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1 Introduction

Let us consider the discrete logarithm problem for curves of a fixed genus g
at least 3. In [7] it is shown that the problem can be solved in an expected
time of

Õ(q
2− 2

g ) ,

where q is the cardinality of the base field.
The algorithm given follows the index calculus or relation generation and

linear algebra strategy and as usual for such algorithms for the discrete log-
arithm problem for curves of a fixed genus, the so-called factor base consists
of a subset of the set of rational points of the curve. Moreover, a so-called
double large prime relation is used, where the set of “large primes” (which
are not at all large here) consists of the remaining rational points.

The algorithm is randomized and – also as usual – the phrase “expected
time” refers to the internal randomization of the algorithm; no randomization
over input instances is considered. The same holds for all further statements.

For non-hyperelliptic curves this can be improved. Indeed, as was shown
in [22], that for such curves, the problem can be solved in an expected time
of

Õ(q
2− 2

g−1 ) .

The algorithm for this result relies on the construction of a birational
plane model of degree g + 1 of the curve in question. In the case that g = 3

the canonical curve is used, and in higher genus, one can think of the plane
model as being obtained by consecutive central projections through points
on the curve. Then an index calculus algorithm (also with double large prime
variation) is aplied to the resulting plane model. The central idea is here to
generate relations by intersecting the plane model with lines. More precisely,
the plane model is intersected with lines which already run through two
points of the factor base. Note here that this means that one has to impose
a condition on a “remaining” divisor of degree g− 1 to generate relations. In
contrast, in the original method, uniformly randomly given divisors where
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considered, which are therefore with a high probability of degree g. Note
here that the degrees of the divisors are directly reflected in the running
times. This idea was first presented in [6], then a variant of the algorithm
with a rigorous analysis was given in [9].

Let us note that one can interpret the approach via the birational plane
model of degree g + 1 as follows: The divisors defined by the lines form
a (complete) linear system of (projective) dimension 2 and degree g + 1.
This linear system has index of speciality 1. For every fixed non-singular
rational point of the plane model, the lines through the point define a pencil,
that is, a 1-dimensional linear system of divisors. The center point is then
what is called a base-point, and if one subtracts this base point from every
divisor, one obtains a base-point free pencil of degree g. Again this system
is complete and has index of speciality 1.

It is then natural to ask if one can use a family of pencils of higher index
of speciality to attack the discrete logarithm problem. Let us note in passing
that base-point free pencils correspond to equivalence classes of functions to
P1 up to change of coordinates on the image, and that the use of functions
to speed up the computation of discrete logarithms is classical. For example,
for a hyperelliptic curve one uses the function of degree 2 to speed up the
computation. The essential difference to our approch is however that this
one function speeds up the computation by a constant factor whereas we
want to obtain a better exponent in the expected running time. For this, we
need much more than just one pencil.

The approach via the plane model of degree g + 1 already gives an idea
how to obtain such pencils: If one uses a singular rather than a non-singular
rational point on the plane model, one obtains a base-point free pencil of
degree at most g−1. (If, as we will show is typically the case, the singularity
has order 2, the degree is exactly g − 1.)

Now, for every curve of genus at least 4, every plane model of degree
g + 1 has a singularity. It turns out, however, that for curves of genus 4 the
approach fails because every such curve has at most two pencils of degree 3.
But for curves of genus at least 5, results on special linear systems on generic
curves, the so-called Brill-Noether theory, suggests that the approach might
be succesful.

With a suitable algorithm and an analysis of the underlying geometry we
argue for the following conjecture:

Conjecture (short formulation). For nearly all non-hyperelliptic curves
of a fixed genus g at least 5, the discrete logarithm problem can be solved in
an expected time of

Õ(q
2− 2

g−2 ) .
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The formulation here contains the not yet defined phrase “for nearly all”.
A definition of this phrase and a completely precise formulation is given below
under “Details”. We note that we have deliberately written “Conjecture” and
not “Heuristic Result” because we want to make a solid statement which
exceeds “heuristic” statements for which it is not clear what the level of
commitment to the exact claim made is.

Details

We now give a more detailed description of the statements, thereby fixing
some terminology.

We follow the scheme-theoretic approach. We note that this means in
particular that a morphism of varieties over a field k corresponds to what is
classically called a morphism “defined over k”.

In this work, a curve over some field is by definition always geometrically
irreducible and geometrically reduced (the latter condition being automatic
for curves over finite fields) but it need not be smooth. However, when we
speak of a curve of a particular genus, we always demand that the curve be
smooth without saying so explicitly. A birational plane model or simply a
plane model of a smooth curve over a field k is a plane curve, that is, a curve
in P2

k which is birational to the given curve.
As said, we consider the discrete logarithm problem for curves of a fixed

genus over finite fields. This means that upon input of a curve C of genus g
over a finite field and two points a, b ∈ Cl0(C), the degree 0 class group of
C (as always over the field) with b ∈ 〈a〉, a natural number e with e · a = b

shall be computed.
To represent the input instances, we follow the description in Section 2 of

[7]: We represent the curve by a birational plane model of bounded degree,
we represent the degree 0 divisor classes by divisors which are reduced along
a fixed rational point P0 (which always exists for q large enough), and we
represent divisors in an ideal theoretic way; for details we refer to [7]. Let
us note here that in the algorithm, the ideal theoretic representation is used
to compute bases of the spaces of global sections (or Riemann-Roch spaces,
L-spaces) L(D) = Γ(C,O(D)) for divisors D on the curve via Heß’ algorithm
([19]).

As stated, the heuristally claimed result has not yet been formulated in
a precise way, so let us do this now:

Considering curves of a fixed genus over finite fields, we define the phrase
for “nearly all curves” as follows: Let us first fix a finite field Fq. Then there
are finitely many isomorphism classes of curves of the given genus over the
field. We now consider a property P on curves over finite fields which is
well-defined up to isomorphism, and we consider for each prime power q the
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probability that the property holds if the isomorphism classes of curves are
chosen uniformly randomly. We say that P holds for nearly all curves if this
probability converges to 1 for q −→∞. To give an example, nearly all curves
of a fixed genus over finite fields are non-hyperelliptic.

With this definition, the conjecture as given above is still not completely
precise, mainly because of the unspecified logarithmic terms in the expected
running time Õ(q

2− 2
g−2 ). For an accurate statement, we need to go to down

to a “technical” level which is usually ignored in complexity theoretic state-
ments: We fix a random access machine model of computation with ran-
domization and logarithmic cost function,1 and we fix a representation of
the objects involved via bit-strings (following the ideas stated above). Then
we claim:

Conjecture (precise formulation). For every fixed g ≥ 5 there is a
RAM Π, a function f ∈ Õ(q

2− 2
g−2 ) and a constant C > 0 such that

• upon input of an instance of the discrete logarithm problem for curves
of genus g, if Π terminates it outputs a solution to the problem,

• for some prime power q, let us consider some distribution of input
instances for which the curve is distributed uniformly randomly over
Fq. Then with a probability of at least (1 − C

q ) Π terminates in an
expected time of f(q).

Indeed, we not only claim that there exists such a RAM but we also
claim that one can obtain such a RAM by following the computation out-
lined in the next section. Also, we note again the expected time refers to
every single curve. We also note that we have deleted the phrase “non-
hyperelliptic” as it is unnecessary, but the algorithm definitely only operates
for non-hyperelliptic curves.

Practical implications

The first computation performed in all the index calculus algorithms men-
tioned is the computation of the L-polynomial. For practical purposes only
the group order is needed, but this computation can also be de facto im-
possible for curves for which the remaining parts of the algorithms can be
performed without problems.

For this reason, for practical purposes, we restrict ourselves to instances
where the group order is known (or can be computed easily). We then show

1For a straight-forward interpretation of the outlined algorithms, one might use a model
with addition and subtraction. As shown in [8], it is then possible to transfer the result
to a successor RAM model.
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experimentally that the algorithm is practical and that indeed, for curves
for which the order of the degree 0 class group is prime “up to a small
cofactor”, the problem for non-hyperelliptic curves of genus 5 and 6 should
– by the current state of the art – be regarded as being equaly hard as the
corresponding problem for curves of genus 4 and 5, respectively, over the
same field. We note here that the computation of the plane mode in [22]
is very quick and that with the index-calculus algorithm in [6] the problem
for non-hyperelliptic curves of any particular fixed genus g ≥ 4 should be
regarded as being equaly hard as the problem for hyperelliptic curves of
genus g − 1 over the same field (again if the group order is prime “up to a
small cofactor”). So, one can say that – under the restriction on the group
order given – from a practical point of view, the discrete logarithm problem
for non-hyperelliptic curves of genus 5 and 6 should be seen as being equaly
hard as the problem for hyperelliptic curves of genus 3 and 4, respectively,
over the same field.

This practical result has implications on the discrete logarithm problem
in elliptic curves over finite extension fields and threfore also on the security
of potential cryptographic schemes based on elliptic curves.

For example, in [5] it is shown that one can transfer certain instances of
the discrete logarithm problem for elliptic curves over fields Fq5 , q a prime
power, to the corresponding problem for curves of genus 5 over Fq. As there is
no indication that the resulting curves are hyperelliptic, it suggests itself that
the curves are non-hyperelliptic; experimentally this is the case. If one then
applies the new algorithm to these curves, one obtains a practically relevant
running time of Õ(q

4
3 ) instead of the time of Õ(q

5
2 ) for generic methods.

This corresponds to a change of the bit-length by a factor of 8
15 ≈ 53%.

We note, however, that in contrast to, for example, the ρ-method, the
storage requirements for an index calculus algorithm are always large, and
they are particularly large if – as is the case here – a double large prime vari-
ation is used. Concretely, for all the mentioned index calculus algorithms,
with a straight-forward implementation of the graph of large prime rela-
tions, one has to store about q relations. This can be reduced by directy
iteratively constructing a tree of large prime variations. For the new algo-
rithm, in practice the tree should have a size of about q1−

1
g−2

+ 1
(g−2)2 , which

of course can still considered to be enormous in comparison with the min-
imal storage requirements for the ρ-method. Also, again as usual for index
calculus algorithms, there is the problem that it is difficult to parallize the
linear algebra computation.

5



Notation and Terminology

We have already given many notations used. Generally, all the notation
and terminology used follow [9] and [22]. Following [22] and in contrast to
[9], a curve is not automatically smooth. In particular, we use the notation
introduced in Definition 1 of [9] which might be called “asyptotically greater
or equal”. This is first used in Proposition 2.1 in subsection 2.2.

Outline

In the next section, we present the algorithm. For this, we first give some
geometric background, then present “first ideas” for the algorithm. We recall
from [7] that the task is to compute an appropriate tree of large prime
relations and then give an algorithm to do so. At the end of the section, state
the theoretical results on which the heuristic analysis relies. In Section 3 we
then prove these results. For this, we make use of Brill-Noether theory for
special linear systems. An important ingredient is here the use of linear
systems on relative curves. In Section 4 we give the experimental results,
and finally in Section 5 we briefly indicate how one might use even “more
special” pencils to compute discrete logarithms. For the lack of a suitable
reference, we give some general results on these in an appendix.

2 The algorithm

2.1 Geometric background

As already mentioned in the introduction, the algorithm relies on the consid-
eration of special linear systems, in particular base-point free pencils. Here
we briefly give some information related to this. Everything we need for the
algorithm can be found in [18, Chapter II, §7]. Later we will also use the
books [2] and [1] and sources cited therein. At this point, the reader might
just consult the introduction to [2] as an additional source to [18].

Let C be a smooth curve over a field k. Let now L be a sheaf on C. Then
any global section s of L defines an effective divisor called the divisor of zeroes
of s. There is an induced bijection from Γ(C,L)/k∗ to this space of these
divisors, thus the latter space, which we denote by |L| has the structure of a
projective space. Such a space is called a complete linear system (or series),
and a projective subspace of this a linear system; such a space is typically
denoted by d. The projective space d is then the image of a linear subspace of
Γ(C,L). By definition, all divisors in a linear system are linearly equivalent.

If now a linear system d is given, any divisor D of d defines a sheaf O(D)

and is then given as the divisor of zeroes of 1 on this sheaf. Then d is a
subspace of the complelte linear system |D| = |O(D)|. In conclusion, there
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is a bijection between linear systems and tuples (L, V ), where V is a linear
subspace of Γ(C,L).

Just as every projective space, a linear system has a dimension; it is usual
to denote this by r. Note that the dimension of the complete linear system
associated to a sheaf L is given as dim(Γ(C,L))− 1.

Effective divisors can be identified with subschemes. Then the base locus
of a linear system is the scheme-theoretic intersection of the divisors in the
system. A system is base point free if its base locus is trivial.

If a morphism π : C −→ Pr
k is given such that the image is not contained

in a projective subspace, the pull-backs of the hyperplanes to C define a base
point free linear system of dimension r, and the morphism is given up to
change of coordinates by this system. Conversely, to every base point free
system of dimension r, one can associate such a morphism such that the
system is then given by the pull-backs of hyperplanes. This morphism is
then also unique up to a linear change of the projective coordinates.

A 1-dimensional linear system is called a pencil. As a special case of what
we just said, the preimages of any function define a base point free pencil,
and conversely, a base point free pencil defines such a function up to change
of coordinates. The degree of the function and of the pencil are then by
definition identical.

2.2 First ideas for the algorithm

Let C be a curve of genus at least for over a finite field Fq.
As already mentioned, we want to consider base-point free pencils of

dimension g − 1 which are complete as linear systems.
Note the following interesting application of the Riemann-Roch theorem:
Let ω be the canonical sheaf. Then for every divisor D of degree g − 1,

the systems |D| and |ω(−D)| have the same dimension. In particular, the
former is a pencil if and only if the latter is one.

To generate such pencils algorithmically, we use the ideas already pre-
sented in the introduction:

We consider some effective divisor D of degree g − 3. Then the system
|ω(−D)| has degree g+1 and dimension at least 2. Heuristically, one expects
that it defines a plane model of the curve. In [22] it is proven that for
nearly all such divisors, this is the case. Concretely, there is a function f

from the prime powers to the natural numbers converging to 1 such that for
variable curves C over variable finite fields Fq the portion of divisors with
the prescribed property is ≥ f(q).2 Similarly, with the same framework it is

2Note that as usual in algorithmic considerations, we first said that the curve should
be given and then varied the curve if this is appropriate. We shall proceed so also in the
following.
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not difficult to show that for nearly all divisors, the resulting plane models
have only singularities of order 2.

Let us assume that we have such a divisor D and that the plane model
Cpm and a birational morphism π : C −→ C′pm to it has been computed.
(Note here that the curve given by a fixed plane model Cpm, so π in fact is
a birational map from the fixed plane model Cpm to the variable one.) is
Suppose now that there is a rational singularity S of order 2. Then we can
consider the base point free pencil defined by the lines through S. Let ∆ :=

π−1(S). Then the base point free pencil under consideration is then |ω(−D−
∆)|. Note that here deg(D+∆) = g+1 and consequently deg(ω(−D−∆)) =

g + 1 as well.
Let us consider the relation generation, where for simplicity for the mo-

ment we avoid the double large prime variation: The factor base F is a
subset of C(Fq). Following [6] and [9] an evident idea is now as follows: One
intersets the plane model with lines through the given singularity (through
the images of points of the factor base and conviniently avoiding any lines
which pass through further singular points). One considers all divisors which
split completely over the factor base. If there are at least two such divisors,
one mapps all these divisors back to the curve. One fixes one of them, say
D0. Then any other divisor, say D, defines a relation [D]− [D0] = 0 which
can be stored in the relation matrix.

For a theoretical analysis the following variant is however more con-
vinient: Note that, as said above, the residual system of a complete one
dimensional linear system of degree g + 1 is again a complete one dimen-
sional linear system of degree g + 1. We can apply this to the systems
|ω(−D−∆)| and |D+ ∆|. So, the system |D+ ∆| is also a pencil of degree
g + 1.

In the algorithm, we then use the plane model only to compute S. From
S we then compute ∆, and given this, we compute a function f in L(D+∆),
obtaining the basis 1, f of this space. From these, we can easily generate the
relations.

For this approach, which might be called implicit approach in contrast to
the explicit approach emphazising the different plane models it is easier to
argue that the computations for each pencil can be performed in the desired
expected time of Õ(#F) ·Poly(log(q)). This is however not the main reason
for this change. The reason is rather that it facilitates the overall analysis
of the algorithm leading to the graph of large prime variation.

Concretely, one of the challenges is to give rigorous estimates for the
number of completely split divisors in the pencils. Heuristically one expects
that “usually”, the number of completely split divisors in a base point free
pencil of degree g − 1 should be about 1

(g−1)!q. For a rigorous estimate, the
following proposition is handy:
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Proposition 2.1 Let us consider base-point free pencils of a fixed degree d
containing one divisor which splits completely into distinct points on curves
of a fixed genus g over finite fields Fq. Then the number of divisors in such
a pencil which split completely into distinct points is & 1

d! · q and . 1
d · q.

Proof. Let such a curve C over Fq and such a pencil d on C be given. Let
f : C −→ P1

Fq
be a funtion corresponding to the pencil. Then there is a

rational point of P1
Fq
, say Q, such that f−1(Q) splits completely into distinct

points.
We consider the corresponding extension of function fields Fq(C)|Fq(P1)

and identify closed points of the curve with places. Let M be the Galois
closure of this extension. Then a place of Fq(P1) is completely split in Fq(C)
if and only if it is completely split in M ; cf. Corollary III.8.4 of [27].

The place Q is by assumption completely split in Fq(C). (Note that by
terminology of number / function field theory, a place which is completely
split or completely decomposed in an extension is in particular unramified;
this is the case here as we assume that the pencils contains a divisor which
splits completely into distinct points.) As Q is completely split in Fq(C) it is
also completely split inM . This in turn implies that Fq is the exact constant
field of M .

With the effective Chebotaryov density theorem from [26], we conclude
that the number of places of Fq(P1) of degree 1 which split completely in M
(or in Fq(C)) is 1

[M :Fq(P1)]
· q +O(q

1
2 ), which is & 1

d! · q and . 1
d · q.

This gives the proposition. 2

Remark 2.2 A special case of this proposition for central projections via
plane models was already given in [9]. We take the opportunity to point out
two minor mistakes in the argument in [9]. These mistakes do not affect the
result have been corrected above:

• A central projection with center P is considered. Then incorrectly the
image of the point P is used where a new point, called Q above, should
be used.

• It is incorrectly claimed that the number of completely split places is
(in our notation) 1

d! · q +O(q
1
2 ).

We briefly explain why the considerations of pencils |D + ∆|, where D
and ∆ are as above, is handy:

We want to consider pencils which contain by construction a divisor
which splits completely into distinct points. In the analysis of the algorithm
we then have to consider the number of such pencils which can be generated
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with the given method and the probability that such one plane model leads
to such a pencil.

For this, it is convenient to generate pencils as follows: We choose D
to be completely split and then consider (assuming |ω(−D)| defines a plane
model and if possible) a rational singularity of order 2 such that D+∆ splits
completely into distinct points.

If we considered the residual system instead, in the analysis of the algo-
rithm we would have to consider conditions both on the pencil itself (namely
that it is defined via a singularity of a plane model, which in particular
means that it contains a divisor which splits as D + ∆, where D has degree
g − 3 and ∆ has degree 2) and its residual (namely that the residual has a
completely split divisor).

2.3 Algorithmic background

As already stated, just as the previous algorithms, for example the ones in
[7] and [6], we use a so-called double large prime relation. In Section 3.1 of
[6] a general framework for the use of double large prime relation for curves
of a fixed genus has been developed.

We want to consider instances of the discrete logarithm problem for
curves of a fixed genus g. As already stated, the smooth curve in question,
C, shall be represented by a plane model Cpm.

The factor base we want to use shall be a subset F of C(Fq) of size
dq1−

1
g−2 e, and as usual the set of large primes is then L := C(Fq)−F . In our

application, a graph of large prime relations is then an undirected labeled
graph on L ∪̇ {∗} with root ∗, where the labels are given in an evident way
by relations involving one large prime (for edges to ∗) or two large primes
(for edges connecting points of L). A tree of large prime relations is defined
analogously, only that it is a labeled rooted tree with root ∗. Moreover, in
our application the large prime relations involve only a constant number of
points of F (indeed at most 2(g− 1)− 1 = 2g− 3). Then by Proposition 11
of [6] we obtain:

Proposition 2.3 Given the data just described and a tree of large prime
relations of size at least q1−

1
g
+ 1

(g−2)g and a depth which is polynomially
bounded in log(q), one can compute any instance of the discrete logarithm
problem for the particular curve in an expected time of

Õ(q
2− 2

g−2 ) .

Without considering methods to find relations, there are different meth-
ods to construct such a tree:
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• One method is to construct the tree directly by inserting a new relation
if it connects to the tree. This is used to prove the result in [13].

• A slightly different method is to construct the tree in stages. This is
used in [7] and in [9].

• The classic method is to first construct an approriate graph of large
prime relations on L ∪̇ {∗} and then to construct a tree from this
graph. This is used for the practical result in [13] and the heuristic
results in [6] and [10].

Here, we pursue the same approach as in [6] and [10], and we use similar
heuristic assumptions. Explicitly, the goal is to construct a graph on L ∪̇
{∗} (which is of size ∼ q) with roughly q edges. From this graph we then
construct a tree of large prime relations with a breath-first search starting
with ∗. For the analysis, the graph constructed is then compared with a
suitable random graph in a standard model.

One of the classes of well-studed random graphs are Bernoulli random
graphs. Here, a natural number n and a real number p between 0 and 1 are
fixed and then the random graph is considered were each edge occurs with a
probability of p. Let G(n, p) be this random graph. Note that the expected
value of edges in this graph is p · n(n−1)2 . Then with [3] we have the following
result:

Proposition 2.4 Let c > 1. Then there are constants c1, c2 > 0 such that
with a probability converging to 1 for n −→ ∞, the graph G(n, cn) has a
connected component of size at least c1n and diameter at most c2 log(n).

This result suggets that one is on the right track here.

2.4 Construction of the tree of large prime relations

We now describe the algorithm for the construction of a tree of large prime
relations for conjectured results.

The algorithm starts by the construction of the factor base F by choosing
a subset of size dq1−

1
g−2 e uniformly at random from the subsets of C(Fq) of

this size. For this, rational points are chosen uniformly at random until the
disired set is constructed. The construction can be done in an expected time
of Õ(q

1− 1
g−2 ); see also [7].

The reason for choosing the factor base in this randomized way is that
then nicely make use of probabilistic methods for the analysis of the relation
generation. This idea was already applied fruitfully in [6] and is applied
dirctly below in Lemma 2.5.
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Then pencils of degree g − 1 are constructed in the way outlined in
subsection 2.2. Let us assume we have such a pencil. Now, we want to
obtain relations with up to two large primes from this. Particularly, we want
that every divisor which splits completely into factor base elements and one
or two large primes leads to such a relation. There is however a problem here
now: Relations are given by differences of divisors, and for this approach, we
need at least one relation which splits completely into factor base elements.
This is however not the case most of the time (under the randomized choice
of the factor base and any choice of the pencils), as is shown by this lemma:

Lemma 2.5 For a pencil of degree g − 1 with a divisor which splits com-
pletely into distinct points,

a) the expected number of divisors which split over the factor base is &
1

(g−1)! · q
− 1

g−2 and . 1
g−1 · q

− 1
g−2 .

b) the expected number of divisors which split into points of the factor base
and one large prime is & 1

(g−2)! .

c) the expected number of divisors which split into points of the factor base
and two large primes is & 1

(g−3)! · q
1

g−2 .

Proof. Let D be a divisor which splits completly into distinct points. Then
the probability that it splits completely over the factor base is ∼ q−

g−1
g−2 , the

probability that it splits completely into points of the factor base and one
large prime is ∼ (g − 1) · q−

g−2
g−2 = (g − 1) · q−1, and the probability that

it splits completely into points of the factor base and two large primes is
∼ (g − 1) · (g − 2) · q−

g−3
g−2 .

As there are & 1
(g−1)! · q (by Proposition 2.1) and . 1

g−1 ·
1
q such divisors,

the result follows. 2

For this reason, whenever we have constructed a pencil, we add the points
of the divisor for its construction, that is the completely split divisor D+ ∆,
to the factor base.

The third item of the lemma suggests that one should consider
d(g − 3)! · q1−

1
g−2 e pencils, and this is what we do. For this, we choose

the effective divisor D of degree g − 3 uniformly at random, and if |ω(−D)|
defines a plane model (which is then of degree g+1), we consider all rational
singularities of order 2, compute the corresponding divisors ∆ of order 2,
and among the ones for which D + ∆ splits completely into distinct points,
we choose one divisor ∆ uniformly at random. This then gives the pencil
|D + ∆| we consider.
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In this way, we generate (g − 3)! · q1−
1

g−2 distinct pencils of degree g − 1

each containing a divisor which splits completely into distinct points. (We
check that the pencils are distinct with the divisors D+∆ constructed.) For
each of the pencils we generate relations with one or two large primes as
described.

This gives the following overview of the algorithm.

Algorithm: Construction of the tree of large prime relations

Input: A curve C/Fq of genus g ≥ 4, represented by a plane model of bounded
degree.

Output: A factor base and a tree of large prime relations.

1. Construct a list of appropriate pencils:

Construct a list of d(g−3)! ·dq1−
1

g−2 e pairwise non-linearly equivalent divisors
Di of degree g−1 splitting completely into distinct points and defining pencils
as follows:

For i←− 1 to d(g − 3)! · dq1−
1

g−2 e do:
Choose a divisor D of degree g − 3 splitting completely into distinct
points uniformly at random among all such divisors.

sCompute a basis of L(K −D), where K is a canonical divisor.

If the dimension of L(K −D) is larger then 3, go back to the beginning
of the loop.

Compute the image of the curve C in P2
Fq

defined by the computed basis
of L(K −D). If this image does not have degree g + 1 go back the the
beginning of the loop.

(Now a plane model and morphism to it have been computed; denote
this by π : C −→ C′pm.)
Compute the rational points of the singular locus of C′pm. For each such
rational point, compute the corresponding divisor ∆. If there is no such
divisor ∆ of degree 2 such that D + ∆ split completely into distinct
rational points, go back to the beginning of the loop.

Choose one divisor ∆ from the ones constructed uniformly at random. If
D+ ∆ is linearly equivalent to any of the divisors D1, . . . , Di−1 go back
to the beginning of the loop.

Let Di ←− D + ∆
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2. Construct the factor base F :

Choose a set F of size dq1−
1

g−2 e uniformly at random among the subsets of
C(Fq) of this size.

3. Construct a graph of large prime relations on L ∪̇ {∗}, where L := C(Fq)−F :

For i←− 1 to d(g − 3)! · q1−
1

g−2 e do:
Insert the points in Di into the factor base. For each point P of F ,
compute the unique divisor D in |Di − P |. If it splits into points of the
factor base and one or two large primes, store the relation defined by
D−Di in the tree of large prime relations, provided that there is not yet
an edge between the vertices in question.

4. Construct a tree of large prime relations:

Use a breadth-first search starting with ∗ to construct a tree of large prime re-
lations T from the graph. Stop this construction if the tree has dq1−

1
g
+ 1

(g−2)g e
points.

5. Check if the tree is appropriate: If the tree has a diameter ≥ log2(q), go back

to the beginning.

6. Output F and T .

Remarks 2.6

• As already stated, the purpose of this algorithm, with the more de-
tailed information on its steps below, is to argue that the conjectures
in the introduction are correct. For practical purposes, we propose
an algorithm with an explicit use of the plane model for relation gen-
eration, following the first ideas presented in the introduction and in
subsection 2.2.

• We have put Step 1 at the beginning rather than mixing it with Step 3
after the construction of the factor base to facilitate the understanding
and analysis of the algorithm.

• One feature of the algorithm, convenient for the analysis, is (by
Lemma 2.5): Conditionally to any outcome of Step 1, the expected
value of (distinct) relations (with one or two large primes) generated
in Step 3 is & q. Note that this does however not mean by itself that
the number of edges in the graph is then & q. The reason is that there
might be different relations for the same tuple of large primes.

14



• In Step 3, for each i, the points of the divisor Di are inserted in order
to be able to store the relations. There is also the following alternative
approach for this: If D is a divisor in the pencil |Di| which splits
completely into points of the factor base and one or two large primes,
one can store the relation generated also by storing the information for
D and the divisor Di or also the class [Di]. Now, the class [Di] can
simply be represented by i. One can then say that with this approach
the factor base is augmented with the divisors Di instead of the points
in it.

• The construction of the tree of large prime relations from the graph in
Step 4 and the criterion in Step 5 are adapted from [6]. The exponent
in the criterion that the diameter be ≤ log2(q) is quite arbitrary.

With the ideal arithmetic for divisors, up to factors polynomial in log(q),
the computations with divisors in the algorithm can be carried out as fast
as one can reasonably expect. We refer again to Section 2 of [7] for more
information on the basic computations. Now we go through the different
steps. When a computation can be perfomed in an (expected) time which
is polynomially bounded in log(q) (and therefore in the input size), we say
that it can be performed in expected polynomial time.

Step 1. To compute the divisor D, we compute uniformly distributed ra-
tional points (disregarding dublicates) until we have g − 3 distinct points.
This can be done in a expected polynomial time. The same is true for the
computation of the canonical divisor K and the basis f1, f2, f3 of the space
L(K −D). Then the image (i.e. the polynomial defining the image) can be
computed in polynomial time as well,3 and it is trivial to check the degree
condition.

Let F ′ ∈ Fq[X,Y, Z] be the polynomial defining the plane model C′pm.
Then the singular locus of C′pm is defined by F and its partial derivatives.
Now, the degrees of the polynomials in this system are bounded and the
scheme defined is 0-dimensional. The rational points can then be computed
in expected polynomial time with a Gröbner base computation.

Let now P be such a point. The task is now to compute the corresponding
divisor ∆ on C. For this, we compute a basis g1, g2 of the subspace of
L(K − D) vanishing at P on C′pm. Explcitly, if, say, P = (a : b : 1), then
f1 − af3, f2 − bf3 is such a basis.

From this, we compute ∆ as ∆ = K −D + inf(div(g1), div(g2)).
A crucial question is now if Step 1 can be completed at all, that is, if

enough divisors can be computed, and also what the probability is that one
3Zitat auf Kochinke

15



iteration of the loop runs through. This will be addressed below.

Step 2. This can be performed in an expected time of Õ(q
1− 1

g−2 ).

Step 3. For one divisor and one point of the factor base the computation
can be performed in expected polynomial time. In total, the complete step
can be performed in an expected time of Õ(q

2− 2
g−2 ).

Step 4 to 6. These step can clearly be performed in a time of Õ(q
1− 1

g
+ 1

(g−2)g ).

We have included curves of genus 4 only for completeness. In fact, for
such curves, Step 1 never terminates because:

Proposition 2.7 On a non-hyperelliptic curve of genus 4, there are at most
two pencils of degree 3. These are base pont free and complete.

It is easy to see that any such pencil is base point free and complete.
The fact that there are only two such pencils is proven below the “Existence
Theorem” in [2, V]. It is also shown that on a general curve there are two
such systems, and that these are residual to each other, that is, if |D| is the
one system then |K −D| is the other. Moreover, there are particular curves
with only one such pencil, which is then autoresidual.

The proposition is in line with the following statement of the theory of
Brill and Noether on special linear systems: For any non-hyperelliptic genus
g at least 4 over an algebraically closed field, the pencils move in a family
of dimension (g − 4). The necessary definitions for to make this statement
accurate and the accurate statement itself can be found in the next section.
There are still a lot of obstracels for a precise analysis, but this gives a first
hint on what to expect.

Indeed, as we shall show in the next section, we have:

Proposition 2.8 Let us consider curves of a fixed genus g ≥ 5 over finite
fields Fq such that q ≥ g or g ≤ 7. Then for curves in all but a portion of
O(1q ) isomorphism classes, the following holds.

a) There are ∼ 1
(g−1)! · q

g−3 distinct effective divisors of degree g − 1 and
dimension 1 which can be given as D + ∆, where D and ∆ are effective
divisors, D has degree g − 3, ∆ has degree 2, |K − D| defines a plane
model and ∆ defines a singularity (of order 2) on the plane model.

b) The probability that an effective divisor D of degree g − 3 which splits
comletely into distinct points gives rise to a base point free system |K−D|
defining a plane model with a rational singularity defined by a divisor ∆
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of degree 2 such that D + ∆ splits completely into distinct points is in
Θ(1).

c) Let D be uniformly distributed among divisors of degree (g − 3) which
split completely into distinct points such that the condition of b) holds.
Now let (D,∆) be distributed such that ∆ is distributed uniformly for
each value D0 of D. Then D + ∆ is distributed such that each value
(which is attained at all with non-trivial probability) is obtained with a
probability of Ω(qg−3).

Remark 2.9 We need the condition that g be ≥ q in one step of the proof.
We conjecture that the corresponding statement is always valid and therefore
that the statements in the proposition hold without this condition.

The proposition implies the following statement on Step 1 of the algo-
rithm:

Proposition 2.10 Let us consider curves of a fixed genus g ≥ 5 over finite
fields Fq such that q ≥ g or g ≤ 7. Then for curves in all but a portion of
O(1q ) isomorphism classes, the following holds.

a) With a probability of Θ(1), a divisor D as in the algorithm leads to at
least one tuple (D,∆) as in the algorithm.

b) If a divisor D + ∆ is chosen, D + ∆ is distributed among ∼ 1
(g−1)! · q

g−3

divisors in such a way that each value is obtained with a probability of
Θ(qg−3). Furthermore, then |D+∆| is distributed among Θ(qg−4) pencils
in such a way that each pencil is obtained with a probability of Θ(qg−4).

c) Any iteration of the for-loop can be performed in expected polynomial
time.

d) Step 1 can be performed in an expected time of Õ(q
1− 1

g−2 ).

Here, item a) and the first sentence of b) are just applications of the
previous proposition, and the further statements follow immediately.

Besides the gap to prove the result without the condition g ≥ q or g ≥ 7,
it remains to analyse the tree of large prime relations. Concretely, it remains
to show that the condition in Step 5 is satisfied with a probability of 1

qO(1) .
We are not able to perform this anlysis, so we rely on a comparison with

random graphs related to G(n, p).
As sated in Remark 2.6, the algorithm has the property that the expected

number of relations generated in Step 3 is & q. A first indication that the
analysis is accurate is Proposition 2.4 applied with n = q and p = 2

q (such
that the expected number of edges is ∼ q). The conclusion is that there are
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constants c1, c2 > 0 such that with a probability converging to 1 for q −→∞,
the graph G(q, 2q ) has a large connected component of size at least c1n and
diameter at most c2 log(q).

Another kind of “standard random graph” are uniform random graphs.
For two appropriate natural numbers n,m the uniform random graphG(n,m)

is the random graph obtained by choosing a set of m edges uniformly at ran-
dom from the set of edges of this size. One sees rather easily that for any
c > 1, the conclusion of Proposition 2.4 also hold for the graphs G(n, d c2ne);
cf. Proposition 10 in [10]. We apply this with the graphs G(q, q) for q −→∞.

As a variant, we consider a random graph for natural numbers n,m where
n edges are drawn uniformly but with replacement from the set of edges. Let
us denote this random graph by G∗(n,m). For our applications we note that
for any c > 1 and any d < c, for nearly all n, the graph G∗(n, d c2ne) has
≥ d

2n edges with probability converging to 1 and therefore the conclusions
of Proposition 2.4 also hold for G∗(n, d c2ne). So in particular they hold for
G∗(q, q) with q −→∞.

To model the situation considered here even better, we consider for some
natural numbers n,m and a real number p between 0 and 1 the random
graph obtained by the following procedure:

1. G is set to be the empty graph on the set {1, . . . , n}.

2. For i←− 1 to m:

With a probablity of p:

One edge is chosen uniformly at random
if this edge is not yet contained in G, it is inserted.

We denote this graph by G∗(n,m, p).
Ths graph can also be described as follows: It is the random graph

G∗(n,m′), where m′ is distributed according to the binomial distribution for
m tries and success probability p. In particular, the expected number of
edges chosen edges is mp.

In the algorithm, the probability that one divisor which is completely
split in one of the considered pencil splits into elements of the factor base
and two large primes is ∼ (g− 1) · (g− 2) · q−

g−3
g−2 = (g− 1) · (g− 2) · q

1
g−2
−1,

and in total there are & 1
(g−1)·(g−2) ·q

2− 1
g−2 such divisors in all the considered

pencils together. (In the computation, for efficiency reasons, we only consider
divisors containing an element of the factor base, but we can think of the
graph as being constructed as follows: First all completely split divisors in
all the pencils |Di| are computed and then the factor base is chosen and it is
determined which divisors lead to edges in the graph.) This suggests to model
the situation with the graph G∗(q, 1

(g−1)·(g−2) ·q
2− 1

g−2 , (g−1)·(g−2)·q
1

g−2
−1

).
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With the Chebychev inequality we see that the conclusion is just as for the
graph G∗(q, q) and then also for G(q, q).

This concludes our analysis of the algorithm. Based on it, we are confi-
dent to say that the conjecture raised in the introduction holds.

3 Geometric analysis

To prove Proposition 2.8, we make use of Brill-Noether theory for special
linear systems on curves. We then combine these results with the results of
Section 2 of [22] to get probabilistic estimates.

We follow closely [2] and [1] in notations. Concerning techniques and
results, the last chapter of the second book, that is, Chapter 21 called “Brill-
Noether theory on a moving curve”) (which can be seen as a book for itself)
is of particular importance.

There is, however, the problem that in these books analytic techniques
are used: The first book is written from an analytic point of view (which also
and in particular means that even if purely algebraic techniques are used it is
assumed that the characteristic is 0). This is less so for the second book, but
also there analytic techniques are sometimes used. One example is Lemma
2.12 in [1, Chapter 21] in which analytic spaces are used.

For this reason, we state all the results we wish to use (and some more
for a more complete picture) and point to sources in which they are proven
algebrico-geometrically.

We also make use of the definitions and resuls introduced in Section 1 of
[22]. We would like to suggest to the reader to read Sections 1 and 2 of [22]
before continuing.

In addition to the objects introduced in [22], for a smooth relative curve
C/S, we make use of the S-schemes Wr

d(C) and Grd(C). Let us recall the
Wr
d(C) paramerizes complete linear systes of degree d and dimension at least

r in the fibers of C over S and that Grd(C) parameterizes (not necessarily
complete) linear systems of degree d and dimension exactly r in the fibers
of C over S. These definitions can be found in [1, Chapter 21, §3]. The
definitions for Grd(C) are recalled in subsection A.

3.1 Brill-Noether theory

Let us recall the definition if the Brill-Noether number :
For non-negative integers g, d, r this number is defined by

ρ = ρ(g, d, r) := g − (r + 1)(g − d− r) .

The Brill-Noether number plays an important role in several statements
which are summerized below.
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Proposition 3.1 Let C be a nonsingular curve of genus g ≥ 1 over some
algebraically closed field k. Fix integers d, r with d ≥ 1, r ≥ 0 and denote
ρ(g, d, r) by ρ.

a) If ρ ≥ 0 then Grd(C), Wr
d(C) and Crd are non-empty.

b) Every component of Grd(C) has dimension at least ρ. Similarly, if r ≥ d−g
every component ofWr

d(p) has dimension at least ρ and every component
of Crd has dimension at least ρ+ r.

c) If ρ ≥ 1 then Grd(C) and Wr
d(C) are connected.

Proof. All statements are summarized in [2, V], Theorem 1.1 and Theorem
1.4 for complex curves. The original sources [21] and [20] for a) and b),
and [12] for c) provide proofs valid over algebraically closed fields of any
characteristic. For a) and b) the authors do not restrict the characteristic
from the start, whereas c) is proven for complex curves but is also valid in
any characteristic by Remark 2.8 in [12]. 2

Proposition 3.2 Fix an algebraically closed field k and let C be a general
nonsingular curve of genus g ≥ 1 over k. Furthermore, fix integers d, r, g
with d, g ≥ 1, r ≥ 0 and denote ρ(g, d, r) by ρ.

a) The scheme Grd(C) is smooth of dimension ρ. If r ≥ d− g then Wr
d(C) is

of dimension ρ, as well. In particular, if ρ < 0 then Grd(C) and Wr
d(C) are

empty.

b) If ρ ≥ 1 then Grd(C) and Wr
d(C) are irreducible.

c) Suppose that r ≥ d − g and ρ ≥ 1. Then Crd − C
r+1
d is irreducible of

dimension ρ+ r.

Proof. The statements a) and b) are summarized in [2, V] for complex
curves. Statemnt a) for Grd(C) follows from Gieseker’s theorem ([14]) which
states: For a general curve C of genus g and an effective divisor D on C the
cup-product homomorphism

H0(C,O(D))⊗H0(C, ω(−D)) −→ H0(C, ω)

is injective. As stated in [2, V] the result for Wr
d(C) then follows easily.

With Proposition 3.1 c) this implies b) for Grd(C). The result for Wr
d(C)

then follows immediately as the image of an irreducible space is irreducible.
On c): The scheme Crd − C

r+1
d is non-empty by Lemma [2, IV], Lemma

1.7. Moreover by Lemma 1.6 (which holds in arbitrary chacteristic) and
Gieseker’s result the scheme is smooth. The fiber of (Crd−C

r+1
d ) −→ (Wr

d(C)−
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Wr+1
d (C) are projective spaces of dimension d. By applying this to the generic

point of Wr
d()̧, we obtain that Crd − C

r+1
d has an irreducible component V

which maps domimently to Wr
d(C) −Wr+1

d (C) and has dimension ρ + d. It
remains to show that V = Crd − C

r+1
d . As Crd − C

r+1
d is smooth for this it

suffices to show that Crd − C
r+1
d is connected.

The morphism (Crd − C
r+1
d ) −→ (Wr

d(C) −Wr+1
d (C)), which is obtained

by base change from Crd −→ C
r+1
d , is proper. Therefore, V maps surjectively

to Wr
d(C)−Wr+1

d (C). Suppose that there is another component V ′ of Crd −
Cr+1
d . Let P ∈ V ′. Then the fiber containing P is a projective space,

thus connected. This fiber has non-trivial intersection with V and V ′, a
contradition. 2

Additionally we have the following theorem due to H. Martens in [24].
Here we cite its version as in [2, IV], Theorem 5.1.

Proposition 3.3 Let C be a smooth curve of genus g ≥ 3 over some alge-
braically closed field k. Let d be an integer such that 2 ≤ d ≤ g − 1 and let
r be an integer such that 0 < 2r ≤ d. If C is not hyperelliptic then

dim (Wr
d(C)) ≤ d− 2r − 1 .

If C is hyperelliptic then

dim (Wr
d(C)) = d− 2r .

3.2 Pencils of degree g − 1

We are interested in pencils of degree g−1. The following lemma shows that
we are on the right track by considering plane models with singularities of
order 2 to generate pencils of order g − 1:

Lemma 3.4 Let k be an algebraically closed field.

a) Let C be a non-hyperelliptic curve of genus g over k. Then each effective
divisor D on C of degree g − 3 is part of a divisor in a g1g−1.

b) Let C be a general curve of genus g over k. Then a general divisor D ∈
Cg−3 leads to a plane model such that all its singularities are of order 2.

Proof. a) Let D ∈ Cg−3 and denote a canonical divisor on C by K. We
distinguish three cases. First, assume dim(|ω(−D)|) ≥ 3. Then for any
effective divisor D′ of degree 2 we have dim(|ω(−(D + D′))|) ≥ 1 and thus
dim(|D +D′|) ≥ 1 as well.

Now, suppose dim(|ω(−D)|) = 2 and |ω(−D)| possesses a base point P .
Then dim(|ω(−(D+P ))|) = 2 and thus for any point P ′ dim(|D+P+P ′|) =

dim(|ω(−(D + P + P ′))|) ≥ 1.
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Finally, suppose |K−D| defines a morphism ϕ : C → P2
k. This morphism

cannot be an embedding. So there is a point P ∈ ϕ(C) such that ϕ−1(P )

has degree at least 2, say ϕ−1(P ) = P1 + P2 + · · · + Pk. Denote by g1g+1−r
the pencil given by lines through P . Then |D+P1 +P2| is a g1g−1 on C since
its residual is g1g+1−r + p3 + . . .+ pr.

b) One sees easily that any other possiblity contradicts the conditions
given by the theory of Brill and Noether. 2

As already stated in Proposition 2.7, there are only at most two pencils
of order 2 on a curve of genus 4. We now consider curves of some genus
g ≥ 5. By Proposition 3.1 and Martens’ theorem we see that the W1

g−1(C)
and G1g−1(C) are connected and (g − 4)-dimensional.

More important is for us to study the space C1g−1. We start with the
results for general curves:

Proposition 3.5 Let C be a general curve of genus ≥ 5. Then the space
C1g−1 − C2g−2 is irreducible and (g − 3)-dimensional.

The task is now to establish that for curves of genus at least 5 over finite
fields there are enough pencils suitable for the algorithm.

For this, just as in [22] we study the univeral family of three-canonically
embedded curves Zg −→ Hg. We note that the reason we study particularly
this family is that for any prime power q, every isomorphism class of curves
is represented by an equal number of elements in Hg(Fq).

As already said, the following results are for g ≥ 5.

Lemma 3.6 There is an open subscheme U0 ofHg such that for any geomet-
ric point u of U0, the fiber (Z1

g,g−1 − Z2
g,g−1)u is non-empty and irreducible

and such that U0 −→ Spec(Z) is surjective (or equivalently such that for any
field k, (U0)k is non-trivial).

Proof. This follows from the general statement in [17, IV, Theorem 9.7.7]
and the fact that in any characteristic the generic fiber is irreducible. 2

Lemma 3.7 There is a unique open subscheme U1 of G1g−1(Zg) such that a
geometric point u of G1g−1(Zg) lies in U1 if and only if the following holds:
Let s be the image of u on Hg. Then the pencil on (Zg)s corresponding to
u is base point free. This scheme maps surjectively to Spec(Z).

Proof. Note that the fiber (Zg)s of Zg,g−1/Hg at s is equal to the fiber of
(Zg ×Hg G1g−1(Zg))/G1g−1(Zg)) at u.

Now the statement that U1 is open is a special case of Lemma A.7.
Moreover, in every characteristic a generic divisor on a generic curve is base
point free. 2
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In order to show that there are “enough” divisors which split completely
into distinct points, we consider base point free pencils corresponding to
functions defining what we call an ordinary covering (see also [22, Definition
11]):

Definition 3.8 Let f : C −→ P1
k be a function of degree d on a smooth

curve C over a field k. An ordinary branch point of f is a k-valued point of
P1
k which has exactly d− 1 preimages in C(k). A

Proposition 13 from [22] then says:

Proposition 3.9 Let us consider base point free pencils of a fixed degree
d > 2 defining an ordinary covering on curves of a fixed genus over finite fields
Fq. Then the number of divisors in such a pencil which split completely into
distinct points is ∼ 1

d! · q.

Let us note that this notion is closely related to the notion of a simple
covering as defined in [11]. There is however a slight difference. Let us first
recall the definition from [11]:

Definition 3.10 A simple divisor on a smooth curve C over a field k is a
divisor on C such that over k it splits into distinct points. (If k is perfect
this is equivalent to splitting into distinct topological points already over k.)
A function f : C −→ P1

k of degree d on a curve C is a simple covering if it is
generically unramified and its discriminant divisor is simple.

The two conditions are equivalent if char(k) 6= 2. However the condition
for simple coverings is never satisfied in characteristic 2. This is why we
introduce the notion of an ordinary covering.

The following proposition, which was already used in [9], is well known:

Lemma 3.11 There is a unique open subscheme U2 of G1g−1(Zg) such that
a geometric point u of G1g−1(Zg) lies in U2 if and only if the following holds:
Let s be the image point on Hg. Then the pencil on (Zg,g−1)s corresponding
to u is base point free amd defines an ordinary covering.

Proof. Let ∆2 be the diagonal in (Zg)2 := Zg ×Hg Zg and ∆3 the diagonal
in (Zg)3. Note ∆2 and ∆3 are closed in the surrounding spaces.

Let ∆ be the image of ((Zg)g−5 × ∆2 × ∆2) ∪ ((Zg)g−4 × ∆3) in Zg−1
under (Zg)g−1 −→ Zg,g−1. Note that as the morphism is proper ∆ is closed
in Zg,g−1.

As shown in subsection A.3, particularly Proposition A.17, there is a
projective line bundle P −→ G1g−1(Zg) such that for a geometric point u of
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G1g−1(Zg) lying over a geometric point s of S, the fiber of P over s param-
eterizes the divisors D in the pencil given by u on Cs. Moreover, there is a
morphism P −→ C1g−1 which corresponds to the assignment (d, D) 7→ D.

Let Ṽ be the preimage of ∆ in P. Finally, let V be the image of Ṽ under
the projection from P to G1g−1(Zg). Now V is yet again closed as P is proper
over G1g−1(Zg).

Now for any geometric point u of G1g−1(Zg), u lies in V if and only if the
following holds: Let s be the image of u on Hg. Then u defines a complete
linear system which contains a divisor on (Zg)s of the form 2P1 +2P2 +P3 +

· · ·+ Pg−3 or 3P1 + P2 + · · ·+ Pg−3 for points Pi.
Let U := G1g−1(Zg) − V and U2 := U ∩ U1. Then U2 has the desired

property. 2

We would now desire to prove that U2 maps surjectively to Spec(Z). For
this it would suffice to show that in any characteristic there is at least one or-
dinary covering C −→ P1

k with k an algebraically closed field of characteristc
p with g(C) = g.

For characteristic 0 or characteristic at least g one can refer to W. Fulton’s
work [11] on Hurwitz schemes (for simple coverings). We therefore habe:

Lemma 3.12 The image of the scheme U2 as the previous lemma in Spec(Z)

contains all primes ≥ g.

Of course, we would like to prove that the scheme U2 in the lemma maps
surjectively to Spec(Z). This seems to be a difficult question (see also the
remark following the next lemma), but for a particular genus and particular
characteristic, one can try to construct such curves algorithmically. For this,
one can proceed as in the algorithm: One fixes an effective divisors D of
degree g− 3 until one has a plane model with a rational singularity of order
2. Then one computes, via the polar curve, the tangents to points of the
curve running trough such a singularity.

We performed the necessary computations for curves of genus ≤ 7. We
therefore have:

Lemma 3.13 Let U2 be as in the previous lemma. Then for g ≤ 7, U2 −→
Spec(Z) is surjective.

Remark 3.14 For characteristic 6= 2 the problem of finding a curve of genus
g and simple covering of degree g− 1 can be stated in the following way via
fundamental groups, following [16]:

Let first k be an algebraically closed field and f : C −→ P1
k a covering of

degree g − 1. We then have 4g − 4 branch points; let these be a1, . . . , a4g−4.
We fix a yet different point b of P1(k). Now, the étale fundamental group
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π1(P
1
k − {a1, . . . , ak}; b) operates transitively on the fiber f−1(b). The iso-

morphism class of the covering f : C −→ P1
k is uniquely given by the isomor-

phism class of this group theoretic operation, and conversely, any transitive
operation of π1(P1

k − {a1, . . . , ak}; b) on a set of size g − 1 gives such a cov-
ering.

We now omit the base point because it is not relevant for the following.
In characteristic 0 we have

π1(P
1
k − {a1, . . . , a4g−4}) ' 〈γ1, . . . , γ4g−4 | γ1 · · · γ4g−4 = 1〉̂ ,

where the γi are inertia elements. A simple covering is then given by a
transitive operation of π1(P1

k − {a1, . . . , a4g−4}) on {1, . . . , n}, where every
γi operates as a transposition. Clearly this is possible, so there is such a
covering.

For characteristic p > 0, we have the so-called tame fundamental group
πt1(P

1
k−{a1, . . . , a4g−4}), which operates on the fibers of tame coverings. This

group is a quotient of π1(P1
k−{a1, . . . , a4g−4}). The images of the γi are again

inertia elements, and now a simple covering is given by a transitive operation
of this group on {1, . . . , n}, where every γi operates as a transposition.

The pro-p-prime quotient of π1(P
1
k − {a1, . . . , a4g−4}) (and thus

πt1(P
1
k − {a1, . . . , a4g−4})) is isomorphic to the p-prime quotient of

π1(P
1
K −{a1, . . . , a4g−4}), where K is an algebraically closed field of charac-

teristik 0. It follows that for g ≥ p there is a simple covering of degree g− 1

ramified above a1, . . . , a4g−4.
Above we stated the problem to find to prove that there are simple cover-

ings of degree g−1 if p < g. This can now be formulated as a question on the
tame fundamental groups πt1(P1

k−{a1, . . . , a4g−4}) as stated. Unfortunately,
this reformulation does not provide an answer to the question either.

We now introduce the condition that the pencils are obtained via singu-
larities of plane models:

Lemma 3.15 There is an unique open subscheme U3 of Z1
g,g−1 such that

for any geometric point D of U3, if s is the image of this point on Hg,
there is a decomposition D = D̃ + ∆, where D̃ has degree g − 3 and ∆ has
degree 2, |ω(−D̃)| is base point free and defines a birational plane model
of (Z1

g,g−1)s and ∆ is the divisor contained in the divisor for a rational
singularity of (Z1

g,g−1)s. In particular, |ω(−D)| and |D| are pencils, and
therefore U3 ⊆ (Z1

g,g−1 −Z2
g,g−1).

The scheme U3 maps surjectively to Z.
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Proof. We consider the diagram

(Zg,g−3 ×Zg,2)1 //

��

Zg,g−3 ×Zg,2

��

π // Zg,g−3

Z1
g,g−1

// Zg,g−1 ,

where (Zg,g−3 × Zg,2)1 is the preimage of Z1
g,g−1 in Zg,g−3 × Zg,2 and π is

the projection. The morphism (Zg,g−3×Zg,2)1 −→ Zg,g−3 is proper because
it is a composition of a closed and therefore proper morphism and a proper
morphism.

In Zg,g−3 there is an open subscheme V whose geometric points corre-
spond to divisors on curves over algebraically closed fields defining plane
models with singularities of order 2. (In [22] we showed that V maps sur-
jectively to Hg, but we do not need this here.) Let U be the preimage
of V in (Zg,g−3 × Zg,2)1. As a preimage of an open scheme it is open in
(Zg,g−3 × Zg,2)1. Let U3 be the image of U in Z1

g,g−1. As the projection to
Z1
g,g−1 is flat, U3 is open in Z1

g,g−1.
We already know by Lemma 3.4 that U3 maps surjectively to Spec(Z). 2

The space. Based on U0, U2 and U3 as in the lemmata, we now define a
scheme whose rational points correspond to divisors which can be obtained
in the algorithm.

For U2, note that the morphism G1g−1(C) −→ W1
g−1(C) induces an iso-

morphism over W1
g−1(C) − W2

g−1(C). We restrict U2 to this space; let the
resulting space be U ′2. Now let U be the intersection of U0 with the inter-
section of the images of U ′2 and U3 in Hg. As the morphisms are smooth,
U is open in Hg. Let A be the complement of U in Hg and let B be the
complement of of U3 in Z1

g,g−1 − cZ2
g,g−1.

If we now apply [22, Corollary 6] and Proposition 3.9 to this setting, we
obtain:

Lemma 3.16 Let g ≥ 5.

a) There is a constant C > 0 such that for any prime power q with q ≥ g if
g > 7,

#A(Fq)
#Hg(Fq)

≤ C · 1

q
.

b) For curves corresponding to Fq points of U , there are ∼ qg−4 pencils
corresponding to points in U ′2(Fq). These pencils define 1

(g−1)! · q
g−3 base

point free completely split divisors of degree g − 1.
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c) There is a constant C ′ > 0 such that for any Fq-rational point s of Hg,
the number of effective divisors given on (Hg)s by points in Bs(Fq) is
≤ C ′ · qg−3.

d) For curves corresponding to Fq-rational points of U , there are ∼ qg−4

pencils corresponding to points in U3(Fq). In these pencils there are in
total ∼ 1

(g−1)! · q
g−3 completely split divisors of degree g − 1 which come

from the plane model to a system |K −D| and a singularity of order two
on the curve.

Proof of Proposition 2.8. We have just proven part a) of the proposition.
For b) we just need to note that every plane model of degree g + 1 has

≤ c := g(g−1)
2 − g singularities. Thus the ∼ 1

(g−1)! · q
g−3 divisors fulfilling the

deired conditions come from at least ∼ 1
c·(g−1)! · q

g−3.
Item c) then follows.

4 Experiments

We implemented what we called, in subsection 2.2, the “explicit approach” in
the computer algebra systemMagma. For a comparison, we also implemented
the approach based on plane models of degree (g+1) as described in [6]. We
note that a function based on these ideas is already available in Magma under
the name IndexCalculus. Nevertheless, we also implemented a new version
of this algorithm in order to vary different parameters like the size of the
matrix of relations and the number of vertices in the graph of large prime
relations.

Let us call the algorithm the algorithm based on [6] the “plane model
based algorithm” and the new algorithm the “pencil based algorithm”. We
now briefly describe the specifications made for both algorithms. The plane
model based algorithm proceeds as follows: First, a plane model of degree
(g+1) is computed and the instance discrete logarithm problem is transfered
to this. Given such a plane model of C and two divisor classes in Pic0C(Fq),
in a first step we apply the method from Algorithm 3 to generate q relations
of type FP or PP . From this, we build the graph G of large prime relations
using a factor base F of size dκ · q1−

1
g−1 e, where κ := (4 · (g − 1)!)1/(g−1) is

chosen as indicated in [9]. So for g = 4, 5 the constant κ is approximately
2.8 and 3.1, respectively. We note that by [9] asymptotically any κ with
κ ≥ (2 · (g − 1)!)1/(g−1) should be sufficient. In a second step we use a
breadth-first search to construct a shortest path tree T on the graph. We
then create further relations factoring over F ∪ V, where V is the vertex set
of T . These relations are generated in the same way as before, that is, by
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intersecting the plane model with lines. Whenever an appropriate relation is
created, we check if it has already been constructed before. This can easily
be done using the aggregate “set" in Magma. Substituting elements of V with
the help of T we generate a matrix of relations R with slightly more rows
than columns. Then we apply the Lanczos algorithm to find a non-trivial
row vector γ in the left kernel of R.

The pencil based algorithm on the other hand starts with the same input
and a factor base F of size dκ · q1−

1
g−2 e. We want the running times for the

relation generation and the linear algebra step to be similar so experimentally
we decided to set κ := 1. In this case, we can not guarantee there are lines
in P2

Fq
factoring over F for any plane model of C. So we increase F by up

to (g− 3) new elements for each of the plane models used. Again, we always
check if a relation has already been constructed. Furthermore, in order to
decrease the number of duplicates during the relation generation process, for
each pencil given by a singularity p of a plane model π : C → Cpm of degree
(g+1), we only consider lines through p and π(Q) where Q ∈ {P1, . . . , Pd k

2
e}

with k = q
1− 1

g−2 . As before, we create a graph G with q vertices in this way
and consider the tree T constructed from G by breadth-first search.

Similarly to the plane model based algorithm we use the identical rela-
tion generation method as in the construction of G to generate a matrix of
relations R′ from T . Again we stop the construction of R′ if it has slightly
more columns than rows. As before we solve the corresponding system of
equations by applying the Lanczos algorithm.

We intend to compare the plane model based algorithm for genus 4 or
5 to the pencil based algorithm for genus 5 or 6, respectively. For this we
generated curves of the desired genera over F3, F5 and F7 by the Magma
function RandomCurveByGenus and made a base change to the fields used in
the tables below. We had to proceed this way so we could calculate the order
N of the degree-0 Picard groups using the L-polynomial. We then picked
the biggest prime p in the factorization of N and generated a random divisor
class a of degree 0 on the corresponding curve which had order p. We set
b := n · a where the integer n was chosen from {1, . . . , p − 1} uniformly at
random and computed the discrete logarithm of b with respect to a using
the indicated algorithms.

The rounded results for varying fields can now be found in the tables
below. Trel and Tla stand for the time (in hours) needed to create R and
solving γR = 0, respectively.
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F57 = F78125 genus size of F Trel Tla

Plane model 4 5000 0.3 0.2
Pencil 5 5000 0.6 0.4
Plane model 5 15000 2.0 3.2
Pencil 6 15000 5.2 6.1

F311 = F177147 genus size of F Trel Tla

Plane model 4 9000 1.0 1.2
Pencil 5 9000 2.0 2.1
Plane model 5 27000 7.7 12.5
Pencil 6 26000 20.9 23.3

F77 = F823543 genus size of F Trel Tla

Plane model 4 25000 8.2 10.6
Pencil 5 24000 11.6 17.6

F313 = F1594323 genus size of F Trel Tla

Plane model 4 39000 50.9 42.3
Pencil 5 38000 71.8 78.8

The theoretical results indicate that for q → ∞, by applying the pencil
based method instead of the plane model based method one can, at least for
most curves, obtain an improvement which corresponds to the drop of the
genus by one. The experiments show that this also holds from a practical
point of view. The running times of the pencil based algorithm for genus
g = 5, 6 differ from those of the plane model based algorithm for genus (g−1)

only by a factor between 1.5 and 2.0 for g = 5 and between 1.7 and 1.9 for
g = 6. This difference comes from the way relations are generated. The
plane model based algorithm only uses one plane model whereas the pencil
based algorithm varies the plane model and maps the factor base and large
primes back and forth between these models.

Changing the plane model various times also has an effect on F . During
the operation of the pencil based algorithm the original factor base of size
dq1−

1
g−2 e is increased by a factor of about 2.8 for g = 5 and 3.1 for g = 6. This

also indicates why we did not choose κ considerably smaller than 1, because
this meant a bigger increase of F in each step. So the advantage of a smaller
factor base at the beginning would be almost canceled during the process of
relation generation. A bigger constant on the other hand would mean bigger
matrices and hence the Lanczos algorithm would take considerably longer.
It is also worth noting that the factor by which F is increased is similar to
the one we chose for κ in the plane model based algorithm if the genus is
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dropped by one. So the sizes of the sparse matrices R′ generated by the
pencil based algorithm are similar to those of the corresponding matrices R
created by the plane model based algorithm for a genus that is decreased by
1.

On the other hand, we observed that matrices of type R′ had 3.1 to
3.5 times the density of matrices of type R for which the genus is dropped
by one. This can be explained by the more complicated way relations are
generated in the pencil based algorithm.

Additionally, we note that the testing we did was primarily designed to
check the behavior of the pencil based algorithm in comparison to the plane
model based algorithm. In particular, we intended to show that the rela-
tion generation via different plane models and lines through singular points
is practical. So far, this could only be tested in full for curves which are
generated by base change. Nevertheless, we also did some testing of the re-
lation generation step for fields of bigger characteristic and the corresponding
results did not differ significantly from the ones above.

As expected, for q sufficiently large and g = 5, 6 in the considered cases
the pencil based algorithm never failed. So first of all there always existed
enough linear systems to create the graph of large prime relations. Secondly,
the relations generated by different plane models in the way described above
are sufficiently independent. However, in order to get matrices of appro-
priate rank we had to create them from slightly more relations than factor
base elements. In fact, the Lanczos algorithm almost always succeeded with
matrices of size (#F + 10)×#F .

The main difficulties while implementing the pencil based algorithm were
caused by the linear algebra step. The function ModularSolution specified for
index calculus and relying on either structured Gaussian elimination or the
Lanczos algorithm is available in Magma but failed to work reliably for large
finite fields. The Gaussian elimination got extremely slow whenever the
group order was prime, and often ModularSolution did not succeed indepen-
dently from the chosen option. So we implemented the Lanczos algorithm
based on [23] ourselves in Magma and in the C++ library LinBox. It turned
out that Magma was about twice as fast multiplying dense vectors by sparse
matrices and hence our implementation in Magma is considerably faster than
the one in LinBox. So in order to get the results above we chose to use our
Magma version of the Lanczos algorithm.

We also encountered failures in Magma in some other cases. Whenever
there is a large set of tuples initiated, “for" loops are executed more slowly
depending on the set’s size. However, when the set only consists of field
elements or elements in an affine or projective space this was not the case.
Hence we adjusted the implementation so that only sets of the above form
are used to store the generated relations. Furthermore, we got an error
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whenever we tried to check if a given divisor on a plane curve is principal.
On the other hand, a similar function worked fine for divisors of function
fields. So in contrast to the Magma function IndexCalculus we decided to
represent the input curve by the function field of a corresponding plane
model and not by the plane model itself. Finally, in certain cases, we had to
delete the vertex set of a given graph before ending the function as otherwise
we got an internal error.

5 Further ideas

We showed how one can, for curves of a fixed genus ≥ 5, efficiently use
pencils to solve the discrete logarithm problem. The pencils we considered
have index of speciality 2. It is then natural to ask if one can further improve
the asymptotic running time by considering “even more special” pencils.

Indeed, Brill-Noether theory itself gives an explicit description of the
spaces Crd. We outline here how one might use this in principle.

We first give the essential theoretical observations we need. Let for this
any smooth curve C of genus g ≥ 3 over a field k be given, and let D be an
effective divisor of degree d on C. Then the Riemann-Roch Theorem states
that

dim(|D|) = dim(Γ(C, ω(−D))) + d− g .

We have the short exact sequence

0 −→ ω(−D) −→ ω −→ ω/ω(−D) −→ 0

Now let κ(D) := Γ(C, ω/ω(−D)). Then we have the exact sequence

0 −→ Γ(C, ω(−D)) −→ Γ(C, ω) −→ κ(D) .

Let n be the dimension of the image of Γ(C, ω) in κ(D). Then by Riemann-
Roch

dim(|D|) = d− n .

We make this more explicit now. Let ω1, . . . , ωg be a basis of Γ(C, ω)

and let D = P1 + · · ·+ Pd with distinct k-rational points Pi. Then κ(D) =⊕d
i=1 κ(Pi) and κ(Pi) = ωPi/(mPiωPi), which is a 1-dimensional k-vector

space. Now n is the rank of the matrix ((ωi(Pj)))i,j , whose entries in the
jth column lie in κ(Pj). Explicitly, we can fix one non-trivial differential ω,
express every ωj in the form ωj = fj · ω for a function fj and consider the
rank of the matrix ((fi(Pj)))i,j . This matrix is called Brill-Noether matrix
by Griffiths and Harris in [15]. Note that with K := div(ω), we have an
isomorphism L(K) −→ Γ(C, ω) , f 7→ f · ω.
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Let now d and r be given. Then |D| has dimension at least r if and only
if the rank of the matrix is ≤ d− r. This means that the determinants of all
minors of size d− r + 1 of the matrix vanish.

So very briefly, we have the following method to compute such linear sys-
tems: We first compute an effective canonical divisorK and a basis f1, . . . , fg
of L(K). Then we regard the Pi as unknown points on the curve and express
the condition that the determinants of all minors of size d− r+ 1 vanish by
a non-linear system of equations in the coordinates of the Pi.

Note also that if D = P1+ · · ·+Pd is one solution, then so is any effective
divisor which is linearly equivalent toD and which splits into distinct rational
points. Because of this it is reasonable to fix ρ+ r of the points, where ρ is
the Brill-Noether number defined above.

Concerning the systems of equations, there are in fact two obvious vari-
ants here: The first variant is that one starts off with a plane model. In this
case, obviously one only has one curve equation for each point Pi but the
determinants of the matrices are rather complicated. A second variant is to
consider the canonical embedding of the curve. In this case, each point has g
coordinates, and one has various equations for each point, but the functions
f1, . . . , fg are now just the coordinates x1, . . . , xg and the determinants are
as easy as possible.

In any case, for a fixed genus, degree and dimension, the number of vari-
ables and the number of equations is fixed and the degrees of the equations
are bounded. It is therefore reasonable to expect that the computation can
be performed in expected polynomial time. With a suitable variant of the
algorithm it should be possible to prove this.

Now by Proposition 3.1, for any curve of genus g and for d = dg2 + 3
2e the

space W 1
d has dimension at least 1. This suggests that one might use these

pencils to construct the graph of large prime relations.
This suggests that one might obtain an algorithm to compute discrete

logarithms for nearly all curves of a fixed genus g with an expected running
time of

Õ
(
q
2− 2

d g+1
2 e
)
.

The indicated index calculus algorithm seems however to be of little prac-
tical value. Indeed, it seems to be very difficult to perform any practical and
non-trivial computation with the indicated method to find special divisors.

Given that we cannot perform any computation, we also have no way
to see if experimentally the algorithm performs as one might expect heuris-
tically. We therefore also do not want to make a claim that there is an
algorithm with the indicated running time for nearly all curves.
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A Relative linear systems and relative effective di-
visors

For the lack of a suitable reference we discuss some foundational questions
related to linear systems and divisors for smooth relative curves. We take
the opportunity to give an exposition which is a bit more general than what
is needed for the article.
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A.1 Definition and basics

Let us first state some statements which are implicitly used in [1] without
further elaboration:

Remark and Definition A.1 Let X be an S-scheme, and let p : X −→ S

be the structure morphism. Let L be a sheaf on X and s ∈ S. Moreover, let
Xs = p−1(s) be the fiber over s and ιs : Xs −→ X the inclusion. Then we
have a natural homomorphism

(p∗L)s = lim
s∈U open in X

Γ(p−1(U),L) −→ Γ(Xs, ι
∗
sL)

Now Γ(Xs, ι
∗
sL) is a κ(s)-module and the homomorphism induces a homo-

morphism
(p∗L)s ⊗Os κ(s) −→ Γ(Xs, ι

∗
sL)

Let now H be a subsheaf of p∗L. Then we have a homomorphism

Hs ⊗Os κ(s) −→ Γ(Xs, ι
∗
sL) .

In [1] this homomorphism is called fiber homomorphism and Hs ⊗OP
κ(s) is

denoted by H⊗ κ(s), and ι∗PL is denoted by L⊗ κ(s). We do not follow the
latter notation and rather write L|Xs

.

We also recall the so-called projection formula, given in [17, I, (5.4.10)],
which says:

Lemma A.2 Let f : X −→ S be a morphism of ringed spaces, let Q be a
locally free sheaf of finite rank on S and let F be any sheaf on X. Then
there is a natural isomorphism

f∗(F)⊗OS
Q ' f∗(F ⊗OX

f∗Q) .

Recall that a smooth (relative) curve over a scheme S is a proper S-
scheme whose fibers are all smooth curves of the same genus (which itself
are by definition geometrically reduced and geometrically irreducible). We
then have:

Lemma A.3 Let C/S be a smooth relative curve with structure morphism
p : C −→ S.

a) For an invertible sheaf Q on S, the canonical morphism Q −→ p∗p
∗Q is

an isomorphism.

b) For an invertible sheaf L on C, p∗L is locally free.
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Proof. On a). The question being local on S, we can assume that Q is free
and then that Q = OS . Now p∗p

∗OS = p∗OC = OS , the last equation as
C/S is proper with geometrically connected fibers (Stein factorization).

On b). For this statement see [1, Chapter 21, §3]. 2

Let now S be a locally noetherian scheme and let C/S be a smooth rela-
tive curve with structure morphism p : C −→ S. The following definition on
“relative linear systems” is inspired by [1, Chapter 21, Definition 3.12]. The
underlying mathematical ideas are identical, but we changed the terminology
in two ways: First, we emphasize the relative point of view; this is a minor,
linguistic change. Second, we define these systems via isomorphism classes
in such a way that in the classical case (i.e. for curves over fields), the objects
are in natural bijection with what is classically called “linear system”. Third,
we again change the terminology in order to be able to distinguish this sheaf
theoretic description of linear systems and a more classical description with
spaces of divisors.

Definition A.4 A representative of a relative linear system of degree d and
dimension r is a pair (L,H), where L is an invertible sheaf on C whose re-
striction to each fiber of p : C −→ S has degree d, and H is a locally free
subscheaf of p∗L of rank r + 1 such that, for all s ∈ S, the fiber homomor-
phism

H⊗ κ(s) −→ Γ(Xs,L|Cs)

is injective. Two such tuples (L,H), (L′,H′) are equivlent if there is an
invertible sheaf Q on S and an isomorphism L′−̃→L⊗ p∗Q inducing an iso-
morphism (via p∗ and Lemma A.2) an isomorphism H′−̃→H ⊗ Q. A sheaf
theoretic relative linear system of degree d and dimension r is an equivalence
class of such tuples. If (L,H) is a representative of a relative linear sys-
tem, the corresponding linear system, that is, equivalence class of (L,H), is
denoted by [(L,H)].

Theorem 3.13 in [1, Chapter 21] states: If C −→ S is a smooth curve
of genus > 1 which has a section then the functor assigning to T the set of
relative linear systems of degree d and dimension r on CT is representable.
The definition of Grd(C) under the condition that C −→ S has a section is
that it is a representing object of this functor. If it does not have a section,
Grd(C) becomes a representing object of such a functor after an étale base
change. One can then say that Grd(C) represents the sheaf associated to the
functor in the étale topology, similar to the corresponding statement for the
Jacobian; cf. [25].
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A.2 The base locus

For curves over fields, base point free linear systems of dimension r cor-
respond to morphisms to Pr up to automorphism. Moreover, for curves
over algebraically closed fields, a base point free linear system given by
a tuple (L, v) on a curve C defines a morphism C −→ P(V ∨) given by
P 7→ {g ∈ V | g(P ) = 0}.

We now discuss how the base locus should be defined in order that one
again obtains such a result.

Before we continue we would like to clarify an aspect of locally free sheafs
and projective vector bundles: A. Grothendieck showed in [17, II, §4] how
one can associate to any coherent sheaf E on a scheme X a space P(E) over
X whose fibers are projective spaces. Applied to a locally free sheaf one
obtains then a projective vector bundle. As a special case of a vector space
V over a field k one obtains a projective space with a coordinate ring whose
homogeneous elements of degree 1 are the elements from V . This means
that the thus defined space P(V )(k) is then canonically isomorphic to the
classical space P∨(V ) ' P(V ∨). The reader should keep this in mind in the
following.

We have by [18, Proposition 7.12]:

Proposition A.5 Let E be a locally free coherent sheaf on S and let L be
an invertible sheaf on C. Then morphisms f : C −→ P(E) over S correspond
to isomorphism classes of tuples (L, c) of invertible sheaves L and surjections
c : p∗E −→ L with respect to the following notion of isomorphism:

An isomorphism from (L, c) to (L′, c′) is an isomorpism ψ : L −→ L′
with ψ ◦ c = c′.

Note furthermore that morphisms p∗E −→ L correspond to morphisms
E −→ p∗L; cf. the beginning of [18, Chapter II, §5]. This inspires the
following definition.

Definition A.6

a) The set theoretic base locus of (L,H) is the set of points P ∈ C such that
HP −→ LP is not surjective.

b) (L,H) is base point free if p∗H −→ L is surjective.

These definitions are invariant under isomorphism; we can therefore also
say that a relative linear system is base point free etc.

Lemma A.7 Let (L,H) be a representative of a relative linear system on
C/S.
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a) The set theoretic base locus of (L,H) is closed in C.

b) For P ∈ C lying over s ∈ S, P is a base point of (L,H) on C if and only
if P is a base point of the system (L|Cs ,H⊗κ(s)) obtained by restricting
(L,H) to the fiber Cs over s

c) The formation of the set theoretic base locus commutes with base change.

d) The set of s ∈ S such that the system (L|Cs ,H ⊗ κ(s)) obtained by
restricting (L,H) to the fiber Cs over s is base point free is closed.

Proof. As L is locally generated by a single element, a) holds.
Let P and s be as in b). The statement is that p∗ : HP −→ LP is

surjective if and only if p∗s : (H⊗ κ(s))P −→ (L|Cs)P is surjective.
Now, the former can be restated by saying that (L/p∗H)P = 0 and the

latter by saying that (L/p∗H)P ⊗OS,s
κ(s) = 0. It is clear that the former

implies the latter. Conversely, the latter implies that (L/p∗H)P⊗OC,P κ(P ) =

0. Now, Nakayama’s lemma implies the former condition.
The statement in c) follows immediately. For the statemederwesten-

hernederwestenhernederwestenhernent in d) we consider the image of the
base locus in S. The image of this closed set is closed because C is proper
over S. 2

A.3 Functorial divisor theoretic relative linear systems

We recall some basic statements on divisors.

Remark A.8 The following statements in a),b),d) and e) are explained in
[25, Section 3]; see also [18, II, Section 6] and [17, IV, §21]. The statement
in c) is immediate.

Let X be any scheme.

a) One can define an effective divisor on X as a closed subscheme on X

given locally by a single element (“equation”) which is not a zero-divisor;
we follows this definition.

b) There is a canonical bijection between effective divisors and the iso-
morphism classes of tuples (L, g), where L is an invertible sheaf and
g ∈ Γ(X,L) which are non-zero divisors, that is, which induces an inclu-
sion OX ↪→ L. It is given by D 7→ [(O(D), 1)] with O(D) := I(D)−1.
Conversely, to (L, g) one associates (via the inclusion OX −→ L) the
sheaf L−1 as an ideal seaf of OX , and to this the corresponding closed
subscheme of X. This subscheme is then called the divisor of zeros of g.
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c) Let L be an invertible sheaf on X. Then the effective divisors D on X
with O(D) ≈ L correspond to equivalence classes of elements g as in b)
with respect to multiplication by elements of Γ(X,O∗X).

d) Let now X be an S-scheme. Then a relative effective divisor on X/S is
by definition an effective divisor on X which is flat over S.

e) Let X be flat over S. Then there is a bijection between the relative
effective divisors on X/S and the isomorphism classes (L, g) as in b) such
that for all s ∈ S, g|Xs ∈ L|Xs

induces an inclusion OXs ↪→ L|Xs
.

The following lemma contains the key statement for the study of relative
effective divisors for a possibly non-reduced base. (For a reduced base it is
immediate.)

Lemma A.9 Let S be locally noetherian and let X be a flat S-scheme. Let
L be an invertible sheaf on X and g ∈ Γ(C,L) such that for all s ∈ S,
g|Xs ∈ L|Xs

induces an inclusion OXs ↪→ L|Xs
. Then g|Xs ∈ L|Xs

induces in
inclusion OX ↪→ L.

Proof. The proof relies on associated points; for the necessary background
information we refer to [4, Chapter 30,§1 – §3]. Note first that (essentially by
definition), the associated points of L are equal to the associated points ot
X. By [4, Chapter 30, Lemma 2.10] we have to check gP ∈ LP is a non-zero
divisor for all associated points P of X. Note that as LP ≈ OX,P , gP is a
non-zero-divisor of LP if and only if it is not contained in mL,P , that is, if
g(P ) ∈ LP /mP is non-trivial.

By [4, Chapter 30, Lemma 3.1] the associated points of X are the asso-
ciated points of the fibers defined by associated points of S.

Now, by assumption, for every point s ∈ S and every associated point P
of Xs, g|Xs

is non-zero divisor of (L|Xs
)P . This in turn can be expressed by

saying that g(P ) ∈ LP /mP is non-trivial. 2

We now apply this to smooth relative curves over a locally noetherian
base. So let for this S be locally noetherian and C/S a relative curve.

Lemma A.10 Let L be an invertible sheaf on C and g ∈ Γ(C,L) = Γ(S, p∗L).
Then g satisfies the condition in item f) of the remark if and only if for all
s ∈ S, g(s) ∈ p∗L⊗κ(s) is non-trivial. In this case g also defines an inclusion
OS ↪→ p∗L.

Proof. We have p∗L ⊗ κ(s) ' Γ(Cs,L|Cs) for all s ∈ S by “cohomology
and base change” as explained at the beginning of [1, Chapter 21, §3]. For
g ∈ Γ(C,L), here g(s) corresponds to g|Cs . The result then follows from the
previous lemma. 2
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Remark A.11 Let L be an invertible sheaf on C. How can then the divisors
defining the the class of L in Pic(C) be described?

Let for this (L′, g) be a tuple defining a relative effective divisor on C/S.
Then L′ ≈ L ⊗ p∗Q for an invertible sheaf Q. Equivalently, p∗(L′ ⊗ L−1)
is an invertible sheaf, and this sheaf is then a sheaf Q as first stated. Such
a tuple (L′, g) then gives rise to an inclusion OC ↪→ p∗L ⊗Q which induces
inclusions in the fibers. This in turn corresponds to an inclusion Q−1 ↪→ L
which induces inclusions in the fibers.

The result is that relative effective divisors on C/S defining the class
of L in Pic(C) correspond to 1-dimensional subsheaves of L which induce
inclusions in the fibers.

One can then say that the relative effective divisors on C/S correspond
to the 0-dimensional relative linear systems as defined above. This shows
that we are on the right track here.

We now have that relative effective divisors on C/S correspond to:

1. Classes of tuples (L,K), where L is an invertible sheaf on C and K is a 1-
dimensional free subsheaf of p∗L which induces fiberwise inclusions, where
two tuples (L,K) and (L′,K′) are equivalent if there is an isomorphism
L −→ L′ mapping (via p∗) K to K′.

2. Classes of tuples (L,K), where L is an invertible sheaf on C and K is a 1-
dimensional locally free subsheaf of p∗L which induces fiberwise inclusions,
where two tuples (L,K) to (L′,K′) are equivalent if there is an invertible
sheaf Q on S and an isomorphism L −→ L′ ⊗ p∗Q mapping (via p∗ and
Lemma A.2) K to K′.

The reader might want to check directly that there is a bijection between
the classes in 1. and in 2.

This inspires:

Definition A.12 Let (L,H) be a representative of a relative linear sys-
tem on C/S. We call a relative effective divisor D on C/S given by a 1-
dimensional locally free subsheaf of (L,H) a divisor defined by (L,H) (and
also by [(L,H)]).

Lemma A.13 Let (C,H) be a representative of a linear system on C/S.
Then relative effective divisors on C defined by (L,H) correspond to the
sections of the projective vector bundle P(H∨) over S.

Proof. A 1-dimensional locally free subsheaf of L corresponds to (or is de-
pending on the definition) an equivalence class of inclusions ι : K ↪→ p∗L,
where two such data (K, ι), (K′, ι′) are equivalent if there is an isomorphism
K −→ K′ respecting the inclusions.
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By dualizing, subsheaves as in the lemma correspond to isomorphism
classes of homomorphisms π : H∨ −→ M for which the morphisms H∨ ⊗
κ(s) −→M∨ ⊗ κ(s) are surjective. Here two such data (M, π), (M′, π′) are
equivalent if there is an isomorphismM−→M′ respecting the surjections.

By Nakayama’s lemma, the condition on such a datum (M, π) means
that H∨ −→M is surjective.

Thus the equivalence classes of g’s correspond to the equivalence classes
of surjections H∨ −→M. These in turn correspond to the sections of P(H∨)

over S. 2

Definition A.14 We define the functorial divisor theoretic linear system as-
sociated to a representative of a linear system (L,H) on C/S as the following
functor: To a locally noetherian S-scheme T we associate the set of relative
effective divisors on CT /T given by 1-dimensional locally free subsheaves of
H (inducing fiberwise inclusions).

Remark A.15 We refrained from calling the set of relative effective divisors
on C/S a linear system because this set might be unreasonably small, even
empty.

On the other hand, a sheaf theoretic linear system on C/S is uniquely
defined by the associated functorial divisor theoretic linear system. Let for
this (L,H) be a sheaf theoretic linear system on C/S.

First, it suffices to show this locally in the étale topology. We can
therefore assume that H is free. This means in particular that there are
1-dimensional free subsheaves of H. An implication of this is that there is
an effective divisor D on C/S. Let us fix such a divisor. We then have
L ≈ C(D). Now we have to recover a space corresponding to H under such
an isomorphism to C(D). For this we consider all relative effective divisors
D on C/S whose image in the Picard group is defined by L. These corre-
spond now to 1-dimensional subsheaves of p∗OC(D). Let H′ be the sheaf
generated by all these subsheaves. Then under an isomorphism O(D) ≈ L,
H corresponds to H′. Therefore (O(D),H′) is also a representative of the
linear system defined by (C,H).

Let (L,H) have degree d. We then have an obvious homomorphism
(natural transformation) from this functor to the functor assigning to an
S-scheme T the set of relative effective divisors of degree d on CT /T .

The following lemma is now immediate.

Lemma A.16 Let (L,H) be a representative of a linear system of degree d
on C/S.

a) The functorial divisor theoretic linear system is represented by the pro-
jective space bundle P(H∨) over S.
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b) The natural transformation just mentioned corresponds to an S-morphism
P(H∨) −→ Cd.

We now consider the functor which assigns to a locally noetherian S-
scheme T the set of equivalence classes of triples (L,H, D), where (L,H) is
a representative of a relative linear system of degree d and dimension r on CT
and D a relative effective divisor on CT /T given by a 1-dimensional locally
free subsheaf of H.

Let (Lu,Hu) be the universal relative linear system of degree d. We then
have, by applying the lemma to this system:

Proposition A.17 If C/S has a section, the functor just described is rep-
resented by the bundle P(H∨u ) over Grd(C). The (functorial) projection then
corresponds to the assignment (L,H, D) 7→ (L,H) and the (functorial) pro-
jection (L,H, D) 7→ D corresponds to an S-morphism P(H∨u ) −→ Cd.

In full generality, C/S represents the associated sheaf of the functor in
the étale topology. There is still an S-morphism P(H∨u ) −→ Cd which corre-
sponds to the given functorial projection locally in the étale topology.
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