solutions are of this type).

In case x0 is on the boundary of K, the vector field X is again zero at x0 (by continuity).
Hence the situation is as above: the only solution is the constant function, which is
infinitely extentable.

Finally let x0 be in the interior of K. From the previous theorem 2.2.5 we see that the
initial value problem (1) is (backward and forward) extentable either to the boundary of
K or infinitely. Moreover, from the above we know that a solution taking a value on the
boundary must be constant. Hence a solution of (1) with x0 from the interior of K
cannot be extented to the boundary. But then, the solution must be infinitely extentable.
This proves the claim of the second step.
2. Step. Proof of (i).
For every x0 P M let

gx0
: R H M, t ! gx0

(t),

denote the solution of the initial value problem (1) (which exists on a small interval by
the local existence theorem and on the whole of the real line by the second step), and
write

gtx := gx(t).
This gives a well-defined map

g: R;M H M
such that the condition of assertion (i) is satisfied. By uniqueness (as proved in the first
step), this map coicides locally with the local phase flow (as in 2.1.12), hence is a Cs
map.

4. Step. Proof of (ii).
By assertion (i),

d
dt (g

tx) = X
gtx

for every t P R and every x P M. The definition of ddt gives

(d gtx)(∂∂t) = X
gtx

Identify vectors with their directional derivatives. Then for every test function ϕ one has
X

gtx
 (ϕ) = (d gtx)(∂∂t)(ϕ)

= ∂∂t (ϕ9 gtx) (Definition of the differential of a map).
Replacing t by t+s we get

X
gt+sx

 (ϕ) = ∂∂t (ϕ9 gt+sx)

= (d gt+sx)(∂∂t)(ϕ)

= ddt (g
t+sx)(ϕ)

hence
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d
dt (g

t+sx) = X
gt+sx

.

The latter identity says that the map
R H M, t ! gt+sx,

is a solution of the initial value problem
dx
dt  = X, x(0) = gsx.

Uniqueness as proved in the first step implies that
gt+sx = gt(gsx)

(as claimed).
QED.

2.3 The contraction mapping theorem

2.3.1 Modivation: Differential and integral equations
The aim of this section is the proof of the local existence and uniqueness theorems for
differential equations and of the theorem about the dependency upon the initial
contitions. Since these theorems are of a local nature, we may assume throughout that
the manifold in consideration is an open set of euclidian space, i.e. we will consider
differential equations

dx
dt  = X(t, x),

where X: M H TM is a Cs vector field on an open subset
M é Rn

with s ≥ 1.
Given a solution

x: I H M, t ! x(t)
of the initial value problem

dx
dt  = X(t, x), x(t0) = x0 (1)

with t0 P I, x0 P M, one has

⌡⌠
t0

t
 X(t, x(t)) dt = ⌡⌠

t0

t
 dx(t)

dt  dt = x(t) - x(t0) = x(t) - x0

hence

x(t) = x0 + ⌡⌠
t0

t
  X(t, x(t)) dt (2)

Conversely, every C1 function x: I H M satisfying condition (2) is a solution of the
initial value problem (1). This modivates the introduction of the integral operator

A: C(I, R) H C(I, R), ϕ ! x0 + ⌡⌠
t0

t
  X(t, ϕ(t)) dt ,

mapping real valued continuous functions ϕ: I H R to real valued continuous function
on I. From the above we see

ϕ is a solution of (1) $ A(ϕ) = ϕ.
This way the question about the existence ans uniqueness of an initial value problem is
translated into the question whether a certain integral operator has a fixed point.



85

Below we will see that

1. A slight modification of the domain of definition will make this domain into a
complete metric space.

2. If one chooses the intervall I small enough, the operator A will becomes a so-called
contracting operator (an operator that shortens distances).

3. Contracting operators on complete metric spaces have precisely on fixed point.

We will proceede as follows now. First we will define the notions used above. Then we
will formulate the contraction operator theorem (assertion 3). An finally we will
construct the domain of definition for A, which allows to apply the contraction operator
theorem to ordinary differential equations.

2.3.2 Metric spaces
A metric space is a set M which is equipped with a distance function

d: M ; M H R
also called metric, i.e. a function satifying the following conditions.
(i) d(x, y) ≥ 0 for arbitrary x, y P M.
(ii) d(x, y) = 0 $ x = y.
(iii) d(x, y) = d(y, x) for arbitrary x, y P M.
(iv) triangle identity.

d(x, y) + d(y, z) ≥ d(x, z) for arbitrary x, y, z P M.
For every point x P M and every positive real εPR the set of points

U
ε
(x) := { x’PM | d(x’,x) < ε}

having distance < ε from x is calle ε-neighbourhood of x. A subset
U é M

is called open, if it is a union of (possibly infinitely many) ε-neighbourhoods. This way
every metric space becomes a topological space (prove this!). Its topology is called
metric topology. Metric spaces will be always equipped with their metric topology.

A sequence {xi}i = 1,2, ... of points xi P M in the metric space is called convergent, if

there is some point x P M such that every open set U é M containing x contains xi for
allmost every i (i.e. every i with the possible exception of finitely many of them). The
point x is unique42 in this case and is called limit of {xi}i = 1,2, .... One writes

xi H x and lim
iH§ xi = x.

The sequence is called Cauchy sequence, if for every given ε > 0 there is a natural
number

N(ε) P N
such that
                                                
42 Let x’ be a second limit. Then for every ε>0  one has

xi P U
ε/2(x) and xi P U

ε/2(x’)
for at least one i (even for almost every i). Therefore

0 ≤ d(x, x’) ≤ d(x, xi) + d(xi , x’) ≤ ε/2 + ε/2 = ε.
Since ε > 0 was arbitrarily choosen, we see d(x,x’) = 0, hence x = x’.
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d(xi , xj) < ε for arbitray i, j ≥ N(ε).
Convergent sequences are easily seen to be Cauchy sequences.43 The metric space M is
called complete, if every Cauchy sequence is convergent.
Example 1
The real line is a complete metric space with respect to the distance function

d(x , y) := | x - y |.
Example 2
The euclidian space Rn is a complete metric space with respect to the distance function

d(x, y) := ∑
i=1

n
 (xi-yi)

2

This kind of metric is called euclidian metric.
Example 3
Let M be a metric space and K a compact metric space. Then every continuous function

f: K H M
is bounded, i.e. for every p P  M there is a constant C P R with

d(f(x), p) < C
for every x P K.44 Consequently, for evey two continuous functions

f, g: K H M
the real value d(f(x), g(x)) is bounded, i.e.

d(f, g) := sup {d(f(x), g(x)) | K}

is a well-defined none-negative real number. From the properties of the distance function
on M one sees that this defines a distane function on the set

C(K, M)
                                                
43 Let x be the limit. Then x

i
 P U

ε/2 for almost every i, say for every i ≥ N(ε). For i , j ≥ N(ε) this
implies

d(xi, xj) ≤ d(xi , x) + d(x, xj) < ε/2 + ε/2 = ε.
44 For every x P K take some C

x
 P R such that

d(f(x), p) < C
x

 ,

i.e. f(x) P U
C

x
(p). Since f is continuous, there is some ε(x) > 0 such that

f(U
ε(x)(x)) é U

C
x

(p).

The open sets U
ε(x)(x) cover K, hence finitely many of them do, say

K = U
ε(x1)(x1)Õ...Õ U

ε(xn)(xn)

Let ε = min{ε1,...,εn} and C = max {Cx1
,...,Cxn

}. Then

f(U
ε
(xi)) é U

ε(xi)
(xi) é UC(p),

i.e.
d(p, f(x)) < C

for x P U
ε(xi)

(xi). Since the U
ε(xi)

(xi) cover K, the inequality holds for every x P K.



87

of continuous functions K H M and defines on C(K M) the structure of a metric
space. To see that this space is complete, we need the notions of uniform continuity and
uniform convergence.

2.3.3 Uniform continuity
Let M and M’ be metric spaces. A function

f: M H M’
is called uniformly continuous, if for every ε > 0 there is some reel δ > 0 such that

d(f(x), f(y)) < ε for arbitrary points such that d(x, y) < δ.
Remark
(i) Uniformly continuous functions are easily seen to be continuous.45

(ii) If M is compact, every continuous function M H M’ is uniformly continuous.46

2.3.4 Uniform convergence
Let M and M’ be metric spaces with M’ complete. A sequence {fi}i=1,2,... of functions

fi: M H M’
is called uniformly convergent, if for every ε > 0 there is some natural number N(ε) such
that

d(fi(x), fj(x)) < ε

for arbitrary x P M and arbitrary i, j ≥ N(ε).

                                                
45 For, U

δ
(x) é f-1(U

ε
(f(x))), is f is continuous in x.

46 Fix any ε > 0. For every x P M chose δ = δ(x) > 0 such that
U
δ
(x) é f-1(U

ε/2(f(x))),
which is possible since f is continuous. Since M is compact finitely many U

δ(x)/2(x)
cover M, say

M = U
δ1/2(x1) Õ ... Õ U

δn/2(xn).

Let
δ := min{δ1/2, ... , δn/2}.

Then
d(f(x), f(y)) < ε if d(x, y) < δ.

To see this, let i be such that
x P U

δi/2
(xi). (*)

The inequality d(x, y) < δ ≤ δi/2 implies

y P U
δi

(xi) é f-1(U
ε/2(f(xi))),

i.e.,
d(f(xi), f(y)) < ε/2.

Similarly, from (2) we see
d(f(xi), f(x)) < ε/2.

Thus d(f(x), f(y)) < ε, as claimed.
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Remarks
(i) If {fi}i=1,2,... is uniformly convergent, then it is convergent, i.e. {fi(x)} i=1,2,... is

convergent for every x P M.47

(ii) If {fi}i=1,2,... is uniformly convergent and every fi is continuous at a fixed point p

P M, then the limit function is continuous at p.48

(iii) As a consequence of the above remarks we see that the space C(K, M) of 2.2.2
Example 3 is complete: a Cauchy sequense of C(K, M) is by definition a sequence
{fi}i=1,2,...of continuous functions K H M, which is uniformly convergent.
Define

f(x) := lim
iH§ fi(x)

vor every x P K. By remark (ii), this defines a continuous function
f: K H M,

i.e. an elment of C(K,M). By assumption,
d(fi(x), fj(x)) < ε/2 for arbitrary x P M and arbitrary i, j ≥ N(ε/2).

For j H § we get
d(fi(x), f (x)) ≤ ε/2 < ε for arbitrary x P M and arbitrary i ≥ N(ε/2),

hence
d(fi, f) < ε for i ≥ N(ε/2),

i.e. fi H f in C(K, M). The sequence is convergent in C(K, M).

2.3.5 Contrations
A contraction is a map

A: M H M, x ! Ax,
of a metric space M into itself such that there is real number λ < 1 satisfying

d(Ax, Ay) ≤ λ:d(x, y)
for arbitrary x, y P M. The real number λ is called in this case a contraction factor of A.
                                                
47 Since {f

i
(x)} 

i=1,2,...
 is a Cauchy sequence in M’.

48 Write f(x) for the limit function and fix ε > 0. Since {f
i
}
i=1,2,...

 is uniformly convergent, there is

some N P N such that
d(fi(x), fj(x)) ≤ ε/3

for i, j ≥ N and arbitrary x P M. For j H § we get
d(fi(x), f(x)) ≤ ε/3

for i ≥ N and arbitrary x P M. Fix i, say i = N. Since fN is continuous at p there is some
δ > 0 with,

d(fN (p), fN(x)) < ε/3 for every x P U
δ
(p).

Therefore
d(f(p), f(x)) ≤ d(f(p), fN(p)) + d(fN(p), fN(x)) + d(fN(x), f(x)) < ε/3 + ε/3 + ε/3 = ε

for every x P U
δ
(p). Thus f is continuous at p.
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Example 1
A C1 function A: R H R such that |dA

dt (t)| ≤ λ < 1 for every t P R is a contraction,
for

| A(t1) - A(t2) | ≤ | ⌡⌠
t1

t2
  |dA

dt (t) | dt | ≤ max |dA
dt (t)| : |t2 - t1 | ≤ λ: |t2 - t1 |

Example 2
Let A: Rn H Rn be a linear operator such that all eigenvalues of A are in the open
unit disc (of the complex plane). Then there is an euclidian metrix on Rn such that A
becomes a contraction. This is easily seen in for diagonal matrices, say

A = 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

λ1 0 ... 0

0 λ2 ... 0

... ... ... ...
0 0 ... λn

 , max { |λ1| , ... , |λn| } =: λ < 1.

For evey x = 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

x1
...
xn

 one has with respect to the euclidian metric:

d(0, Ax) = (|λ1x1|2+...+| λnxn|2)1/2 ≤ λ(|x1|2+...+| xn|2)1/2 = d(0, x)

hence d(Ax, Ay) ≤ λ:d(x, y). In the general case one uses the Jordan normal form over
the complex numbers.

2.3.6 Contraction mapping theorem
Let M be a complete metric space and A: M H M a contraction. Then A has precisely
on fixed point, i.e. there is one and only one point p P M satisfying Ap = p.
Moreover, for evey point x P M the sequence

x, Ax, A2x, A3x, ...
converges to p. The distance of its n term from the fixed point can be estimated as
follows.

d(p, Anx) ≤ λ
n

1-λ : d(Ax, x).

Proof. Let  λP(0, 1) as in the definition of the contraction and denote
d:= d(x, Ax).

Then
d(Anx, An+1) ≤ λ:d(An-1x, Anx) ≤ λ2:d(An-2x, An-1x) ≤ ,,,

hence
d(Anx, An+1x) ≤ λn:d.

For n, m ≥ N one obtains

d(Anx, Amx) ≤ ∑
i between n and m

   d(Aix, Ai+1x) ≤ d: ∑
i=N

§ λi (1)

Since the sum ∑
i=0

§ λi converges, the partial sums can be made arbitrarily small, i.e.
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{ Anx }n=1,2,...
is a Cauchy sequence in M. Since M is complete, this sequence converges. Let p be its
limit,

p := lim
nH§ Anx .

From
d(Ap, Anx) ≤ λ:d(p, An-1x) H 0

we see
Ap = lim

nH§ Anx  = p.

Thus p is a fixed point of A. If p’ is another fixed point, we get
d(p, p’) = d(Ap, Ap’) ≤ λ:d(p, p’),

hence
(1-λ):d(p, p’) = 0,

hence d(p, p’) = 0, i.e., p = p’. The fixed point of A is unique. We have yet to estimate
the distance d(p, Anx). From (1) we get, passing to the limit n H§,

d( p, Am) ≤ d: ∑
i=m

§ λi = d:λm: ∑
i=0

§  λi = d:λm: 1
1-λ

QED.

A generatlization
Let M be a complete metric space, λ < 1 a real number and {An: M H M}n=1,2,... a
sequence of maps such that

d(Anx, , Any) ≤ λ:d(x, y)

for arbitrary x, y P M. In other words, the An form a sequence of contractions with a
common contraction factor.
(i) Then for evey x P M the sequence

{ xn}n=1,2,...
such that

1. x1 = x
2. xn+1 = Anxn

in converges to some point p P M,
lim

nH§ xn = p.

(ii) If, moreover, there is a map A: M H M such that
Ax = lim

nH§ Anx for every x P M,

then A is a contraction and the point p above is the only fixed point of A.
Proof. Assertion (i). Consider a second point, say y P M, and write

y1 = y
yn+1 = Anyn

Then
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d(xn+1, yn+1) = d(Anxn, Anyn) ≤ λ:d(xn, yn)
hence

d(xn+1, yn+1)≤ λn:d(x1, y1),
i.e.

d(xn, yn) ≤ λn-1:d(x1, y1),

In particular, for y = x2 we get

d(xn, xn+1) ≤ λn-1:d(x1, x2).
For n, m > N one obtains

d(xn, xm) ≤ ∑
i between n and m

            d(xi, xi+1) ≤ d(x1, x2): ∑
i=N

§ λi

Since the sum ∑
i=0

§ λi converges, the partial sums can be made arbitrarily small, i.e.

{ xn }n=1,2,...
is a Cauchy sequence in M. Since M is complete, this sequence converges. Let p be its
limit,

p := lim
nH§ xn .

Assertion (ii). From
d(Anx, , Any) ≤ λ:d(x, y)

we obtain, passing to the limit n H §,
d(Ax, , Ay) ≤ λ:d(x, y),

i.e. A is a contraction with contraction factor λ. Moreover,

d(Ap, xn) ≤ d(Ap, Anp) + d(Anp, Anxn) + d(Anxn, xn)

≤ d(Ap, Anp) + λ:d(p, xn) + d(xn+1 , xn)

QED.

2.3.8 Lipschitz conditions
Let U é Rn and V é Rm be an open set and

X: U;V H Rn, (x, y) ! X(x,y)
a function. One says that X satisfies with respect to x the Lipschitz condition with
Lipschitz constant

C P R,
if

|X(p, y) - X(q,y)| ≤ | p - q |
for arbitrary points p, q P U and arbitrary y P V. Here |x| denotes the euclidian norm,
i.e.
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|x| = ∑
i=1

n
 x2

i  if x = 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

x1
...
xn

Remarks
(i) If X is a C1 function with bounded derivatives on U and U is convex49,

| ∂X
dxi

| ≤ C,

then X satisfies a Lipschitz condition (with respect to x with Lipschitz constant
n:C). To see this, consider the restriction of X to the segement connecting p and q,

+X(t) = X(tp + (1-t)q).
Then

X(p,y) - X(q,y) = +X(1,y) - +X(0,y) = ⌡⌠
0

1
 d

+X
dt (t,y) dt

hence

| X(p,y) - X(q,y)| = | ⌡⌠
0

1
 d

+X(t, y)
dt  dt |

≤ ⌡⌠
0

1
 | d

+X(t, y)
dt   | dt

= ⌡⌠
0

1
 | ∑

i=1

n  ∂X(tp+(1-t)q , y)
∂xi

 :(pi - qi) | dt (chain rule)

≤ ∑
i=1

n  |pi - qi| ⌡
⌠
0

1
 |∂X(tp+(1-t)q , y)

∂xi
 | dt

≤ ∑
i=1

n  |pi - qi| ⌡
⌠
0

1
 C:dt

≤ ∑
i=1

n  |pi - qi|

≤ n:C:| p - q |
(ii) The first remark implies that the local existence an uniqueness theorem 2.1.5

follows from the Picard-Lindelöf theorem below.

2.3.9 Picard-Lindelöf theorem
Let

X: R ; Rn H TRn, (t, x) ! X(t,x),
be a time dependent continuous vector field satisfying a Lipschitz condition with respect
to x. Then every initial value problem

dx
dt  = X(t, x), x(t0) = x0

                                                
49 i.e., for every pair of points p, q P U the segement connecting p and q is completely contained in U.
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with t0 P R and x0 P Rn has a solution which is unique in the sense that every two
solutions coincide on the intersection of their domain of definitions.

This solution is a continuous function of t and the initial value x0. Moreover, in case the
vector field depends continuously upon certain parameters, the solution is also a
continuous function of these parameters.

Remark
Note that the fact that this theorem is formulated for vector fields X which are defined
everywhere on Rn does not matter. If X is defined only on a open subset of euclician
space, one can restrict the field to a small open ε-neighbourhood of the given point x0
and then use an appropriate map to identify this ε-neighbourhood with Rn, for example
in case ε = 1 one can use50

{x P Rn | |x| < 1} H Rn, x ! x
1 - |x|

(the inverse being y !  y
1+|y|).

Alternatively, one may use a partitions of unity to exentend a given vector field (more
precisely, its restrictions to compact subsets) to the whole euklidian space.

Proof. Step 1: Existence
Let C be the Lifschitz constant for the vector field X,

|X(t, x) - X(t, x)| ≤ C:| x - x’|,

and let K be the compact set
K := {(t, x) P R;Rn | | t0 - t| ≤ ε, d(x0, x) ≤ a }

with positive real numbers ε and a. From 2.2.2 Example 3 we know, the set

M = C(K, Rn)
of continuous functions

h: K H Rn
is a complete metric space.

Consider the map
A: C(K, Rn) H C(K, Rn), ϕ ! Aϕ,

such that

(Aϕ)(t, x) := x + ⌡⌠
t0

t
 X(t, ϕ(t,x)) dt

For any two functions ϕ , ψ P C(K, Rn) we get

(Aϕ - Aψ)(t, x) = ⌡⌠
t0

t
 (X(t, ϕ(t,x)) - X(t, ψ(t, x)) dt

                                                
50 This map may not preserve the Lipschitz condition, but is preserves differentiability.
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|(Aϕ - Aψ)(t, x)| ≤ | ⌡⌠
t0

t
 |X(t, ϕ(t,x)) - X(t, ψ(t, x)| dt |

≤  |⌡⌠
t0

t
 C:|ϕ(t, x) - ψ(t, x)| dt |

≤ | ⌡⌠
t0

t
 C:d(ϕ, ψ) dt |

= C:d(ϕ, ϕ): | t - t0 |

≤ C:ε:d(ϕ, ψ),
hence

d(Aϕ, Aψ) ≤ C:ε:d(ϕ, ψ).
We see that for ε sufficiently small (i.e., for C:ε < 1), the operation A is a contraction.
But then A has precisely one fixed point. In other word, the initial value problem

dx
dt  = X(x), x(t0) = x0 (1)

has a unique solution on the interval (t0 - ε, t0 + ε).
Step 2: Uniqueness.
The uniqueness assertion is proved as in 2.2.3.
Step 3: Dependency upon the initial value.
By Step 1 the local solution is an Element of C(K, Rn), hence a continuous function of
both, t and x0.
Step 4: Dependency upon parameters.
This follows from the already proved part of the theorem applied to the initial value
problem

dx
dt  = X(t, x, µ), x(t0) = x0
dµ
dt  = 0, µ(t0) = λ

(see the theorem of 2.1.7 and its proof). Alternatively, one can look at the Picard
approximates of the solution of  (1) and use their continuous dependency upon λ.
QED.
Remark
(i) Using in the above proof a modified distance, which depends in addition to the

values of the functions also upon their derivatives, on can prove that the solution is
a Cs function of t and x0 , if the vector field is of class Cs. Below we will give an
alternative proof for this fact.

(ii) The functions Anϕ occuring in the above proof and approximating the solutions of
the initial value problem are called Picard approximates of (1). The contraction
mapping theorem gives us an extimate for their distance from the exact solution
x(t),

d(x, Anϕ) ≤ λ
n

1-λ :d(Aϕ, ϕ), with λ = C:ε.

2.3.10 Peano theorem
Let
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X: R;Rn H TRn
be a continuos vector field. Then every initial value problem

dx
dt  = X(t, x), x(t0) = x0

with t0 P R and x0 P Rn has a solution (which is a C1 function defined in an interval
containing t0).
Remarks
(i) From the remark to 2.3.9 we see that the theorem is also true if X is a vector field

which is only defined (and continuous) on an open subset of Rn.
(ii) The continuous vector field X is boundet on compact subsets of R;Rn, for

example on the closure of the 1-neighbourhood of x0. Restricting to this

neighbourhood and identifying the latter with Rn we reduce to the case that the
vector field is bounded, say

|X(t, x)| < C
for every x P Rn and every t P R.

(iii) From the proof below one can deduce that the solution is (for bounded vector
fields defined on the whole of Rn) infinitely extentable.

Proof. Let I = [a, b] é R be any closed interval containting t0 and denote by
C(I)

the set of continuous function I H Rn. We have to find an element x(t) P C(I) which
is a solution of the initial value problem. For this it will be sufficient to find functions
y(t), z(t) P C(t) such that51

1. y(t) satisfies the differential equation for t0 ≤ t and equals x0 for t ≤ t0.
2. z(t) satisfies the differential equation for t ≤ t0 and equals x0 for t 0≤ t.
We restrict to the construction of y, the construction of z being similar. Thus we are
looking for an element of C(t) satisfying

y(t) = x0 + ⌡⌠
t0

t
 X(t, y(t)) dt for t P I and t0 ≤ t. (1)

This function will be constructed as a limit of a sequence of approximating functions
y
ε
(t) P C(t).

Define

y
ε
(t) = 

⎩⎪
⎪
⎨⎪
⎪⎧ x0 for t ≤ t0

x0+⌡⌠
t0

t
 X(t,y

ε
(t-ε))dt for t0 ≤ t

                                                
51 The function we are looking for can than be obtained as

x(t) := 
⎩⎪
⎪
⎨⎪
⎪⎧y(t) for t

0
 ≤  t

z(t) for t ≤ t
0
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This gives a correctly defined differentiable function on the whole of the interval I: from
the definition of y

ε
 for t ≤ t0 one obtaines the definition for t ≤ t0 + ε, then the definition

for t ≤ t0 + 2ε , and so on.
From |X(t, x)| < C we see that

| y
ε
(t’) - y

ε
(t”) | ≤ C: |t’ - t”|, (2)

i.e. the functions y
ε
(t) satisfy a Lipschitz condition.

Now consider the sequence of functions
{y1/n(t)}1,2,3,...

By the theorem of Acoli-Arzelà there is a converging subsequence, say {y
εn

(t)}, which

converges uniformly and hence has a continuous limit, say y(t). Write
y(n)(t) := y

εn
(t).

Then

y(n)(t) = x0 + ⌡⌠
t0

t
 X(t, y(n)(t - εn)) dt for t P I and t0 ≤ t (3)

Note that
| y(n)(t - εn)  - y(t)| ≤ | y(n)(t - εn) - y(n)(t)| + |y(n)(t) - y(t)|

≤ C:εn + |y(n)(t) - y(t)|

The sequence { y(n)(t - εn) }1,2,3,... also converges uniformly to y(t). Form (3) we
obtain, passing to the limit

y (t) = x0 + ⌡⌠
t0

t
 X(t, y (t)) dt for t P I and t0 ≤ t.

Thus, y(t) is the function we are looking for.
QED.

2.3.11 The equations of variation
Let

X: R;Rn H TRn

be a time dependent C1 vector field. Then to the differential equation
dx
dt  = X(t, x) (1)

one can attach the differential equation
dy
dt   = ∂X(t,x)

∂x :y (2)

where ∂X(t,x)
∂x  denotes the Jacobian matrix of the map

Rn H Rn, x ! X(t,x).

and y is considered to be a function taking values in Rn;n. The equation (1) and (2)
together are called equations of variation of (1). Note that these are linear with respect to
y P Rn.
Remarks
(i) The right hand side of the second equation of variation
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dy
dt   = ∂X(t,x)

∂x :y

is in general not a C1 function: the Jacobian consits of the first derivatives of the
coordinates of X(t,x). So we only can say, that it is a continuous function of x.

However, as a function of y it is a C1 function52. Therefore, given a continuous
function53 x(t) defined on an interval containing t0, the initial value problem

dy
dt   = ∂X(t,x(t))

∂x(t) :y ,         y(t0) = y0 , (3)
has a unique (local) solution depending continuously upon t and the initial value
y0 (and possible continuous parameters of the vector field)54

(ii) If the function x(t) of (ii) is a solution
x(t) = ϕ(t, x)

of the initial value problem
dx
dt  = X(t, x), x(t0) = x,

then one can show that the solution y(t) of (3) in case y0 is the identity matrix, is
nothing but the Jacobian matrix of ϕ(t, x),

y(t) = ∂ϕ(t,x)
∂x

In particular, ϕ(t, x) is a C1 function of t and the initial values x. For details, see the
book of Arnol’d [1].

2.3.12 Differentiability of the local phase flow
Let

X: R;Rn H TRn

be a time dependent Cr vector field with r ≥ 1. Then the local phase flows
(t, x) ! gtx

associated with the differential equation
dx
dt  = X(t, x)

are Cr maps.
Proof. Step 1: r =1.
This is just the assertion of Remark 2.3.11 (ii). Since we did not prove this remark, let us
illustrate the situation in proving the claim under the stronger assumption that the vector
field X is of class C2.

Consider the equations of variation

                                                
52 It is linear as a function of y.
53 for example, a local solution of (1).
54 The right hand side of the differential equation satisfies on every compact set K é R;Rn a

Lipschitz condition with respect to y, for, the derivatives of ∂X(t,x(t))
∂x(t)

:y with respect to the coordinates

of y are the colums of the matrix ∂X(t,x(t))
∂x(t)

 , which are continousus, hence boundet on the compact set

K. One has even a common Lipschitz constant for the set of all continuous functions x(t) bounded by a
common constant.
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dx
dt  = X(t, x)
dy
dt   = ∂X(t,x)

∂x :y

Since X(t, x) is a C1 map, it satisfies a Lipschitz condition on each compact subset of the
extended phase space, hence the Picard-Lindelöff theorem 2.3.9 applies to this system,
so that every initial value problem has a unique local solution.

Consider the Picard approximatioins ϕn(t,x), ψn(t,x) for the equations of variation
starting with constant functions

ϕ0(t,x) = x

ψ0(t,x) = Id = 
⎝⎜
⎜
⎜
⎜⎛

⎠⎟
⎟
⎟
⎟⎞1 ... 0

... ... ...
0 .. 1

i..e.

ϕn+1(t,x) = x + ⌡⌠
t0

t
 X(t, ϕn(τ,x)) dτ

ψn+1(t,x) = Id + ⌡⌠
t0

t
 
∂X(t,ϕn(t, x))

∂x  : ψn(τ,x) dτ

From the definition of ϕ0(t) and ψ0(t) we see that

ψ0(t,x) = 
⎝⎜
⎜
⎜
⎜⎛

⎠⎟
⎟
⎟
⎟⎞1 ... 0

... ... ...
0 .. 1

 = 
∂ϕ0(t,x)
∂x

is the Jacobian matrix of ϕ0(t).55 But then the same holds for the other approximations,

ψn (t,x) = 
∂ϕn(t,x)
∂x (1)

As we know56 these approximations converge for t in a sufficiently small interval to a
local solution ϕ(t, x), ψ(t, x) of the initial value problem

x(t0,) = x
y(t0,) = Id

and these solutions are continuous functions of t and x. From (1) we see, passing to the
limit, that

ψ(t,x) = ∂ϕ(t,x)
∂x (1)

i.e. the second component of the solution is the Jacobian matrix of the first component.
In particular, this Jacobian matrix exists and is continuous. We have proved that ϕ(t, x)
is a C1 function of x (hence of x and t).
Step 2. r > 1.
We may assume that the theorem is true with r replaced by r-1. By assumption, the
system
                                                

55 The entry in position (i,j) is 
∂x

i
∂x

j
 = δij.

56 see also the remarks of 2.3.11.
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dx
dt  = X(t, x)
dy
dt   = ∂X(t,x)

∂x :y

satisfies the induction hypothesis. Hence its local phase flows are Cr-1 functions, i.e. the
local solutions

ϕ(t, x)
ψ(t, x)

of the initial value problem x(t0) = x, y(t0) = Id are Cr-1 functions of x. Since ψ(t, x) is

the matrix of derivatives of ϕ(t, x), this means that ϕ(t, x) is a Cr function with respect to
x (hence of x and t)57.

QED.

Appendix

The directional derivative of a function
Let

f: U H R
be a real valued function defined on an open set U é Rn of real n-space,

p P U
be a point and

X P Rn
be a vektor at p. Then

X(f) = Xp(f) := df(p+t:X)
dt  |t=0

n

f(x)

f(p+tX)

X

p

is called the derivative of f at p in the direction of X. If it exists, f is called differentiable
in the the direction of X at p. The function f is called differentiable at p if it is
differentiabe in every direction (at p) . The function is called differentiable if it is
differentiable at ervery point p of its domain U of definition.
                                                
57 Note that ∂

∂t
 ϕ(t, x) = X(t, ϕ(t, x)) is a Cs-2 function (by induction hypothesis).
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The function f is called continuously differentiable, if it is differentiable and the
derivvatives Xp(f) are continuous functions of the point p P U for every vector X.

The directional derivative of a vector valued function
A vector valued function

f: U H Rm, x ! f(x) = 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

f1(x)

...
fn(x)

,

is called (continuously) differentiable, if every coordinate function fi is (continuously)
differentiable. In this case,

X(f) := 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

X(f1)

...
X(fn)

is called the derivative of f at p in the direction of X.
Example
The derivative of f in the direction of the i-th  standard unit vector

ei = 

⎝
⎜
⎜
⎜
⎜
⎛

⎠
⎟
⎟
⎟
⎟
⎞0

...
0
1
0
...
0

whose i-th coordinate is 1 and whose other coordinates are zero, is denoted

∂
∂xi

 = ∂∂xi
 |p

i.e., for every f defined at the point p,

ei(f) = 
df(p+tei)

dt |t=0 = 
df(p1,...,pi-1, pi+t, ‚pi+1,...,pn)

dt |t=0= ∂f
∂xi

 |p = ∂f
∂xi

(p).

The Jacobian matrix of a vector valued function
The matrix

∂f
∂x (p) := 

⎝⎜
⎜
⎜
⎜⎛

⎠⎟
⎟
⎟
⎟⎞

∂f1
∂x1

(p) ...  
∂f1
∂xn

(p)

... ... ...

 
∂fm
∂x1

(p) ...  
∂fm
∂xn

(p)

 = (
∂fi
∂xj

(p)) = (
∂fi
∂xj

(p))i=1,...,n,j=1,...m

is called Jacobian matrix ore functional matrix of f at p. Its determinant is called
Jacobian ore functional determinant. and is denoted
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| ∂f
∂x | (p) = det ∂f

∂x (p).

The differential of a vector valued function
For every differentiable vector valued function

f: U H Rm, x ! f(x) = 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

f1(x)

...
fn(x)

,

defined on an open set U é Rn and every point p P U, matrix multiplication by the
Jacobian matrix defined a linear map

dpf: Rn H Rm, x ! ∂f(p)
∂x  : x , i.e.,   

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

x1
...
xn

 ! 

⎝⎜
⎜
⎜
⎜⎛

⎠⎟
⎟
⎟
⎟⎞

∂f1
∂x1

(p) ...  
∂f1
∂xn

(p)

... ... ...

 
∂fm
∂x1

(p) ...  
∂fm
∂xn

(p)

:

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

x1
...
xn

,

which is called the linearization or the differential of f at p. Soon we will see that this
map also exists in the more general context of manifolds, where it looks like this:
Remarks
(i) Given a Cr map of Cr manifolds

f: M H M’
(with r ≥ 2) and a point p P M, than there is a linear map of real vector spaces

dpf: Tp(M) H Tp’(M’)

with p’ := f(p) P M’, also called differential of f at p.

Using this notation, two important theorems (which will soon be proved in the
analyis course) can be  translated as follows into the language of manifolds.

(ii) Inverse function theorem. Assume that dpf is an isomorphism, then f is locally at p
a diffeomorphism, i.e. there are open sets

U é M and U’ é M’
such that

1. p P U, p’PU’, f(U) = U’.
2. f|U : U H U’ is a diffeomorphism.
(iii) Implicite function theorem. Assume that dpf is surjective. Then

f-1(p’)
is locally at p a submanifold of M, i.e. there is a chart araound p,

x: U H V é Rn, u ! 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

x1(u)

...
xn(u)

, p P U,

such that U, f-1(p’) is defined by a system of linear (!) equation, say
U, f-1(p’) = {u P U | x1(u) = ... = xm(u) = 0}.



102

Chain rule
Let

f: U H Rm, x = 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

x1
...
xn

 ! 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

f1(x)

...
fm(x)

,

be a continuously differentiable function defined in an open set U é Rn of n-space.
Moreover, let

ϕ:I H U, t ! 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

ϕ1(t)

...
ϕn(t)

,

be a continuously differentiable function defined on an open set I é R. Then, vor every
t0P I,

df(ϕ(t))
dt  |t=t0

 = ∑
i=1

n  ∂f
∂xi

(ϕ(t0)):˝
dϕi(t)

dt (t0)

For short,
d(fg)

dt  = ∑
i=1

n  
∂f 
∂xi

 : 
dϕi
dt

A trivial example
f(x1,x2) = x2

1 + x2
2

ϕ1(t) = sin t
ϕ2(t) = cos t

Then
∂f
∂x1

= 2x1
∂f
∂x2

= 2x2

Using the chain rule we get

df(ϕ1(t),ϕ2(t))
dt  = ∂f

∂x1
 (sint t, cost t) dsin t

dt + ∂f
∂x2

 (sint t, cost t) dcos t
dt

= 2sin t:cos t + 2cos t:(-sin t)
= 0

Of course we know that f(ϕ1(t), ϕ2(t)) ist constant. Hence its derivative should be zero.

A complex example (related to the first problem of series 2)
Let U é Rm, V é Rn be open sets and



103

f: U H V, x ! f(x) = 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

f1(x)

...
fn(x)

g: V H U, y ! g(y) = 

⎝⎜
⎜
⎜⎛

⎠⎟
⎟
⎟⎞

g1(y)

...
gm(y)

,

be continuously differentiable functions which are inverse to each other,
f9g = id: V H V and g9f = id: U H U.

In particular,
gi(f(x)) = xi for every i.

Therefore

δij = 
∂xi
∂xj

 (p)= 
∂gi(f(x1;...;xm))

∂xj
 (p)= ∑

l=1

m   
∂gi(y)
∂yl

(f(p)):
∂fl(x)
∂xj

 (p)

hence
Id = (δij) = ∂g

∂y(f(p)) :  ∂f
∂x(p)

For short
Id = ∂g

∂y :  ∂f
∂x

and similarly
Id =  ∂f

∂x : ∂g
∂y

In case m = n one obtains for the determinants
1 = |∂f

∂x | : |∂g
∂y | = |∂g

∂y | : |∂f
∂x |

Problem
Is it possible that m and n are different ?

Solution
To  fix notation, we may assume that

m < n.
Consider the n;n-matrix

Id =  ∂f
∂x : ∂g

∂y (1)

We cannot pass to the product of the determinants, since the number m of colums of the
first matrix ∂f

∂x and the number m of rows of the second matrix are too small. We can
work around this problem adding colums to the first and rows to the second matrix
which consits entirely of zeroes. Denote the resulting n;n-matrix again by ∂f

∂x and ∂g
∂y.

This operation of adding zero entries does not change the product on the right of (1).
But now we can pass to the determinants:

1 = |∂f
∂x | : |∂g

∂y |
In particular

|∂f
∂x | 0 0 and |∂g

∂y | 0 0.
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In particular, these n;n matrices cannot contain columns or rows consisting entirely of
zeros. There the number of zero columns or rows  added to these matrices must be zero.
We not add anything. But then the original matrices are already n;n matrices, which
means

m = n.
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