
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Exploring of a potential energy surface around a

valley bifurcation

Wolfgang Quapp1*, Grace Hsiao-Han Chuang2 and
Josep Maria Bofill3,4

1*Mathematisches Institut, Universität Leipzig, Augustus-Platz PF
100920, Leipzig, D-04009, Germany, Orcid: 0000-0002-0366-1408.

2 Physics of Complex Systems, Max Planck Institute, Noethnitzer Str.
38, Dresden, D-01187, Germany, Orcid: 0000-0003-0145-9596.
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Abstract

Purpose: Valley-ridge inflection (VRI) points play an important role in organic
chemistry, especially in post-TS bifurcations. We explain a new discovery of a
special structure of the region with another, weaker type of a valley bifurcation
(VB) without a ridge in between.
Methods: We apply the theory of Newton trajectories (NTs) and gradient
extremals (GEs) to cases of two dimensional potential energy surfaces.
Results: We define an indicator of the valley bifurcation where the gradient of
the potential energy surface is the eigenvector of the Hessian matrix at eigenvalue
zero.
Conclusion: The new type of bifurcation point is connected with a ‘dead’ valley
of the PES. The example is a nice demonstration that the index theorem for NTs
holds, nevertheless. NTs and GEs are important tools to explore the region of
the bifurcation point.
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Keywords: Potential energy surface, Transition state, Valley-ridge inflection point,
Valley bifurcation, Regular and singular Newton trajectory, Gradient extremal
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1 Introduction

Bifurcations are omnipresent in natural sciences [1, 2], including valleys on a poten-
tial energy surface (PES). They are a long studied subject [3–8]. The bifurcation can
take place before the transition state (TS) of a dissociation [9, 10], as it is demon-
strated by an internal vibrational redistribution [11]. It also can happen at the TS
[12, 13]. Or in contrast, the study of organic chemical reactions shows often bifurca-
tions after the first TS. The theoretical understanding of the underlying mechanisms
that govern selectivity, i.e. product distributions is of central interest [14–19]. And
finally, the bifurcation can coalesce with a TS [6, 20]. Bifurcations can also take place
in radiationless deactivation of organic dyes on the lower PES [21].

Understanding in particular asymmetric post-transition state bifurcations is essen-
tial for predicting reaction selectivity in complex chemical systems [22, 23]. Of course,
here the reaction pathways inherently require at least a two-dimensional (2D) descrip-
tion, as long as a pathway over a single transition state bifurcates into two distinct
product pathways. The PES has two consecutive saddles of index 1 with no interven-
ing energy minimum. Between the two index-1 saddles, one of which has higher energy
than the other, there must be a valley ridge inflection (VRI) point [6, 24–28].

The reaction is initiated when a trajectory crosses the area of the higher saddle
(forming the entrance channel) and may approache the lower energy saddle. On either
side of the lower energy saddle, there are two minimum wells. The question of interest
is which well does the trajectory enter (predicting the product selectivity)? It could
leave the standard intrinsic reaction path, the IRC [29–32].

One can assume that the VRI plays a role in selectivity. Certainly the VRI is a
geometrical feature of the PES. Two conditions are fulfilled there: The curvature of
the PES is zero, which implies that the Hessian matrix has a zero eigenvalue, and the
gradient of the potential is perpendicular to the eigenvector corresponding to the zero
eigenvalue. This means that the landscape of the PES in the neighborhood of the VRI
changes its shape from a valley to a ridge which gave the region the name VRI.

In synthetic chemistry, identifying the key functional groups that influence reaction
pathways is crucial for designing efficient synthesis strategies, especially when dealing
with large molecules containing multiple functional groups. If the dominant degrees
of freedom are known, especially the VRI region, chemists can target these features
to streamline synthesis.

In this paper we analyse cases where a valley bifurcation occurs without an inter-
vening ridge. We call this event valley bifurcation (VB). In the next Section we repeat
the definition of the reaction path models of interest: Newton trajectories (NTs) and
gradient extremals (GEs). In Section III we discuss different relations of a VRI region
to the singular NT traversing it, and of cases of onyl VB, for different 2D test PES.
In Section VI we add a discussion. A conclusion is given in Section V. Appendix 1-
3 reports on the index theorem of NTs, the avoided crossing of GEs, and the 2D
representation of NTs or GEs.
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2 Models of the reaction path

2.1 Newton trajectory

This work concerns a mathematical excursion which discusses the use of NTs for the
exploration of a special PES, V (x) given in reference [33], and in particular its VRI
or VB points. An NT is a curve x(t) where the gradient, g, of the PES is parallel to
a given direction, f , at every point

g(x(t)) || f , (1)

t is a curve length parameter. Curves that solve Eq.(1) are of particular interest in
mechanochemistry, where the direction f is the direction of an external force [34–36].
A possibility to follow a curve fulfilling this property (1) is the definition of a projector
matrix. If r = f/|f | is the normalized direction then

P = (I− rrT)

projects on direction r. Eq.(1) looks then

Pg(x(t)) = 0 .

Its derivation can be used to develop a predictor-corrector method [6].
Alternatively, the approach of Eq.(1) was formulated in a differential equation by

Branin [6, 37, 38]

dx(t)

dt
= ±Det(H(x(t))) H−1(x(t))g(x(t)) , (2)

H is the Hessian of the second derivatives of the PES. It is important that the matrix

A = Det(H) H−1 (3)

is desingularized when the Hessian becomes singular. It is called the adjoint matrix
for H. The full Hessian matrix can be computationally expensive at each step of the
positions x(t). However, it can be updated [39–41]. A first numerical step starts from
a stationary point in direction f . The following steps then ensure that the gradient
maintains this direction [6]. The plus + sign in Eq.(2) is used for an NT from a
minimum to an SP of index one, but the minus - vice versa. If the energy increases
monotonically along an NT then it can serve for a reaction path variable.

Note that NTs have the nice property that they connect stationary points with
an index difference of one [6, 38, 42], compare appendix 1. The index here counts the
number of negative eigenvalues of the Hessian matrix at the stationary point. If we
start at a minimum with index zero, we obtain a next saddle point (SP) with index
one. A special case is a singular NT that crosses a valley ridge inflection (VRI) point
[6]. The characterization of the VRI is the zero point of the right hand side of the
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Branin equation (2)
Ag = 0 (4)

but where the gradient is not zero, g(x) 6= 0. We call it VRI point. A singular NT has
four branches through the VRI point. It typically connects a minimum with a saddle
of index two and two SPs of index one via the VRI. A VRI represents the branching of
a valley into two valleys and an intermediate ridge, or complementarily, the branching
of a ridge into two ridges and a valley in between. Mathematically, the Hessian has a
zero eigenvector orthogonal to the gradient [6, 8, 31, 43, 44].

We can follow a one-dimensional curve by Eq. (2) in any dimension. For a PES
with more than two dimensions manifolds of VRI points arise [45, 46]. There is an
illustrative introduction to the higher dimensional case [47]. The following of an NT
is included in the COLUMBUS program system [48] (under the name reduced gradi-
ent following, RGF). There are some links to different programs [49, 50]. If the PES is
symmetric, the VRI manifold often forms a symmetry hypersurface. However, asym-
metric VRI manifolds can also be computed [45, 49, 51, 52]. Recently, the role of VRI
points in dynamical processes has been discussed [53]. The Newton trajectory method
has been established in chemistry since 1998, see refs. [36, 54–59] and further refer-
ences therein. We report that NTs are calculated for medium molecules with up to
dimension 486 [60].

2.2 Gradient extremal

A second kind of curves which also can serve for the description of reaction valleys are
gradient extremals (GE) [6, 61–64] where holds

H(x(t))g(x(t)) = λ g(x(t)) (5)

thus on a GE the gradient, g, is an eigenvector of the Hessian, H, with (varying)
eigenvalue λ. GEs are represented in the following figures by black dashed curves. A
VRI point is crossed by a GE if the pseudo-convexity index µ [65, 66] changes its sign

µ =
gT Ag

gT g
. (6)

Below we explain a new type of a valley bifurcation (VB) region by the crossing of
a GE with an index boundary line, Eq. (7). Then the condition (6) does not apply.

GEs can bifurcate itself [62, 63, 67]. This happens when the two eigenvalues, λ in
Eq. (5), of the two intersecting branches become equal. Normally, however, these two
equal eigenvalues are not zero. Therefor, no VRI point is indicated by such a crossing.
But the GE crossing can indicate the change of a valley ground into a circe [67]. Then
the bifurcation of the GE can be an indication on a nearby VB or VRI event. A pitch
fork GE is, in a sense, a preview to a VB or a VRI point. On an asymmetric PES,
however, the normal case is the avoided crossing of the GEs. We report an example
in appendix 2.
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Typically, N GEs emanate from a stationary point, if N is the dimension of the
PES. Then the GE to the smallest eigenvalue λmin describes the baseline of the
reaction valley. This GE can be considered a static representation of a reaction path.

2.3 Index boundary

Another interesting type of curves is the boundary between regions of a different index
of the Hessian of the PES. For the case of 2D surfaces V (x, y) they are given by

Det(H) = Vxx Vyy − V 2
xy = 0 (7)

and these index boundaries (IB) are represented by thin green curves in the following
figures.

3 2D example PES

A series of PES is used of Ref.[33]

V (x, y) = x4 − 2x2 + y4 + y2 − 1.5x2y2 + x2y − c y3 (8)

as shown in the following figures. The constant c is a parameter that varies here
between 1 and 2.

3.1 PES for c=1.5
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Fig. 1 A: Level lines of PES (8) for c=1.5. The axis x=0 is an axis of symmetry. M1 is a minimum,
SPlow is the transition state to the minimum M2. The global SPtop lies central on the y axis at point
(0, 0). B: A VRI point is located between SPtop and the stationary points in the valley on the right
hand side. Three types of curves are shown: Bold red is the singular NT through the right VRI point,
GE curves are dashed black, and the IB-lines are thin green.
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Fig. 2 Vector field of the Branin Eq.(2) with plus sign on a section of the PES of Fig. 1. The VRI
point is characterized by the hyperbolic touching of the corresponding regular NTs.

First we discuss a ‘normal’ case for parameter c=1.5 of PES (8). One can observe
in Fig.1 that the right valley from M1 to M2 bifurcates to the SPtop. There are only
stationary points of index zero, minima, and of index one, transition states (TS).
By different curves we can determine the exact VRI point. This is demonstrated in
Fig.1B. Here the 4 branches of the singular red NT intersect at the VRI. The search
direction of the singular NT is fred=(-1.3, 0.33). It is the gradient at the solution of
Eq.(4). The VRI is at (x, y)=(0.47, 0.23) with

g =
(−1.32

0.34

)
, H =

(−1.13 0.29
0.29 −0.07

)
and A =

(−0.07 −0.29
−0.29 −1.13

)
.

The vector with Eq.(4) is Ag = 0 thus the gradient is the zero eigenvector of A,
and the second eigenvalue is λ = −1.204 being the eigenvalue of the matrix H for the
eigenvector g. The vector

v =
(
0.34
1.32

)
is then the zero eigenvector of the Hessian orthogonally to the gradient. It is the char-
acteristic of the VRI point. Note that Hessian and adjoint Hessian have the same
eigenvectors, but for the eigenvalues λi of the Hessian and µi of the adjoint the
following applies for every i [68, 69]

µi λi = Det(H) =

N∏
k=1

λk . (9)

For N = 2 it means µ1 = λ2, µ2 = λ1.
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A thin green border line of Det(H) crosses a GE there. Thus, all three curves
cross at the VRI point. (The calculation of these curves is described in appendix 3.)
The boundaries of the different Det(H) regions are given by the condition of Eq.(7).
Normally they are curvilinear, so that the points of a molecule on a higher dimensional
PES with the IB condition Det(H) = 0 form curved hypersurfaces.

The VRI is intersected by its own singular NT which is represented by the bold
red lines. The four branches form an almost orthogonal cross at the VRI point. This
is the long known type of a valley bifurcation. Singular NTs are the boundaries of
families of NTs that connect the minimums, Mi, to different SPs. Any two neighboring
branches of the singular NT form a corridor for all NTs connecting a given minimum,
M , with the same SPi [70]. The stationary points are also crossed by the NT and by
the various branches of the GEs.

In Fig.2, the vector field of the right hand side of the Branin Eq.(2) is included on
the PES with c=1.5. The hyperbolic touching of the corresponding NTs before and
after the VRI point is a characterization of this region.

3.2 PES for c=1

A 3D representation of this PES is shown in Fig.3. Here we develop the case of interest
for a VB with a nonsingular NT, because a singular NT is missing, but a GE is
included again. One can observe in Fig.4 that the right valley from M1=M uphill

Fig. 3 3D representation of PES (8) for c=1. Only two uphill valleys remain. There are still two
minima at the bottom, and the central SP also remains.

to the right hand side bifurcates again to a valley to the SPtop = SP , the only SP
which remains. There is also a thin green border line, as well as a GE which crosses it.
The gradient is the eigenvector of the Hessian, this is the general definition along the
GE curves. Here for an intersection with the IB line the corresponding eigenvalue is
zero. We take this crossing as the indicator for the VB point of a new type. It shows
additionally the property that the zero eigenvector, the gradient, is nearly orthogonal
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Fig. 4 A: Three kinds of curves are drawn on the PES for c=1. Red is the remainder of the former
singular NT through the VB point, black dashed are the GE curves, and green are the IB-lines. The
blue curve is an ordinary regular NT. B: Vector field of Branin Eq.(2). The VB point is embedded
in a nice flow of regular NTs.

to the direction of the GE. So the GE touches a level line. The first condition is

Hg = 0 . (10)

It is in contrast to a VRI point where the zero eigenvector is orthogonal to the
gradient, Eq. (4). We find a fairly regular NT connection the SP with the minimum
M over this VB point. It is at (x, y)=(0.56, 0.3) with

g =
(−1.35

0.47

)
, H =

(
0.04 0.13
0.13 0.35

)
and A =

(
0.35 −0.13
−0.13 0.04

)
.

The search direction of the nonsingular NT is g=fred=(-1.3533, 0.468). The Hessian
matrix has the zero eigenvector being the gradient, and

Ag =

(
−0.53

0.18

)
= 0.39 g 6=

(
0

0

)
.

A zero eigenvector of the Hessian is retained by the gradient, in this case. But 0.39
is the second eigenvalue of the direction orthogonal to the gradient. The value of the
Branin vector is not zero which really shows that there is no ’normal’ VRI point from
the point of view of NTs. This is also an indication that such cases cannot be deter-
mined by the VRI finding method using the condition Ag=0 [51, 52]. Additionally,
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also µ of definition (6) does not change its sign, thus it does not indicate the VRI
point. Nevertheless the GE crosses the IB-line and has there the special eigenvalue
λ = 0. We name this VB point for its crossing only by a GE. No bifurcation of a
reaction trajectory takes place here. The condition Hg = 0, at the other hand, is
the criterion for an optimal barrier breakdown point (oBBP) in mechanochemistry
[34–36]. But that is another story. The neighboring GE going uphill in the right
valley ground intersects two times an IB line. However, the gradient there points in
direction of the GE, not orthogonal to it. For the given VB point it is more appropri-
ate to use the GE being between the two bifurcating valleys.

With the blue NT in Fig.4 A we add a regular NT beginning at minimum M and
initially following the valley uphill. It shows a turning point (TP) high in the PES
mountains where the energy reaches a maximum, and it returns as a regular connec-
tion to the only remaining SP at point (0, 0). Its search direction is fblue=(-0.53, 1.11).
The blue NT is an indication of the reason why this special VB point is useless for
chemistry: The valley at the right hand side is a ‘dead’ valley without a further TS
and minimum. There cannot be a stable chemical structure. On the right sight of the
PES only one minimum and one SP exist. Every NT starting in the right minimum
has to find its way to the central SP. There are no other stationary points, so the NT
through the VB point must also be ‘regular’. There is no target for it to bifurcate to.
The entire right half-plane is one reaction channel [70]. The VB point exists but the
index theorem acts that the VB does not disturb the channel of regular NTs. Note
that the NT through the VB crosses nearby the IB-line a second time in the vicinity.
We do not select the special NT with a single, tangential touch of the IB line for the
definition of this new type of VB points.

In Fig.4 B the vector field of the right hand side of the Branin Eq.(2) is again
included. The NTs flow around the VB point. Their hyperbolic contact at the VB
point is lost.

3.3 Action of the index theorem for singular NTs

Index Theorem for NTs
Regular NTs connect stationary points with an index difference of one [6, 38, 42]. This
will be violated by a singular NT.
Proof: see appendix 1.

Fig.5A represents a quasi shoulder region of the former SPlow and the former
minimum M2 for parameter c = 1.125. The two branches of the singular NT to SPlow

and to the minimum M2 come close together. They form quasi parallel branches. After
the two stationary points they continue and end in a TP. The four branches intersect
at a small angle at the VRI point. However, the index theorem also applies here in
its usual form. Stationary points are connected by regular NTs (not shown) and the
singular NT connects with two branches the two SPs of index one, and with two other
branches the two minima with index 0.

The situation changes further in panel B of Fig.5 where we obtain a real shoulder
point. We insert the pseudo-convexity index (6) µ = 0 by black lines. Here the former
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Fig. 5 A: PES (8) for c=1.125. The former low SP and the former minimum M2 nearly merge
and almost form a flat shoulder. The minimum M1 is still at the bottom, and the central SP also
remains. B: PES for c=1.11 which forms a PES with a shoulder point. Red is the rest of the singular
NT through the VRI point, black dashed are GE curves, the pseudo-convexity index µ = 0 are black
lines, and green are the IB lines.

SPlow and the former minimum M2 have merged. The remaining point is a stationary
point with a zero gradient and a zero eigenvector along the valley line. The PES is
obtained by parameter c = 1.11. The shoulder is demonstrated by the GEs there,
which do not cross as in stationary points but avoid a crossing near the former SPlow.
Quasi three branches of the singular NT remain from the VRI. It is the limiting case.
The next step is then the case of Fig.4 with c=1, where the character of the singular
NT is lost, and where the connection to the former shoulder region also is finally lost.

Fig.6A shows an enlargement of the VRI region from Fig.5B. The black lines are
the boundary of the pseudo-convexity (6) µ = 0. In addition to the standard VRI point
with a singular NT in red color through the dot symbol, a VB point also appears, at
the cross, ×, where again the gradient is orthogonal to the GE direction. In contrast,
at the plus + symbol, we find a crossing of GE and IB line with no orthogonal gradient
direction to the GE. The point × is crossed by an ordinary NT in brown color. In
contrast, three special curves meet at the + symbol: a GE, an IB, and the µ = 0-
line. Here we have a loop of the singular NT, the former quasi-parallel branches to
the shoulder. The point +, inside the loop, is the centre of a family of compact NTs,
called centre NTs [38, 70]. One of these NTs is drawn in magenta color. NTs without
stationary points are possible [68, 70]. We assume that they are not of deeper interest
for chemical reasons. The VRIs are the most important definition, the first level in a
hierarchy of valley bifurcations, so to speak. The VB of species × forms the second
level, which we should use if no VRI is there.

For comparison, we include still two neighboring NTs to the singular one, in Fig.6B,
in blue color. The dashed NT follows the search direction (-1, 0.36), it bypasses the
VRI region on the right. The pure blue NT follows the (-1, 0.3) direction and runs to
the SP at the left hand side of the VRI.
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Fig. 6 A: Enlargement of Fig.5B with a VB point, x, and a VRI point, •, see text. B: Two regular
NTs in blue are additionally included in Fig.5 B, see text.

Note that there is a parameter c nearby at ≈1.10697 where the VRI point and the
point at the + symbol merge. Such a special singularity is called a cusp type [70]. For
smaller values of c the VB point lefts over only.

4 Discussion

An important model for a reaction coordinate in chemistry is the steepest descent from
SP, the intrinsic reaction coordinate (IRC) [29, 30]. In case of a symmetric PES and a
totally symmetric axis through the SP [71–73], the IRC can cross a possible VRI point
on this downhill path [31, 74–76]. However, on an asymmetric PES, the VRI is usually
not located on the steepest descent from the SP [9, 77, 78]. There, any other reaction
trajectory could bifurcate off from the IRC [79]. It is incorrect that the IRC splits
itself at the VRI point [80, 81]. The IRC can split only at stationary points, where
the gradient is zero, and where different directions for the further travel downhill can
open. SPs are the singular points of the steepest descent trajectories. Analogous to
NTs near VRI points, these trajectories follow hyperbolic curves around SPs.

One way out is a dynamical approach by many trajectories over the entrance SP
region [19, 82–89]. This method contrasts with static models of a reaction pathway
for IRC, NT, or GE. Localization through two sets of dynamical trajectories bifurcat-
ing near the VRI point is one way of a certain determination of the VRI point and
product selectivity. Although dynamic trajectories can theoretically identify the VRI,
this approach is unrealistic and hardly feasible in a real system. According to the
ergodic hypothesis [90], a single trajectory could explore the entire configuration space
if it moves forever in phase space, including the VRI. However, this is a multidimen-
sional problem, and the growth of dimensions is proportional to the number of atoms
involved. Finding a specific outcome amidst such complexity is highly unrealistic.
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The other possibility is the calculation of GEs and a singular NT to precisely
locate the VRI. Of course, this exceptional VB point of case c = 1 of Fig.4 cannot be
detected using dynamical trajectories or a singular NT.

One can speculate that such VB points also exist on other, older known PES.
Because ’dead’ valleys often exist. For example the well known Müller-Brown PES
[91] has such a valley on the left hand side, and no singular NT crosses it [68, 69].
In contrast, here also crosses a GE the IB line at point (x, y)=(-1.09771, 0.6487) and
the gradient is also nearly orthogonal to the GE direction, compare Fig. 7. This point
we propose for a VB indicator. The most left GE of the left valley ground intersects
also the IB line. There the gradient points in direction of the valley ground, which also
the GE follows. For the VB point it is more appropriate to use the GE being more
between the two bifurcating valleys.

-1.4 -1.2 -1.0 -0.8 -0.6

0.2

0.4

0.6

0.8

1.0

x

y

Fig. 7 MB surface with proposed VB at the branching of the left global valley. Red is a regular NT,
green are the IB lines.

5 Conclusion

We use Newton trajectories (NT), gradient extremals (GE) and lines of the boundaries
of the Hessian index (IB) with Det(H)=0 to explore the region of a VRI or a VB point.
Long known are VRI points where a singular NT bifurcates. Its side branches form
static models of a reaction path bifurcation. They can serve for models of trajectories
to two different products.

By changing the parameter c of the PES of Ref. [33] we obtain a VB region with
the special case of no singular NT. In the special situation of the VB point of this
PES (8) with parameter c=1, the usual criteria for a VRI point, Eqs. (4) for NTs and
(6) for GEs do not work appropriately. In contrast, a GE only crosses an IB line and
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the gradient is orthogonal to the GE direction. This point we can accentuate for a VB
point. One eigenvalue of the Hessian is zero, and the corresponding eigenvector is the
gradient. Thus it holds Eq. (10). The nature of the PES of this case is that the one
bifurcating valley is a ‘dead’ valley with no further stationary points. A ‘dead’ valley
may be uninteresting for a chemical reaction, but it can be the basis for a vibration
mode. The branching takes place without a ridge forming between the two new valleys.
The ‘next ridge’ is the ridge that crosses the SP of the new side valley.

VRI and VB points form a hierarchy. The usual VRI points have been known for
a long time. The VB points form a weaker level, which we should assign if a usual
VRI is missing.

Appendix 1: Proof of the Index Theorem

-0.5 0.0 0.5 1.0

-0.5

0.0

0.5

1.0

x

y

Fig. 8 PES (8) with c=2 now with an SP of index two, a maximum. Red points are stationary
points with even indices, the minimum and the maximum, while blue points are three SPs of index
one, three TSs. Two singular NTs cross two VRI points (black), one NT is red colored, and one NT
is in magenta.

We follow references [68, 92, 93]. The Branin Eq. (2) is the desingularized con-
tinuous Newton equation. For the minus sign, it converges to a stationary point with
an even index, i.e., a minimum with index zero as in the Newton-Raphson method.
For plus sign, however, it converges to a stationary point with an odd index, compare
Figs.2 and 4 B. It can be developed with a Taylor approach for the gradient

g(x) ≈ g(x0) +
∂g

∂x
(x0) (x− x0)
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and for zero gradient at x0 it is

= H(x0) (x− x0) .

Eq.(2) looks then

dx

dt
≈ −A(x)H(x0) (x− x0) ≈ −Det(H(x0)) (x− x0) ,

and this is attractive for even index, but repulsive for odd index of H(x0).
For illustration, Fig.8 shows a test surface with three types of stationary points.

Regular NTs from the maximum at (0, 0.5) only lead to SPs of index one, and so
on. Thus starting near of one of the two kinds of stationary points, an NT (with
corresponding ± change) will lead to the other kind, by an index difference of one.
This rule can only be violated by a VRI point on a singular NT.

Appendix 2: Discussion of GE bifurcations
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1
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Fig. 9 PES with avoided crossings of GEs (black dashes). Blue points are SPs. Two branches of the
singular NT (red) cross at the VRI point a GE. An additional VB point is included, see text.

On a symmetric PES, a valley GE can bifurcate and indicate the branching of the
PES [67]. Which criterion we apply may depend on the problem to be solved.
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Now we study the avoided crossing of GEs, which is the usual behavior of GEs on
an asymmetric PES, see Fig. 9. An artifical 2D PES [63] is

V (x, y) = x y (y − x) + 1.15x2 + 2 y − 3 .

Doted curves represent three GEs, the two red lines are the singular NT and the green
elliptic curve is the IB line. In the center is the intersection of the GE from left to right
and the red singular NT. It is a common VRI point. The GEs themselves only cross
at the SPs. The aim of recognising a VB by the crossing of the GEs would therefore
fail here.

However, a valley bifurcation before the VRI can be assumed, below the level of
the SPs, which is indicated by an additional VB point shown. It is the intersection of
the left GE with the IB line where the gradient is orthogonal to the GE.

Appendix 3: Representation of NTs and of GEs

2D PES with NTs [68]
In 2D toy examples, NTs can easily be represented by a graphical rule. It applies in
two dimensions that the orthogonal direction to the force direction

f=
(
f1
f2

)
is unique the direction f⊥ = (−f2, f1) .

Then condition (1) that f ||g is the zero of the scalar product

f⊥ g = 0 .

In Mathematica, one can represent the corresponding NT by
ContourPlot[-g1[x,y] f2[x,y] + g2[x,y] f1[x,y],{x,-2,2},{y,-2,2}, ContourShading→False,
Contours→{0.0}]

2D PES with GEs
In analogy to NTs, also GEs can easily be represented by a graphical rule in 2D
examples. It applies in two dimensions that the orthogonal direction to the gradient
direction

g=
(
g1
g2

)
is unique the direction g⊥ = (−g2, g1) .

Then condition (5) means that Hg||g, and this is again the zero of the scalar product

g⊥ Hg = 0 .

One can display the corresponding GE in a graphic program analogously to above.
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