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Abstract We explain Shapiro steps in a Frenkel-Kon-

torova (FK) model for a 1D chain of particles with free

boundaries. The action of an external alternating force

for the oscillating structure of the chain is important

here. The different ’floors’ of the potential energy sur-

face (PES) of this model play an important role. They

are regions of kinks, double kinks, and so on. We will

find out that the preferable movements are the slid-

ing of kinks or antikinks through the chain. The more

kinks / antikinks are included the higher is the ’floor’

through the PES. We find the Shapiro steps moving

and oscillating anywhere between the floors. They start

with a single jump over the highest SP in the global val-

ley through the PES, like in part I of this series. They

finish with complicated oscillations in the PES, for exci-

tations directly over the critical depinning force. We use
an FK model with free boundary conditions. In contrast

to other results in the past, for this model we obtain

Shapiro steps in an unexpected, inverse sequence. We

demonstrate Shapiro steps for a case with soft ’springs’

between an 8-particles FK chain.
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1 Introduction

Shapiro steps are reported in many experiments, see

part I of this series for references [1]. We concentrate

here on such steps in calculations of a Langevin equa-

tion with the FK model [2], which many workers saw

for a good model of real Shapiro steps. Shapiro steps

emerge for a combination of direct and alternating ex-

ternal forces where the frequency of the oscillation of

the FK-chain is locked, and its sliding velocity is con-

stant, though the direct force is increased. This paper

is devoted to the aim to understand what happens un-

der a Shapiro step inside the FK chain? How does the

chain in the PES mountains moves if it slides downhill

the effective PES? Average velocities of the chain are

studied up to date. To look inside the FK chain we use,

in a new treatment, the potential energy surface (PES)

of the chain [3–6], as well as the tool of the highest

Lyaponov exponent [1,7].

The FK model describes the situation of a chain of

particles with harmonic spring forces in between, where

we additionally assume free boundaries of the chain

here, in contrast to part I of this series [1]. We search

the form of the movement of a 1D FK chain through a

site-up potential. In every step the chain changes. That

is the reason why the boundary conditions should be

free. A very surprising result of this part II is a reversed

sequence of the Shapiro steps.

We specialize in the spring force to a soft value,

in comparison to the site-up potential, and in contrast

to our former references [3–6]. The chain is really of

finite length. The ’winding number’ is the relation, the

’misfit’, between the original spring distance, ao, and

the periodicity, as, of the site-up potential. We discuss

an example with winding number 1/2.
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Overall, we treat here the PES for N particles of the

chain and search for global valleys through the ’moun-

tains’ of the N -dimensional PES for a sliding of the

chain. Beside the use of a Langevin equation [2], an

important part of the theory is the use of Newton tra-

jectories (NT) for the description of the ’running’ sta-

tionary points of the PES under an external force. The

NTs are curves in the configuration space of the chain.

The NT theory was discussed recently in Refs. [8–11], to

name just a few. They are curves where at every point

the gradient of the PES points into the same direction,

called the search direction, or even the direction of the

external force. If we compress or pull the chain, some or

all coordinates of the particles change. Some examples

of a changed chain are drawn in the paper. Because we

can draw all N particles of a chain we can illustrate here

N changing dimensions, like in chemistry for a molecule

with N atoms. Such events are described in depth by

the NTs. Every point of an NT is a configuration of

the chain. To a given external driving force, the search

direction, on any number of chain particles, we get the

’static’ curve of the NT on the PES of the movements

of the chain. For practical reasons, we divide every NT

into M nodes. The number of nodes used depends on

the step length of the predictor of the NT program [8].

It holds analogously for the Langevin equation treated

here as well.

We find that the chain does not move as an inelas-

tic, solid body, or with a fixed, collective sliding along

the site-up potential with translational symmetry of the

chain. The chain of particles will be picked up by the

external force (see Eq.(4) below). If the force is high

enough then the chain forms a kink or an antikink, or

pairs of them, or higher combinations [12] which usually

break the symmetry of the initial chain. The FK model

predicts the formation of such topological solitons [13].

A kink is a stretched structure of a part of the chain

where an antikink is its compressed counterpart. These

are quasiparticles which can move like a wave through

the chain along a more or less flat valley of the PES,

named a floor, and they so affect the current move-

ment. The motion of the chain goes on by steps of the

periodicity as by antikinks, and/or kinks. The form of

the existence of a movement under an excitation energy

is the forward sliding of antikinks, akin to the biome-

chanical motion of an earthworm or a caterpillar, or the

backward sliding of kinks.

Note that here the emergence of kinks or antikinks

anywhere in the chain forbids the treatment of a ’unit

cell’ of the chain, as it is assumed in ref. [14].

In sect. 2 we introduce the FK model used in this

paper and in sect. 3 we explain the use of NTs. In sect. 4

the case of the spring potential with N=8 chain length

[15,2] and k/v = 1/4 soft springs is discussed. Using the

tool of NTs we explore the many ’floors’ of the PES of

the 8-chain. The aim is to be able to sort the different

Shapiro steps into the PES later. In the main sect. 5

we calculate and discuss a Langevin equation where

the Shapiro steps emerge as solutions with locked fre-

quency. To detect all possible such steps, we use the

highest Lyapunov exponent which is explained in sub-

section 5.2. Finally we give a discussion and some con-

clusions.

2 The FK model

x = (x1, ..., xN ) represents the position of N discrete

particles of a chain. We treat a finite chain. The posi-

tions xi are on a linear axis. It holds xi < xi+1 for the

ordered chain. A boundary condition like xN = x1 [16]

is not correct. The free end points of the chain deter-

mine the current average distance ão = (xN−x1)/(N−
1). The harmonic spring potential is the sum of all par-

ticles and it results in the harmonic energy of a nearest

neighbor potential

S(x) =
k

2

N−1∑
i=1

(xi+1 − xi − ao)2 . (1)

ao is the equilibrium distance of the chain without the

site-up potential, and without the external force. We

use another scaling of the particles than in ref. [1] in or-

der to facilitate the connection to our former refs. [3–5].

We emphasize that we do not use the so-called ’pe-

riodic boundary conditions’ [2]. The spring potential

(1) belongs to the standard FK model. The PES for

the variable changes of the xi is the Frenkel-Kontorova

model

V (x) = P (x) + S(x) (2)

where the site-up P is the potential

P (x) = v

N∑
i=1

(1− Cos(2π xi/as)) . (3)

In numerical tests we scale the as-constant of the P -

potential to 2π for computational simplicity. We fix the

potential constants v = 1 and k = 1/4 and use a short

chain with N = 8 particles [2,15]. We treat a simple

special case of the FK model with as = 2 ao with misfit

1/2 between the two potentials.

Because v > 0, the on-site potential will modulate

the chain if an external further force is applied. We use
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a linear force. We name the resulting PES an effective

PES

Veff (x) = V (x)− F (l1, .., lN )T · x . (4)

The multiplication point between the N -dimensional

normalized force direction vector (l1, .., lN )T and the

N -variable x means the scalar product. F is the factor

for the amount of the external force. The new term is

often named dc driving [17,18] (for direct current) if F

is fixed. If the amount of the force alternates in time

then one names it ac driving [19] (for alternate current)

with

F = Fdc + Fac sin(2π νo t) (5)

with a frequency νo, and a ’time’ variable, t, which will

also be used for the step length below in a Langevin

equation. The force tilts the former on-site potential for

particle xi with the incline F li, i = 1, ..., N . The ex-

tremal points of the effective PES, Veff , minimums and

SPs, move if F increases or decreases. A corresponding

curve is described by NTs [8–11].

3 Brief summary on the theory of Newton

trajectories

The stationary points on the effective potential with the

general force vector f = F (l1, .., lN )T satisfy the con-

dition ∇x Veff (x) = 0. Its minimums and SPs satisfy

the vector equation

∇x Veff (x) = g(x)− f = 0 . (6)

It meets a point where the gradient of the original PES,

g(x), has to be equal to the force, f. The ansatz (6)

is named Newton trajectory [20,21] to the force direc-

tion, f. The gradient of V (x) is the inner force of the

chain, x, against changes of its structure. This force has

to be equal to the external force, f. Then the chain is

again in an equilibrium. We are at a stationary point

of Veff (x). The NT describes a curve of force-displaced

stationary points (FDSPs) of the tilted PES under a

different load, F [8,20–25]. Usually, the energy of min-

imums is increased, but the energy of SPs is lowered.

This means that the barriers become lower. Any NT

describes a connection between stationary points of an

index difference of one [26]. Following numerically an

NT is a method to search a next SP if a minimum is

given, or vice versa.

Equation (6) can be written in a projector form [20,

21](
U− l lT

)
g(x) = 0 (7)

where U is the N ×N -unit matrix and the l-unit vec-

tor is the normalized direction of f . Equation (7) means
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Fig. 1 The upper curve may be the profile over an NT
through a PES, from a minimum to an SP of index one. The
lower, red curve is the corresponding value of the gradient
norm of the profile. At the maximum of the gradient norm
one finds the BBP of the profile. It is at the zero of the cur-
vature of the profile.

nothing else than that g and l are parallel. If we differ-

entiate the projector equation (7) with respect to the

parameter that characterizes the FDSPs curve, s in a

curve x(s), we obtain with the Hessian, H, in a tangent

equation [21,24](
U− l lT

)
H(x)

dx

ds
= 0 . (8)

For a calculation, the continuous NT is approximated

by L node points. Here we have the Hessian of the FK

model [3]. Then equation (8) is a way to generate the

NT of a successive tilting. We use a predictor-corrector

method for the calculations. For the predictor we use

the tangent of the NT with equation (8).

The NT to any search direction describes the curve

of FDSPs which emerges on the family of effective PES

under this tilting direction. The NT connects the mini-

mum and the SP of the process of interest because these

two points belong to the F = 0 effective surface, thus

the original PES. Under increasing F -value, diverse sta-

tionary points move on the NT, and at a critical Fc they

coalesce in a shoulder.

The extremal points of the effective PES, Veff , move

if F increases. Along the NT, F increases to a maximum

at the barrier breakdown point (BBP) [10], where Fc =

|g|max is the critical force, and it decreases again to zero

at the next SP. The situation is depicted in a schematic

Fig. 1.

Of course, to a given amount of F one can directly

solve Eq. (6). It is an optimization task. However, it only

works for F ≤ Fc because for F > Fc Eq. (6) has no

solution, at least not in the neighborhood of the BBP

of the current NT. There is no gradient of the PES

with such a length. This insight will become important

below in the paper.
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For N > 2 we cannot draw the PES of the chain,

however, we can draw the energy profile of an NT over

its coordinates. This is a one-dimensional curve – of the

N -dimensional configuration space. To any N we can

draw the structure of the chain at certain points of the

NT. In this case we will imagine the course of diverse

NTs of interest hereinafter.

4 The PES of FK Chain N=8, v=1, k=1/4

4.1 A low energy path (LEP) for antikink SPs and

intermediate minimums

There are some SP1 of antikink character of the chain,

being compressed structures, see Figs. 2 and 3. They

can be obtained if one pushes the chain with a force

from the left hand side. SP1 means a saddle point on

the PES of index one, with one valley-direction along

an eigenvector of the Hessian of the PES, but N − 1

directions pointing uphill. It has one particle on the

consecutive tops of the side potential. Further particles

are sorted in their former wells. So, the chain is moved

by one consecutively moving particle. We report a com-

bined energy profile over four NTs in Fig.2. Each one

goes over one SP of index one, and all are joined to-

gether. Note that every part of the combined pathway

curves through another dimension of the 8-dimensional

configuration space. In sum it describes a low energy

path through the PES. The four different search direc-

tions are taken so that we have an eye on the next SP1

starting at the consecutive minimum left of the SP. At

the first SP1 is the second particle on the top of the

potential, thus we use l2 = 1 and all other li = 0 in

Eq. (4). The second SP1 has particle 4 on the top of the

potential, thus we use l4 = 1 and all other li = 0, and

so on.

The corresponding ’moving’ SPs are shown in Fig. 3.

Note that the two central SPs are not the vice-versa

mirror forms. In Fig. 4 we still present one global min-

imum at the top panel on the left hand side, and the

intermediate minima between the SPs of index one of

Fig. 3, as well a second global minimum down on the

right hand side. The two global minimums are no vice-

versa mirror forms either, though they themselfes have

mirror structure against their mean point.

The BBPs are depicted by crosses ’x’ in Fig.2, the

corresponding critical forces Fc are 0.523, 0.436, 0.459,

and 0.632, correspondingly. If the first antikink is cre-

ated, at the first, left SP1 in Fig. 2, then there starts

the first ’floor’ through the PES mountains. The barri-

ers along this floor are named Peierls-Nabarrov barriers

[27]. Note that the floor here in this example is not re-

ally periodic, for k = 1/4.
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Fig. 2 The MEP over consecutive SPs of index one (red)
through the PES of an 8-FK chain. The SP structures are
shown in Fig. 3, but the minimums in Fig. 4. ’Left’ BBPs are
depicted by a cross, x.

The ’width’ of the antikink is only 3 particles, in

contrast to examples with stronger k parameter [6]. The

length of the left, upper global minimum structure is

6.3π, but the length of the right, lower global minimum

structure is 7.7π. Thus the one ão = 2.829 < ao = π

and the other ão = 3.456 > ao = π.

4.2 An LEP for kink SPs and intermediate minimums

If one pulls the FK chain at the right hand side, there

emerge further SP1 of kink character, being stretched

structures. Such an SP1 has again one particle on the

consecutive tops of the side potential. Another particle

is ’alone’ in its well. So, the chain is moved to the right

hand side by one consecutive moving gap sliding to the

left hand side.

We report the energy profile over four NTs, every

one over one SP of index one joined together, which

describes the next low energy path through the PES,

in Fig.5. Again the left BBPs on the NTs are depicted

by crosses ’x’, the corresponding critical forces Fc are

0.543, 0.46, 0.461, and 0.605, correspondingly. The cor-

responding SPs are shown in Fig. 6. In Fig. 7 we still

present the kink minimums.

If one compiles the pathways of Fig. 2 and Fig. 5 to-

gether, one gets the movement of the chain by 2π = as,

the period of the side potential. Thus one needs to over-

come at least the SPs of index one near 5.8 units of en-

ergy to realize a continuous movement of the FK chain

along the side potential, a sliding. Under the external

force, one only needs the amount for the steepest BBP.

Kinks and antikinks have already been studies else-

where [12,28–30] for the simplest excited states which

connect two neighboring ground states. ’Trains’ of equi-

distant antikinks are reported as well [27,30]. We ob-
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Fig. 3 Antikink SPs of index 1. E=5.2093, 5.3984, 5.4475, 5.8067. One particle each climbs over its next top of the site-up
potential. Note that the particles are artificially lifted on the potential to guide the eye. The real chain is on a straight line.
Only the distances can change. The spring potential is not shown in the scheme.
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Fig. 4 Two different global and three antikink intermediate minimums. The energy is 4.37948, 4.78203, 4.80332, 4.87559, and
4.38004 correspondingly.
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Fig. 5 The next low energy pathway over consecutive SPs of
index one through the PES of an 8-FK chain connecting kink
stationary structures. The SP structures are shown in Fig. 6,
but the minimums in Fig. 7.

tain here the shape of a kink / antikink by a numerical

calculation, see Figs. 3, 4, 6 and 7.

It is worth noting that the kink, as well as the anti-

kink form a spontaneous symmetry break of the given

chain [31] since the global minimum is a symmetric

structure which is the case here. The symmetry break

for both LEPs is outside of an assumption of a ’sym-

metry operation’ in an FK chain in references [2,14,16,

32], see also Sect. 5 below.

4.3 A ’global’ NT to unit direction f=1/
√
N (1,...,1)

In Ref. [15], and many other references, the unspecific

washboard force direction l=1/
√
N (1,1,...,1) for the ex-

ternal force is used throughout. Thus the force acts on

all particles to the same amount. It is the ansatz which

we test for the chain of interest, in contrast to the for-

mer subsections. The profile of the corresponding NT

is presented in Fig. 8. The calculation leads in one run

from the global antikink minimum of the chain up to

the ’global’ SP of index four with four particles on the

tops of the side potential, and four particles down in

the wells, thus the energy is 4 times the pure side po-

tential, thus 8 units, compare the lowermost right panel

in Fig. 9.

The special NT fortunately reveals the four ’floors’

in the PES mountains of the 8-chain. Every floor is char-

acterized by the number of kinks and/or antikinks on it

[3–5]. All floors combined represent the ’global’ valley

through which the chain has to move if it slides along

the site-up potential. Together with sections 4.1 and 4.2

we conclude that we need a minimal transition energy of

approximately 5.8 units, to move through an LEP, thus

an energy difference of approx 1.4 units to the mini-

mum. If one uses an energy difference of (8-4.4)=3.6

units, then one should ’fly’ more or less straight for-

ward through the ’global’ valley.
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Fig. 6 Kink SPs of index 1. E=5.208921, 5.39838, 5.44775, and 5.81173 units.
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Fig. 7 Two different global and three kink intermediate minimums. The energy is 4.38004, 4.7822419, 4.8046913, 4.88193, and
4.37948 correspondingly.
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Fig. 8 Energy profile of an NT for the FK 8-chain with v = 1
and k = 1/4. 25 stationary points are crossed here. The NT
consequently connects SPs of an index difference of one. Peaks
without color bullets are TPs of the NT. The first three SP1

on the left hand side are the same as in Fig.2.

The consecutive gallery of SPs of Fig. 8 might be a

bit misleading here. The axis of the nodes only repre-

sents the development of the calculation of the NT, not

the ’geographic’ position of the floors to each other. On

the PES the floors form parallel pathways through the

mountains [3–5].

Note that an NT is not a dynamical description of

the behavior of the chain under the force. It is a ’static’

artificial curve that fulfills only one condition: always

on the curve, the gradient of the PES points into the

search direction. Additionally, the trick with projector

equations (6) and (7) allows us to follow the NT with-

out using the corresponding amount, F , of the external

force. The NT describes the movement of the stationary

points on the corresponding effective PESs.

The first four minimums and the first three SP1 on

the pathway of the NT in Fig. 8 are the same as in

Fig. 2. Here only some additional turning points (TP)

of the profile emerge. The SP4 in Fig. 9 has a higher
symmetry than the two global minimums.

A real chain of particles will start to slide after the

first BBP under force, and will then decrease after the

last SP in any floor to the next minimum. As long as

the force continues to act, the chain can again start to

slide and so jump as a whole along the side potential.

An ascend from the i-th floor to the i + 1st floor is a

specialty of our NT. If the chain is pushed, or pulled

by the external force into any SP region, it will follow

another, a dynamical trajectory down to the next min-

imum, compare section 5.

One can assume that generally the solution of an

NT is different from the solution of the overdamped

Langevin equation. Note that the full NT of Fig. 8 goes

along a pathway with geff (x)=0 throughout. One can

ascend from a global minimum to the ’global’ SP of

index 4 with appropriate F -values where at every point

of the NT the ’Langevin’ Eq.(12), see below, does not

make a micro step!
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Fig. 9 Diverse SPs with consecutive increase of the index from 1 to 4. Energies: SP1 5.80671, SP2 6.63568, SP3 7.42578, and
SP4 8.0 units

5 The overdamped Langevin equation

In Eq. (6) we already treated the derivation of the tilted

potential Eq. (4). The components of the gradient of the

effective PES are

geff 1 = k (x1 − x2 − ao) + v sin(x1)− F l1 (9)

for i = 1,

geff i = k (2 xi − xi+1 − xi−1) + v sin(xi)− F li (10)

for i = 2, ..., N − 1,

geff N = k (xN−1 − xN − ao) + v sin(xN )− F lN (11)

for i = N .

Note that here, under the free boundaries of the chain,

two extra components emerge, in contrast to the case of

the so called ’periodic boundary conditions’ [1,2]. If we

put the gradient components to zero, we get the ansatz

of the NT theory described in the former section. In

contrast, one may use them on the right hand side of

an overdamped Langevin equation [2,15]

η ẋ = −geff (x, t) . (12)

A ’time’, t, comes into the effective gradient by the

external ac-force, Eq. (5). We use the damping factor

η = 100 throughout. Because of the damping, the ’ve-

locity’ ẋ in Eq. (12) describes the steepest descent along

geff in small steps. It is a mathematical tool for the de-

scription of an abstract sliding along the tilted site-up

potential. Nevertheless, the abstract velocity also origi-

nates the Shapiro steps being the yield of many former

references [2,14,16,17,33], to mention but a few.

Usually in former works the unspecific washboard

force [34] li = 1/
√
N for all i is used. Note that the two

boundary conditions for x1, Eq. (9), and xN , Eq. (11),

are often missing. It also means that the constant ao is

not directly present in the Langevin ansatz.

At a beginning, at F = 0 and in a minimum, the

gradient components are zero. All particles xi are in

their equilibrium. What happens for small amounts of

the external force, F? We can move the chain structure

along the NT to direction (l1, ..., lN ) using the tangent

equation (8) as predictor and some corrector steps, as

described before. The chain moves along the pathway

of the NT, where all effective gradient components (9)-

(11) stay on zero, step by step.

The Langevin Eq. (12) also leads to a solution with

geff (x) = 0 using a pure Fdc-force. One can assume to

find any point on the NT to the given amount F . After

the BBP with the critical force, F = Fc, the NT goes

on to the next SP1, however, with an again decreasing

force value F . If one assumes, in contrast, to choose

F > Fc in the Langevin equation then really an amount

emerges for the velocity of a change of the chain. Thus

one can understand the first increase of the ladder of

Shapiro steps in Figures of Ref. [15], see subsection 5.2

below. By a stronger tilting of the force, F , stronger

than Fc, the chain will be depinned and slides downhill

the effective PES.

If F > Fc then the NT has no solution, it becomes

|geff | > 0 and ẋ increases along the Langevin-ansatz.

Such steps must move the chain over the BBP being

a shoulder on the corresponding effective PES. On the

other side of the shoulder the steepest descent of the

Langevin ansatz then leads in direction to the next min-

imum of the effective PES, an intermediate, or, if the

force, F , is higher than the corresponding Fc of the

next increase of the profile the move also continues in

the direction to a global minimum. Here the process

starts again. Thus the chain moves without any stop.

5.1 Description of a usual dc- and a

(dc+ ac)-excitation of an 8-chain

We use the case N=8, a0 = as/2 = π, v = 1 and

k = 1/4. For the numerics, we tested that a step length

of the steepest descent of 0.01 units is exact enough

for our treatments. We approach Fc = 0.451 where the

sliding of the chain begins to start. (In comparison to

subsections 4.1 and 4.2, we have here a full external

force acting on all particles at the same time but not

only on one particle. So, the BBPs, the value of Fc, is
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Fig. 10 Effective energy profile of a Langevin solution for the
FK 8-chain with v = 1 and k = 1/4. The energy decreases
continuously because of Fdc > Fc but with a different slope.

not directly comparable.) Using Fdc = 0.47 and Fac =

0 we get Figs. 10 and 11. The profile of the effective

energy, Veff , is given in Fig. 10. If one increases the

external force, Fdc, then the global slope in every Figure

like Fig. 10 increases. Thus, the sliding becomes quicker.

It is a quasi trivial fact which one expects [2]. A higher

excitation makes a higher sliding velocity.

To imagine the behavior of the chain, we reduce for

Fig. 11 (and most of the next figures as well) the repre-

sentation to the part of the original PES without the ex-

ternal potential. Note that the region of the PES where

the chain slides is now far over the first floor of the PES

mountains. Thus, the steepest descent, Eq. (12), does

not go along the valley ground downhill which was de-

picted in Figs. 2 and 5. It does not cross the lower SPs

of index one. It criss-crosses along any mountain flanks.

The chain is not rigid. Every particle moves in its own

dimension. It is only weakly held together by the weak

spring constant, k = 1/4. If one particle overcomes the

top of the site-up potential, then other particles can

stay in their wells. Thus, the pathway of the chain in

the 8 dimensions of the problem will be very curvilinear.

The steepest descent does not immediately follow the

sharp curves of the valley ground. It trots after along

the side slopes of the mountains.

Principally, it is possible that a steepest descent can

cross a ridge on its path downhill a PES. This was

demonstrated by a 2D toy surface [26,35].

If one adds the alternating force, the shape of the

sliding profile becomes a little wilder. We use Fdc =

0.4585, Fac = 0.85, and νo = 0.2 in Fig. 12. It is a

typical result of the Langevin Eq. (12). The nodes of

the calculation play the role of the time, t, which is

included in the ac-vibration, Eq.(5).
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Fig. 11 Energy profile (PES only) of the same Langevin solu-
tion like in Fig. 10. The remaining energy globally oscillates
quasi-periodically in a complicated kind. The special start
here at the SP4 [2] does not play a deeper role after 5000
steps settling for the damped descent.
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Fig. 12 Energy profile (PES only) of a Langevin solution
with an additional ac-force. A quasi-oscillation over a large in-
terval like in Fig. 11 is overlayed by a small oscillation caused
by the external ac-force. (Start is at a global minimum.)

5.2 Lyapunov Exponents

To understand the global behavior of the solutions of

the Langevin equation, one studies the action of the

phase flow on certain partial sets of the phase space

RN [1]. The vector field, geff , of Eq.(12) is the ve-

locity field of the phase flow. The divergence, div geff ,

then determines the velocity by which the value of an

infinitesimal volume element changes at x(t), under the

action of the flow.

The Lyapunov exponent λ was introduced and dis-

cussed in ref. [1], part I of this series. If λ < 0 then one

can expect some sort of order for different trajectories.

The more negative λ < 0 the more regular movement

can be expected. Usually the rate depends on the ini-

tial points. However, here we have a dissipative system

where the start only determines some transient steps.

We fix Fac = 0.285, and νo = 0.2. For a step length

of 0.01 in t and 100 000 steps for the equation system

(12) we calculate the Lyapunov exponent for a series

of Fdc values in the range from Fc to 1.0, with steps
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Fig. 13 The first Lyapunov exponent, λ, for increasing ex-
ternal force, Fdc, with Fac = 0.285 and νo = 0.2 fixed. The
biggest spike at Fdc = 0.9 depict the first, the main Shapiro
step. Further steps go backwards in Fdc. The inlay below left
is the extended left part at the beginning at Fc. One may
guess more than 10 consecutive Shapiro steps.

of ∆Fdc = 0.001. We represent the first Lyapunov ex-

ponent, λ, in Fig. 13. Note the increasing spikes up to

Fdc = 0.9. The sequence of the spikes is found in inverse

order to former results [2] for the FK ’in a box model’.

An experimental result for a linear chain of Josephson

junctions [36] has a similar sequence, like in Fig. 13.

However, the model which belongs to the experiment

has different parameters to ours, but one should note

that the used boundary conditions are free ends.

We will treat the regions of the spikes of Fig. 13:

they all ’house’ one Shapiro step of the FK model. The

deeper the value of λ, the more ’stable’ is the oscillation

of the chain on its way downhill the tilted site-up po-

tential. Note: all interesting aspects concern the sliding

region of the external force.

5.3 The first Shapiro step for the periodic movements

of 2π along the site-up potential

In the range of Fdc ∈ [0.868, 0.932] one meets the first

Shapiro step, compare Ref. [2] where the first step starts

contrarily at the lowest side of Fdc. We use the fixed ac-

force Fac = 0.285 and νo = 0.2. A global view of the

profile of the PES only, over a trajectory is shown in

Fig. 14 for the case Fdc = 0.9. The profile shows pe-

riodic, regular, and short oscillations of a stable kind.

Compare also an animation in the Supplementary data.

For the cases of Fdc in the full range [0.868, 0.932] we

find the same frequency of the profile: it is locked. First,

we show the profile over the trajectory for 25 000 nodes,

being the time steps, in Fig. 14, and second, we empha-

size a cycle of 1000 time steps of the profile, before step

50 000, and we show the section in a larger form. It is
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Fig. 14 Energy profile (PES only) of a Langevin trajectory
with dc-force in the range of the first Shapiro step, with spe-
cial Fdc = 0.9, Fac = 0.285 and νo = 0.2. After a short tran-
sient process on the lhs, one has a perfect oscillation in unison
with the ac-excitation. Every loop indicates the movement of
the chain by the period, 2π, over the site-up potential, com-
pare Figs. 15 and 16.
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Fig. 15 Enlarged energy profiles (PES only) of a cycle of
Langevin trajectories at the Shapiro step 1 of Fig. 14. The
colors are: (1) Fdc = 0.868 light blue, (2) Fdc = 0.88 blue,
(3) Fdc = 0.90 green, (4) Fdc = 0.92 red, and (5) Fdc = 0.933
black. The four turning points of the green profile of one cycle
of the Langevin trajectory are depicted by Mi for maximal
TPs, or by mi for minimal TPs. One cycle of 1000 nodes of
the profile corresponds to a double step of the chain by one
period over the site-up potential, see Fig. 16.

done in Fig. 15 by the central green profile for Fdc = 0.9,

by the light blue profile for the smaller Fdc = 0.868, by

the blue profile for Fdc = 0.88, and by the red profile

for the larger Fdc = 0.92, and by the black profile for

Fdc = 0.932. The turning points (TP) of the green pro-

file are depicted by Mi for the upper ones, and by mi

for the lower ones. One full cycle over 4 TPs makes a

movement of the chain by one site-up well further, a

step of 2π along the site-up potential, see Fig. 16. Two

full cycles of the ac-force are used here. A trajectory

in the region of the first Shapiro step explores the PES

of the chain in an impressive way: the upper TPs on
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x
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x
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x

Fig. 16 Structures of the chain for the four turning points of the green profile of the Langevin trajectory of Fig. 15. They form
the corner stones of a full cycle of the moving chain with a 2π step along the site-up potential. Note that the upper TPs are
near the two different structures of the SP4.

the PES are slightly over the ’global’ SP4 where half

of the particles turn at the same time over their next

tops of the site-up potential. The two upper SP4 are

mirror pictures, vice versa, thus they are equal in en-

ergy. The lower TPs are slightly over the two global

minimums of the chain. The two global minimums, on

the other hand, are of the same energy, but they are

not mirror pictures, vice versa. The oscillation fits into

the ’global’ valley over the two SP4 structures. One can

imagine the step from m1 to M2 near the SP4 by form-

ing a fourfold antikink, a fourfold compression of the

chain, but the next step from m2 to M1 near the next

SP4 by forming of a fourfold kink, a fourfold stretching.

The corresponding times for an increase, or a decrease

of the pathways on the PES are perfectly synchronized

with the ac-oscillation.

On the frequency itself: We have the t-step length of

1/η=0.01 in the program, and νo = 0.2, thus a cycle of

500 t-steps is one period of the ac-force. 1000 steps cor-

respond to a double-cycle in the ac-force (5) of sin(4π)

in Fig. 15. 500 steps of the ac excitation make the cycle

from M1 to m1, but the next 500 steps finish the cy-

cle over M2 to m2. Then the next double-cycle starts.

The maxima of the profile correspond to the maxima of

the ac-force, and the minima of the profile correspond

to the minima of the ac-force. The Shapiro step needs

such a lockstep of the sliding and the ac-force (5).

We try to understand how the period of the sliding

acts, and how it can be locked along the region of the

Shapiro step. We are in the region of 0.9 = Fdc >>

Fc = 0.451 of a strong sliding. The negative part of

the ac-force, of Fac sin(2πνot), cannot cause that the

sum of both parts become smaller than Fc. We guess

that under the positive part of the ac-force the chain

ascends to an upper TP, Mi, however, then the negative

part of the ac-force fits to a downhill pathway near to a

global minimum. Then, if the chain structure is near the

bottom of the PES well, just in time, the next ascend

starts, and so on. Here it is still quite similar to the

’box’-case of the chain described in part I [1].

If Fdc varies in the region of the first Shapiro step,

then the former remarks apply in an analogous kind, for

every Fdc in the region of the Shapiro step. Any small

change of Fdc does not make a quicker frequency. It will

now change the exact crossing of a ridge of the PES,

however, this does not determine another periodicity.

The oscillation may slightly change its course on the

PES, its frequency is fixed. One may imagine that the

oscillation revolves in the PES mountains. The find-

ing is in contrast to the box-case, where a larger Fdc

is balanced by an internal back-vibration of the chain,

but where the pathway of the oscillation holds the high

symmetric ridge over the SP4 but does not revolve [1].

So, one can ask how the large interval of Fdc val-

ues of the main Shapiro step will come to its end? A

profile is shown for the upper border of the interval,

at Fdc = 0.933 in Fig. 17. After a short transient pro-

cess, we find a time-interval of approximately 25 000

steps with a nice periodic oscillation. One can imagine

the pathway of the chain over the PES where in ev-

ery vibration it turns from one vibration to the next a

little, only a very small piece. But over 25 000 vibra-

tions, this accumulates to a degeneration. So the region

of the PES which it uses by the oscillation will slowly

change, and then the vibration degenerates for some

steps. Just to start again a time-interval of approxi-

mately 25 000 steps for a stable oscillation, and so on.

Note that also in the regions of the ’degeneracy’ of the

oscillation, near steps 33 000 and 70 000, the chain slides

continuously further downhill. The behavior is different

for the box-case model. There at the ’end’ of Shapiro

step one in part I, ref. [1], Fig. 6 holds, nevertheless, the

non-periodic sliding downhill the ridge symmetry over

the SP4, throughout.
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Fig. 17 Energy profile (PES only) of a Langevin trajectory
with the final dc-force of the first Shapiro step, at Fdc = 0.933.
After a short transient process, we find a time-interval of ap-
proximately 25 000 steps with a quite good periodic oscilla-
tion. But then it degenerates, and so on.
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Fig. 18 Effective energy profile of the Langevin trajectory
for Fdc = 0.7 + the ac-force. The energy alternates.

5.4 Second Shapiro step

This step includes the interval Fdc ∈ [0.695, 0.717]. We

use a fixed ac-force Fac = 0.285 and νo = 0.2. Now there

emerges a difference to the first step: it has parts with

F < Fc = 0.451 thus pinned regions exist for a part

of the external force. The energy profile of the full, ef-

fective PES demonstrates such a different action of the

external force by the existence of minima, see Fig. 18.

A global view of the profile of the PES only, over a

trajectory is shown in Fig. 19 for the case Fdc = 0.7.

The profile shows periodic, and regular oscillations of a

stable kind for large enough nodes. For the cases of Fdc

in the range [0.695, 0.717] we find the same frequency of

the profile: it is locked. First, we show the profile over

the trajectory for 25 000 nodes, in Fig. 19, and second,

we emphasize a cycle over 1500 time steps of the pro-

file, and we show the section in a larger form. It is done

in Fig. 20 by the blue profile for Fdc = 0.6975, by the

green profile for Fdc = 0.7, and for Fdc = 0.715 in red.
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Fig. 19 Energy profile (PES only) of a Langevin trajectory
with dc-force in the range of the second Shapiro step, with
Fdc = 0.7, Fac = 0.285 and νo = 0.2. After a transient process,
one has again an oscillation in unison with the ac-excitation.
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Fig. 20 Enlarged energy profiles (PES only) of a cycle of
1500 t-steps of Langevin trajectories at the Shapiro step 2 of
Fig. 19. The colors are: (1) Fdc = 0.6975 blue, (2) Fdc = 0.7
green, (3) Fdc = 0.715 red. One cycle of the profile corre-
sponds to a step of the chain by one period over the site-up
potential, see Fig. 21. The curves are postponed by a cycle of
the ac-force because of different settlings for initial nodes.

Compare also an animation in the Supplementary data.

Note the equal frequencies of all curves in Fig. 20. The

turning points of the green profile are depicted with

Mi for upper, and mi for lower ones. Note that no sta-

tionary points are crossed. The turning point M1 of the

profile is over an SP3, but this of M2 is below an SP3,

compare the structures in Fig. 21.

One full cycle over 6 turning points makes a move-

ment of the chain by one site-up well further, a step

of 2π along the site-up potential. By the structures in

Fig. 21 it is not to visible that some parts of the chain

do a back-step in their site-up wells if the ac part of

the force is in a pinned region. Though a half-loop of

the Langevin trajectory is in the pinned region of the

energy, it does not converge to a fixpoint because the

trajectory escapes for the next F > Fc from the pinned
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Fig. 21 The six turning points of the green profile of a Langevin trajectory of Fig. 20 form a full cycle of the moving chain
with 2π along the site-up potential.

region and slides into the next well. This means that

no ’steady state’ emerges, as it is claimed [14]. If any,

one could speak about a steady flow. Accidentally at

this Shapiro step the PES has the shape to allow such

a periodic movement for an interval of Fdc values. Cor-

respondingly inverse parts of the ac-force will cause a

sliding of the chain after the next ridge.

Note that other site-up potentials, or another choice

of the external forces do not destroy the pattern of

Shapiro steps [2,16,33,17]. If there is any appropriate

PES then the periodic ac-force will find a region in the

mountains of the PES where the lock-down of a Shapiro

step can happen.

First we try to understand how the period of the

sliding comes into play. A cycle of 500 time steps is one

period of the ac-force. In Fig. 20 1500 steps correspond

to 3 cycles in the ac-force (5) of sin(6π). In contrast to

Shapiro step one, where one finds two times a jump of

the chain over the two global SP4, we find here that the

chain jumps through the regions of three different SP3,

for one cycle.

If Fdc varies in the region of the Shapiro step, then
the former remarks apply in an analogous kind. A larger

Fdc does not make a quicker frequency. The exact cross-

ing of a ridge of the PES at a step t does not determine

the periodicity. A larger Fdc needs larger negative ac-

parts for the pinning, but the period of sin(2πνot) is the

same. But this period determines the average velocity

of the sliding oscillations being locked here [2].

5.5 Third Shapiro step

The next Shapiro step of the movement of 2π along the

site-up potential is in the range of Fdc ∈ [0.61, 0.62].

We again use the fixed ac-force Fac = 0.285 and fre-

quency νo = 0.2. A global view of the energy profile of

a Langevin trajectory is shown in Fig. 22 for the case

Fdc = 0.6175. The profile shows periodic, regular, and

short oscillations of a stable kind. For all cases of Fdc

in the range [0.61, 0.62] we find the same frequency of

the profile: it is again locked. We depict the profile over
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Fig. 22 Energy profile (PES only) of a Langevin trajectory
with dc-force in the range of Shapiro step 3, with Fdc =
0.6175, Fac = 0.285, and νo = 0.2. One has only a local oscil-
lation in lockstep with the ac-excitation which indicates the
movement of the chain by a period of the site-up potential.
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Fig. 23 Enlarged energy profiles (PES only) of a double-cycle
of 2000 t-steps of Langevin trajectories at the Shapiro step 3
of Fig. 22. The colors are: Fdc = 0.6125 red, Fdc = 0.6150 blue,
Fdc = 0.6175 green and Fdc = 0.6200 black. The crosses, x,
depict energy levels of stationary points, nearby on the PES.
One double-cycle of the profile corresponds to a step of the
chain by one period over the site-up potential, see Fig. 24.

the trajectory in Fig. 22, and then we emphasize 2000

nodes, so to say one period, and show the section of

the profile in a larger form. It is done in Fig. 23 by the

green profile, as well as for other profiles for some other

dc-values. Note the equal frequencies of all curves in

Fig. 23, but the different amplitudes. Now the constant
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m1 145 150 155 160 165 170 175
x

M1 145 150 155 160 165 170 175
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m2 145 150 155 160 165 170 175
x

M2 145 150 155 160 165 170 175
x
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M3 145 150 155 160 165 170 175
x

m4 145 150 155 160 165 170 175
x
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x

Fig. 24 The 8 turning points of the (green) profile of a Langevin curve of Fig. 22 form a full cycle of the moving chain along
the site-up potential. The upper TPs M1 and M3 seem to be near to an SP3, however, the M2 and M4 seem to be nearer to
an SP2.

SP1 145 150 155 160 165 170 175
x SP3 145 150 155 160 165 170 175

x Min 145 150 155 160 165 170 175
x SP3 145 150 155 160 165 170 175

x

SP2 145 150 155 160 165 170 175
x SP3 145 150 155 160 165 170 175

x Min 145 150 155 160 165 170 175
x SP2 145 150 155 160 165 170 175

x

Fig. 25 Intermediate minimums and SPs near the turning points of Fig. 24

Fdc is smaller than for the second Shapiro step. Again

the resulting force, F , is not throughout over Fc, and

we have some pieces where the trajectory turns back

to potential minima. However, now the PES fits ex-

actly the doubling of such steps of the trajectory, and

again the period of the ac-force determines the period

of the sliding: the same for all Fdc values in the Shapiro

interval. The turning points of the profiles are again de-

picted with Mi for upper, and mi for lower ones. For the

green profile, the points are depicted by brown bullets.

Note that no stationary points are crossed. By colored

crosses we indicate stationary points of the PES nearby

the points Mi or mi. It means here red x: SP1, green

x: SP2, and blue x: SP3. Corresponding structures of

the chain for the points Mi or mi, and the neighboring

stationary points are shown in Figs. 24 and 25.

A full cycle over 8 turning points causes a movement

of the chain by one site-up well further. But such a cycle

consists of two nearly equal subcycles. It is like for the

MEP over the SPs of index one, in section 4.1, that at

least 8 stationary points form this oscillation. However,

here we are anywhere high in the mountains of the PES.

The highest upper turning point of the profile is in a

region over an SP3.

The spread of the profiles starts with the smallest

Fdc and ends with the largest Fdc. A cycle of 2000 steps

in Fig. 23 corresponds to 4 cycles in the ac-force (5) of

sin(2π).

5.6 Shapiro step 4

At Fdc = 0.565 is a small region of a periodic oscillation

with 10 TPs, over a time interval of 2500 time steps.

We represent one profile in Fig. 26

5.7 Shapiro step 5

In the range of Fdc ∈ [0.530, 0.538] one meets a next

Shapiro step for the fixed ac-force Fac = 0.285 and

νo = 0.2. The profile again shows periodic and regular

oscillations of a stable kind. Now a cycle of the oscil-

lation takes 3000 time steps and includes 12 TPs. For

the cases of Fdc in the range [0.530, 0.538] we find the
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Fig. 26 Energy profiles (PES only) of a cycle of 2500 t-steps
of the Langevin trajectory at Shapiro step 4.
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Fig. 27 Energy profiles (PES only) of a cycle of 3000 t-steps
of the Langevin trajectories at Shapiro step 5. The colors are:
(1) Fdc = 0.531 red, (2) Fdc = 0.5325 blue, (3) Fdc = 0.535
black, and (4) Fdc = 0.5375 green. One cycle of the profile
corresponds to a step of the chain by one period over the site-
up potential, see Fig. 28. The curves are somehow postponed
because of different settlings for initial nodes.

same frequency of the profile: it is locked. We empha-

size a cycle of the profile, and we show the section in

a larger form. It is done in Fig. 27 by the black profile

for Fdc = 0.535, as well as for other Fdc-values. Note

the equal frequencies of all curves in Fig. 27, but the

different amplitudes. No stationary points are crossed.

The upper TPs of the profile often go over an SP3,

but sometimes also below an SP3. Corresponding struc-

tures of the chain for the points Mi or mi are shown

in Fig. 28. One full cycle over 12 turning points makes

a movement of the chain by one site-up well further, a

step of 2π along the site-up potential.

Some parts of the chain sometimes make a back-step

in their site-up wells if the ac part of the force is in a

pinned region. It is interesting that the spread of the

profiles starts with the smallest Fdc and ends with the

largest Fdc. The smallest Fdc makes the largest ampli-

tude between the turning points. This is connected with

the ac-force. For the lower end of the Fdc-force interval,

at 0.53, we find for 42.6% of t-steps the external force

lower than Fc, but for the upper end, at 0.538, there are

only 41.6% t-steps of the external force lower than Fc.

Below a larger part of the ac-force makes a pinning, but

for the other end, for a higher dc-force, a smaller part

of the ac-force pins the chain. So, a downhill backwards

search of the Langevin equation is the longer, the larger

the influence of the negative part of the ac-force is. Then

the next increase to the ridge of the PES has also to be

longer, up to the point where a new sliding starts. The

alternating change of these antipode movements is not

dictated by the PES, however, by the period of the ac-

force. Accidentally at this Shapiro step the PES has the

shape to allow such a complicated periodic movement

for an interval of Fdc values. Correspondingly inverse

parts of the ac-force will cause a sliding of the chain

after the next ridge.

A cycle of 500 steps is one period of the ac-force. In

Fig. 27 1500 steps correspond to 3 cycles in the ac-force

(5). Observe in Fig. 27 that again the node-axis does

not exactly describe the direction of the movement of

single particles of the chain. The global direction of the

movement of the chain goes along the site-up potential,

however single particles can back-oscillate if Langevin

steps search in a pinned region of the chain.

5.8 Shapiro step 6

At Fdc = 0.515 is a small region of a periodic oscillation

with 14 TPs, over a time interval of 3500 time steps.

We represent one profile in Fig. 29

5.9 Shapiro step 7

At Fdc = 0.5037 is a small region of a periodic oscil-

lation with 16 TPs, over a time interval of 4000 time

steps. We represent one profile in Fig. 30

5.10 Shapiro step 8

Step 8 seems to be not assignable.

5.11 Shapiro step 9

There is a small Shapiro step for the used parameters,

ac-force Fac = 0.285 and νo = 0.2, in the range of

Fdc ∈ [0.4895, 0.4905]. The profile shows periodic and

regular oscillations. For all cases of Fdc in the range

[0.61, 0.62] we find the same frequency of the profile: it

is again locked. We emphasize 5000 nodes, one period
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M1 95 100 105 110 115 120
x

m1 95 100 105 110 115 120
x

M2 95 100 105 110 115 120
x

m2 95 100 105 110 115 120
x

M3 95 100 105 110 115 120
x

m3 95 100 105 110 115 120
x

M4 95 100 105 110 115 120
x

m4 95 100 105 110 115 120
x

M5 95 100 105 110 115 120
x

m5 95 100 105 110 115 120
x

M6 95 100 105 110 115 120
x

m6 95 100 105 110 115 120
x

Fig. 28 The 12 turning points of the black profile of a Langevin trajectory of Fig. 27 form a full cycle of the moving chain
with 2π along the site-up potential.
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Fig. 29 Energy profiles (PES only) of a cycle of 3500 t-steps
of the Langevin trajectory at Shapiro step 6.

45000 46000 47000 48000

5

6

7

8

9

Node

P
E
S

Fig. 30 Energy profiles (PES only) of a cycle of 4000 t-steps
of the Langevin trajectory at Shapiro step 7. It seems that
a period of 2000 t-steps is one period, however, one needs a
doubling for a full cycle.
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Fig. 31 Energy profile (PES only) of a double-cycle of 5000
t-steps of a Langevin trajectory at the Shapiro step 9. It is
Fdc = 0.49. Shown is one cycle of the oscillation.

of the chains movement, and show the section of the

profile. This is done in Fig. 31.

There are 20 turning points of the profile on 5000

t-steps. No stationary points are crossed. A full cycle

over 20 turning points makes a movement of the chain

by one site-up well further. Such a cycle consists of two

subcycles.

5.12 Shapiro steps 10 to 12

These steps again seem to be not assignable.

5.13 Shapiro step 13

The assignment of this step is a little tricky. At Fdc =

0.477 is we have an external excitation of a periodic os-

cillation with 28 TPs, over a time interval of 7000 time
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Fig. 32 Energy profile (PES only) of a cycle of 7000 t-steps
of a Langevin trajectory at Shapiro step 13 with Fdc = 0.477.

Table 1 Turning points and oscillation frequency of Shapiro
steps. Note one ac-period is 500 t-steps.

Step TPs t-steps

1 4 1000
2 6 1500
3 8 2000
4 10 2500
5 12 3000
6 14 3500
7 16 4000
- - -
9 20 5000
- - -

13 28 7000

steps. We represent one profile in Fig. 32. The number-

ing of the Shapiro steps was adapted for steps 9 and 13

to the regularity of table 1, compare Fig. 13.

5.14 Fractional steps

We treat the external excitation with Fdc = 0.779 be-

tween the first and the second Shapiro step, compare

Fig. 13. It was named in former treatments Shapiro step

with number 3/2. It results in a periodic oscillation with

one cycle over 2500 t-steps, and an oscillation number

of 14 TPs at all. It causes a movement of the chain over

4π along the site-up potential. In Fig. 33 we show the

energy profile of one cycle.

For the external excitation Fdc = 0.753 between

the 3/2 and the second Shapiro step, compare Fig. 13,

we find a further regular oscillation. One can name it

Shapiro step with number 7/4. It results in a periodic

oscillation with one cycle over 4000 t-steps, and an oscil-

lation number of 12 TPs at all. It causes a movement of
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Fig. 33 Energy profile (PES only) of a cycle 2500 t-steps of
a Langevin trajectory at Shapiro step 3/2 with Fdc = 0.779.
One cycle moves the chain by 4π.
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Fig. 34 Energy profile (PES only) of a cycle 4000 t-steps of
a Langevin trajectory at Shapiro step 7/4 with Fdc = 0.753.
Note that the similar peaks of two half cycles represent dif-
ferent structures of the chain, though the two half-cycles look
similar. One cycle moves the chain by 6π.

the chain over 6π along the site-up potential. In Fig. 34

we show the energy profile of one cycle.

We assume that further fractional steps could be

observed up to diverse Farey steps [32,37].

Discussion

Shapiro steps concern the average velocity of the trajec-

tory of the Langevin equation. This velocity is locked

on a step. Note that there is no such construct like a

’steady state’ as it is often pretended in former papers

[14,33].

Every periodic curve with period 2π can be charac-

terized by a relation of the kind

x(t+ s) = x(t) + 2π (13)
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for the chain, x(t), with an appropriate value of t-steps,

s. The periodic loops of the Langevin trajectories of the

Shapiro step fulfill such a relation. Here we find the rule

s = (r + 1) ∗ 1000 (14)

if the damping factor η = 100 and the Fac frequency

νo = 0.2 are used and where r is the number of the

Shapiro step, compare Table 1.

However, the quasi-periodic long-loops of pure dc-

tilted chains, like those in Fig. 11, or dc+ac driven like

in Fig. 12, also fulfill a periodicity, with a larger s-value,

and may be with a further factor by the period, 2π. So,

such a relation may be not the criterion for the existence

of the Shapiro steps, as it is pretended in former papers

[2,14,16,17,33], to name but a few.

6 Conclusion

In both cases of the FK model, in parts I and II of this

series, we have Shapiro steps for a Langevin equation.

However, with a very different character. We find out

that for an FK chain with free boundaries the results

of the FK model with the periodic boundary conditions

[1] are not transferable. We find that the sequence of

the Shapiro steps is of an inverse order. Of course, our

FK model with free boundaries is quite more flexible,

in comparison to the variable box frame caused by the

PBC used in former papers [1,2]. This inversion of the

sequence of the Shapiro steps is a strange result of this

part II of the series.

In the box model of the FK chain, the oscillations of

all Shapiro steps go over the barriers of the consecutive

SP4 versions. It may be induced by the full symmetry of
the ’washboard’-force used. Let us remind at this point

that for the FK chain with free ends we find another

kind of oscillations. They criss-cross along the flanks of

the PES mountains and find lower pathways using the

barriers of SP3 and SP2 of the PES. The break of the

symmetry of the exciting force, f, is possible by the very

lower rigidity of the chain with free ends. The locked

frequency of the Shapiro steps, on the other hand, may

be enforced by a corresponding revolving of the chain’s

oscillation across the PES. The shut down of such a

revolving is illustrated in Fig. 17.

Both parts I and II of this series help the unpaired

socks to reunite with their soulmates.
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M. Pavkov-Hrvojevic, arXiv 1912.02473, 1 (2019)

16. P. Mali, A. S̆akota, J. Tekić, S. Rados̆ević, M. Pantić,
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06602 (2003)
28. S.V. Dmitriev, L.V. Nauman, A.M. Wusatowska-Sarnek,

M.D. Starostenkov, phys. stat. sol. (b) 201, 89 (1997)
29. O.M. Braun, Y.S. Kivshar, M. Peyrard, Phys. Rev. E 56,

6050 (1997)
30. M. Peyrard, M.D. Kruskal, Physica D 14, 88 (1984)
31. C. Yannouleas, U. Landman, Rep. Progr. Phys. 70, 2067

(2007)
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