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INTRODUCTION 7

Introduction

This book is the first in a series of four books devoted to a gen-
eral nonlinear Fredholm theory on spaces of varying dimensions. The
usefulness of this theory will be illustrated by a variety of applica-
tions including Morse homology, Gromov-Witten theory, Floer theory
and Symplectic Field theory. We believe that there are many other
possible applications to nonlinear PDE-problems beyond what we de-
scribe here. From a very abstract point of view the above mentioned
problems are very similar. To explain this point we recall some facts.
Gromov-Witten theory, Floer theory, Contact homology, or more gen-
erally Symplectic Field theory are all based on the study of compactified
moduli spaces, or even infinite families of such spaces interacting with
each other. The data of these moduli spaces are encoded in convenient
ways leading for example to so-called generating functions in Gromov-
Witten theory or to Floer-Homology in the Floer-Theory. Common
features include the following.

• The moduli spaces are solutions of elliptic PDE’s showing dra-
matic non-compactness phenomena having well-known names
like “bubbling-off”, “stretching the neck”, “blow-up”, “break-
ing of trajectories”. These descriptions are a manifestation of
the fact that from classical analytical viewpoint one is con-
fronted with limiting phenomena, where classical analytical
descriptions break down.

• When the moduli spaces are not compact, they admit non-
trivial compactifications like the Gromov compactification of
the space of pseudoholomorphic curves or the space of broken
trajectories in Morse theory.

• In many problems like in Floer theory, Contact homology or
Symplectic Field theory the algebraic structures of interest are
precisely those created by the “violent analytical behavior”
and its “taming” by suitable compactifications. In fact, the
algebra is created by the complicated interactions of many
different moduli spaces.

In our books, we will propose a general functional analytic approach
which allows us, in particular, to understand the elliptic problems aris-
ing in symplectic geometry. Also here the lack of compactness does not
permit a satisfactory classical description. On the other hand, the lack
of compactness is precisely the source of interesting invariants. This
is our motivation for introducing the new framework. The framework
should fit into the following general scheme for producing invariants
for geometric problems. Starting with a concrete problem, we have a
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distinguished set G of geometric data. The choice of τ ∈ G leads to
a nonlinear elliptic differential operator Lτ . We are interested in the
solution set M of Lτ = 0. We want to extract invariants from this so-
lution set which are independent of the actual choice τ . In interesting
cases the solution sets are not compact. The first task is then to

1) find a good compactification M of the solution set M.
This task can be very difficult, as the compactification of the space

of pseudoholomorphic curves in symplectic cobordisms in [3] shows.
However, our abstract theory will give quite a number of ideas how to
construct compactifications in concrete case.

2) Next we construct a bundle Y → X so that L becomes
a section whose zero-set is M and not only M.

Clearly, if the bundle Y → X would not have some additional “good
properties”, this formulation would be quite useless. What are these
good properties? Taking classical (nonlinear) Fredholm theory as a
guide, we would like our spaces to have tangents and we would like
to be able to linearize problems. Information about the linearization
should then allow us to design implicit function theorems. In addi-
tion, we would like to have a notion of transversality and an abstract
perturbation theory which would permit to perturb a section into a
general position. Finally, in case of transversality, the solution set
{L = 0} should be a smooth manifold or a smooth orbifold in
a natural way. How does classical Fredholm theory achieve this? In
the classical theory the ambient space X is a smooth Banach man-
ifold and Y is a smooth Banach space bundle over it. Then L is a
smooth section and its linearization at zero is Fredholm. The usual
implicit function theorem then describes the solution set provided the
linearization is surjective. The smooth structure on the solution set
is induced from the smooth structure of the ambient space. In fact,
in case of transversality the solutions set is a smooth submanifold. It
should be emphasized that the classical theory has a lot of luxury build
in. If one ultimately is only interested in obtaining a smooth structure
on the solution space (in case of transversality), then one expects to
be able to give up quite a lot of structure on the ambient space X. In
our case we want the compactified solution set to be contained in the
ambient space X, and an analysis of concrete examples reveals that
there cannot be a structure for which X is locally homeomorphic to an
open set in a Banach space. In fact, one needs models admitting locally
varying dimensions in order to deal with phenomena like bubbling-off.
At first sight, it seems rather doubtful whether such objects could ever
have tangent spaces. Moreover, for any useful concept of smoothness
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in our new theory, the concrete examples listed above indicate that the
shift-map

R × L2(R) → L2(R) : (t, u) → u(· + t)

should be smooth (in a new sense yet do be defined). This map is just
barely continuous in the classical sense. Surprisingly there is a way of
overcoming this problem. One can generalize calculus by introducing
a new concept of smoothness. This then allows us to define new local
models for spaces which still admit tangent spaces and which replace
the open sets in Banach spaces. Moreover, the classical smoothness
of transition maps can be replaced by the new concept of smoothness.
Our local models now have varying dimensions. The spaces obtained
this way are called polyfolds and their bundles are called polyfold
bundles. As it turns out, on these polyfold bundles can be developed a
Fredholm theory which satisfies all our requirements. Roughly a section
is a Fredholm section if in suitable local coordinates it has a suitable
normal form. Our notion of a chart is very weak because the concept of
smoothness is relaxed. As a consequence, we obtain more flexibility in
bringing problems into a normal form. In other words, more problems
than before turn out to be nonlinear Fredholm problems.

Finally, we want to make more precise what it means that many
Fredholm problems interact with each other. Let us explain some
background. The compactifications of the solution spaces which one
introduces are usually composed of ingredients which are solutions of
PDE’s obtained from the original PDE’s as limit cases. They are usu-
ally Fredholm problems. If we take the disjoint union of all these
Fredholm problems, we obtain a new Fredholm problem having the
following structure. We find a Fredholm section f of a polyfold bun-
dle Y → X. The polyfold X will have a “boundary with corners”,
a notion to be defined. Polyfolds are, in particular, second countable
paracompact spaces. As it will turn out, there is a function d : X → N,
called the degeneracy function, so that every point x ∈ X has an open
neighborhood U(x) satisfying d|U(x) ≤ d(x). Now the boundary ∂X
is by definition the subset of X consisting of points having degeneracy
d(x) ≥ 1. Consider the connected components in {x ∈ X | d(x) = 1}.
The closure of such a connected component will be called a face. Every
point x ∈ ∂X lies in the intersection of at most d(x) faces. There is
a rich structure if we know a priori that every point lies in precisely
d(x)-many faces. This will be the case in all our applications. Now
we are able to formalize what it means that Fredholm problems are
interacting with each other. We describe only a particular case of our
more general theory. There is a countable set S (equipped with the
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discrete topology) and a subset D of S ×X ×X which is the union of
connected components in X ×X and a smooth map ◦ : D → X whose
image is ∂X and which meets certain axioms. This map extends to a
map S×Y ×Y → Y as a fiber-wise linear isomorphism. The Fredholm
section f : X → Y is compatible with the operation ◦, if

f(◦(s, x, x′)) = ◦(s, f(x), f(x′)).

The interpretation is as follows. Given two points x and x′ in X and
the “recipe” s in S, we can construct a new element ◦(s, x, x′). If, for
example, x and x′ are solutions of the Fredholm problem then ◦(s, x, x′)
is also a solution. This way we can explain the boundary ∂X in terms
of X via the operation ◦. The above structure (f : X → Y, ◦) is called
a Fredholm problem with operation. As it turns out Morse homology,
Floer theory, Contact homology and Symplectic Field theory can be
understood as Fredholm problems with operations. Hence the third
step in a concrete problem is

3) identify the operation.
We shall develop a theory of cobordisms between Fredholm prob-

lems with operations and some interesting algebra to describe such
problems.

The four volumes are organized in the following way,
Volume I. In the first part of the current volume, we introduce

the new calculus and develop the functional analysis and differential
geometry needed in order to construct our new spaces. Let us remind
the reader that most of the constructions in differential geometry are
functorial. Hence if we introduce new spaces as local models which have
some kind of tangent spaces, and if we can define smooth maps between
these spaces and their tangent maps, then the validity of the chain
rule allows us to carry out most differential geometric constructions
provided we have smooth (in the new sense) partitions of unity. Using
the new local models for spaces we construct the M polyfolds. On
these new spaces, we develop a nonlinear Fredholm theory and prove
several variants of the implicit function theorem. All the concepts
are illustrated by an application to classical Morse theory. Let us,
however, note the following. Having the notion of an M-polyfold we can
generalize the notion of a Lie-groupoid and define polyfolds by copying
the groupoid approach to orbifolds. This is straightforward and allows
us, with some of the results in volume II, to develop the Gromov-Witten
theory, where in case of transversality the moduli spaces have natural
smooth (in the classical sense) structures.
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Volume II. In this volume, we construct a polyfold set-up for
Symplectic Field theory. As a by-product, we obtain a polyfold set-up
for Gromov-Witten theory. We show that there are natural polyfolds
and polyfold bundles over them so that the Cauchy-Riemann operator
is a Fredholm section in our new sense. The zero set is the union of all
compactified moduli spaces. Polyfolds are the orbifold generalisation
of M-polyfolds and have descriptions in terms of a theory of polyfold-
groupoids, where the notion of manifold is replaced by that of an M-
polyfold.

Volume III. Here we develop the Fredholm theory in polyfolds
with operations. It will be illustrated by several applications. The
easiest and very instructive application is again Morse theory. Another
application is the Contact homology.

Volume IV: This volume is entirely devoted to Symplectic Field
theory, which is obtained as an application of a theory which one might
call Fredholm theory in polyfold groupoids.

The tentative titles of the books are:

“Fredholm Theory in Polyfolds I: Functional Analytic Meth-
ods”;
“Fredholm Theory in Polyfolds II: The Polyfolds in Symplectic
Field Theory”;
“Fredholm Theory in Polyfolds III: Operations”;
“Fredholm Theory in Polyfolds IV: Applications to Symplectic
Field Theory”.





CHAPTER 1

SC-Calculus in Banach Spaces

In order to develop the generalized nonlinear Fredholm theory needed
for the symplectic field theory we start with some calculus issues. In
the following “sc” stands for ”scale” as well as for ”scale compact” and
the meaning will become clear in the definition below.

1.1. sc-Smooth Spaces

We begin by introducing the notion of an sc-smooth structure on a
Banach space and on its open subsets.

Definition 1.1. Let E be a Banach space. An sc-smooth struc-
ture on E is given by a nested sequence

E = E0 ⊇ E1 ⊇ E2 ⊇ · · · ⊇
⋂
m≥0

Em = E∞

of Banach spaces Em, m ∈ N = {0, 1, 2, · · · }, having the following
properties.

• If m < n, the inclusion En ↪→ Em is a compact operator.

• The vector space E∞ defined by

E∞ =
⋂
m≥0

Em

is dense in Em for every m ≥ 0.

It follows, in particular, that En ⊆ Em is dense and the embedding
is continuous if m < n. We note that E∞ has the structure of a Frechet
space. If U ⊂ E is an open subset we define the induced sc-smooth
structure on U to be the nested sequence Um = U ∩ Em. Given an
sc-smooth structure on U we observe that Um inherits the sc-smooth
structure defined by (Um)k = Um+k. In the following most of the time
there is no possibility of confusing the Banach space Em with the sc-
Banach space Em. In case where is an ambiguity we will write Em to
emphasize that we are dealing with the Banach space with sc-structure
(Em+i)i≥0. Similarly we will distinguish between Um and Um.

13
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Here is an example.

Example 1.2. Consider E = L2(R). Take a strictly increasing
sequence of real numbers δ0 = 0 < δ1 < δ2 · · · starting at 0. Then
define the space Em = Hm,δm to consist of all L2-functions u whose
weak derivatives Dku up to order m belong to L2 if weighted by eδm|s|,
i.e.,

eδm|·|Dku ∈ L2(R) for all k ≤ m.

The space Em is equipped with the inner product

(u, v)m =
∑

0≤k≤m

(eδm|s|Dku, eδm|s|Dkv).

Using the appropriate compact Sobolev embedding theorem on bounded
domains and the strictly increasing weights at the infinities one estab-
lishes the compactness of the inclusion operators En ↪→ Em for n > m.
Clearly, the images are dense. Armed with this example the reader
should make a similar construction for functions defined on R × S1.
Such maps will be important in SFT.

Given E and F with sc-smooth structures then the Banach space
E⊕F carries the sc-smooth structure defined by (E⊕F )m = Em⊕Fm.

Definition 1.3. Let U and V be open subsets of sc-smooth Banach
spaces. A continuous map ϕ : U → V is said to be of class sc0

or simply sc0 if it induces continuous maps on every level, i.e., the
induced maps

ϕ : Um → Vm

are all continuous.

We illustrate the concept by the following example.

Example 1.4. Take the space E from Example 1.2 equipped with
the sc-structure given there. Define the R-action of translation

(1.1) Φ : R ⊕ E → E, (t, u) �→ t ∗ u by

(t ∗ u)(s) = u(s + t).

It is not difficult to prove that the map (t, u) �→ t ∗u is of class sc0, see
Lemma 1.39 below.

Next we define the tangent bundle.
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Definition 1.5. Let U be an open subset in a sc-smooth Banach
space E equipped with the induced sc-smooth structure. Then the tan-
gent bundle of U is defined by TU = U1 ⊕ E with the induced
sc-smooth structure defined by the nested sequence

(TU)m = (U1 ⊕ E)m = Um+1 ⊕ Em

together with the sc0-projection

p : TU → U1.

Note that the tangent bundle is not defined on U but merely on the
smaller subset U1 of level 1. For instance, in Example 1.2 the tangent
bundle of E is given by

TE = H1,δ1 ⊕ L2

with the sc-smooth structure (TE)m = H1+m,δm+1 ⊕ Hm,δm.

1.2. sc-Smooth Maps

Next we introduce the notion of a sc1-map. Let us first recall that
a map f : U → V between open subsets of Banach spaces E and F
is differentiable at the point x ∈ U if there exists a bounded linear
operator L : E → F satisfying

1

‖h‖E
‖f(x + h) − f(x) − Lh‖F → 0 as ‖h‖E → 0.

The operator L is then called the derivative of f at x and is denoted
by df(x). The map is of class C1 if it is differentiable at every x ∈ U
and if the map U → L(E, F ), x → df(x) is continuous. Here L(E, F )
is the space of bounded linear operators equipped with the norm

‖L‖L(E,F ) = sup
{h∈E| ‖h‖E≤1}

‖Lh‖F .

If E is infinite-dimensional, then the requirement that the map

U → L(E, F ), x → df(x)

is continuous is much stronger than the requirement that the map

U ⊕ E → F, (x, h) → df(x)h

is continuous. The latter merely implies that

U → Lco(E, F )

is continuous, where Lco(E, F ) stands for L(E, F ) equipped, however,
with the compact open topology which is not a normable topology if
dim(E) = ∞ but merely a locally convex topology.
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Definition 1.6. Let E and F be sc-smooth Banach spaces and let
U ⊂ E be an open subset. An sc0-map f : U → F is said to be sc1 or
of class sc1 if the following conditions hold true.

(1) For every x ∈ U1 there exists a linear map Df(x) ∈ L(E0, F0)
satisfying for h ∈ E1

1

‖h‖1
‖f(x + h) − f(x) − Df(x)h‖0 → 0 as ‖h‖1 → 0.

(2) The tangent map Tf : TU → TF defined by

Tf(x, h) = (f(x), Df(x)h)

is an sc0-map.

The linear map Df(x) will in the following often be called the
linearization of f at the point x.

The second condition requires that Tf : (TU)m → (TF )m is con-
tinuous for every m ≥ 0. In detail, the map

Um+1 ⊕ Em → Fm+1 ⊕ Fm

(x, h) �→ (f(x), Df(x)h)

is continuous for every m ≥ 0. It follows, in particular, that

(1.2) Df(x) ∈ L(Em, Fm)

if x ∈ Um+1, for every m ≥ 0.

Fm+1 −−−→ Fm −−−→ Fm−1�⏐⏐f

�⏐⏐f

�⏐⏐f

Um+1 −−−→ Um −−−→ Um−1

Fm+1 −−−→ Fm −−−→ Fm−1�⏐⏐Df(x)

�⏐⏐Df(x)

�⏐⏐Df(x)

Em+1 −−−→ Em −−−→ Em−1

From the first condition in Definition 1.6 it follows that f : U1 → F0

is differentiable and the derivative df(x) at x ∈ U1 is given by

df(x) = Df(x) ∈ L(E1, F0).

Actually, we shall show that f ∈ C1(U1, F ). This is a consequence of
the following alternative definition of a class sc1-map.

Proposition 1.7 (Alternative definition). Let E and F be sc-
smooth Banach spaces and let U ⊂ E be an open subset. An sc0-map
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f : U → F is of class sc1 if and only if the following conditions hold
true.

(1) For every m ≥ 1, the induced map

f : Um → Fm−1

is of class C1. In particular, the derivative df is the continuous
map

Um → L(Em, Fm−1), x → df(x).

(2) For every m ≥ 1 and every x ∈ Um the continuous linear
operator df(x) : Em → Fm−1 has an extension to a continuous
linear operator Df(x) : Em−1 → Fm−1. In addition, the map

Um ⊕ Em−1 → Fm−1

(x, h) → Df(x)h

is continuous.

Proof. Assume that f : U → F is of class sc1 according to Def-
inition 1.6. Then f : U1 → F is differentiable at every point x with
the derivative df(x) = Df(x)|E1 ∈ L(E1, F ), so that the extension
of df(x) : E1 → F to a continuous linear map E → F is the postu-
lated map Df(x). We claim that the derivative x �→ df(x) from U1 into
L(E1, F ) is continuous. Arguing indirectly we find ε > 0 and sequences
xn → x in U1 and hn of unit norm in E1 satisfying

(1.3) ‖df(xn)hn − df(x)hn‖0 ≥ ε.

Taking a subsequence we may assume, in view of the compactness of
the embedding E1 ↪→ E0, that hn → h in E0. Hence, by the continuity
property (2) in Definition 1.6, df(xn)hn = Df(xn)hn → Df(x)h in F0.
Consequently,

df(xn)hn − df(x)hn = Df(xn)hn − Df(x)hn → Df(x)h − Df(x)h = 0

in F0, in contradiction to (1.3).
Next we prove that f : Um+1 → Fm is differentiable at x ∈ Um+1

with derivative

df(x) = Df(x)|Em+1 ∈ L(Em+1, Fm)

so that the required extension of df(x) is the operator Df(x) ∈ L(Em, Fm).
The map f : U1 → F0 is of class C1 and df(x) = Df(x). Since, by
continuity property (2) in Definition 1.6, the map (x, h) �→ Df(x)h
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from Um+1 ⊕ Em → Fm is continuous, we can estimate for x ∈ Um+1

and h ∈ Em+1,

1

‖h‖m+1
· ‖f(x + h) − f(x) − Df(x)h‖m

=
1

‖h‖m+1
· ‖

∫ 1

0

[
Df(x + τh) · h − Df(x) · h

]
dτ‖m

≤

∫ 1

0

‖
[
Df(x + τh) ·

h

‖h‖m+1

− Df(x) ·
h

‖h‖m+1

]
‖m dτ.

Take a sequence h → 0 in Em+1. By the compactness of the em-
bedding Em ↪→ Em+1 we may assume that h

‖h‖m+1
→ h0 in Em. By the

continuity property in Definition 1.6 we now conclude that the inten-
grand converges uniformly in τ to ‖Df(x)h0−Df(x)h0‖m = 0 as h → 0
in Em+1. This shows that f : Um+1 → Fm is indeed differentiable at x
with derivative df(x) being the bounded linear operator

df(x) = Df(x) ∈ L(Em+1, Fm).

The continuity of x �→ df(x) ∈ L(Em+1, Fm) follows by the argument
already used above, so that f : Um+1 → Fm is of class C1. This finishes
the proof of Proposition 1.7. �

The situation in Proposition 1.7 is illustrated by the two diagrams
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...........................................................................................................................................................................
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.....
..
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where x ∈ Um ⊂ Em.

Remark 1.8. The extension Df(x) in Proposition 1.7 is unique
because Em ⊂ Em−1 is dense. In general, if A : G → F is a continuous
linear operator between Banach spaces and if G ⊂ E is a dense linear
subspace of another Banach space E, the question of extending A to
a continuous linear operator Â : E → F is immediately answered. By
the density of G in E an extension is unique, if it exists. A necessary
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and sufficient condition for the existence of a continuous extension is
the existence of a positive constant C such that

‖Ah‖F ≤ C · ‖h‖E for all h ∈ G.

It is important to note that the second condition in (1.7) says that the
map Um → Lco(Em−1, Fm−1) is continuous where Lco is the space of
continuous linear operators equipped with the compact open topology
(rather than the usual operator topology).

If the sc-continuous map f : U ⊂ E → F is of class sc1, then its
tangent map

Tf : TU → TF

is an sc-continuous map. If now Tf is of class sc1, then f : U → F is
called of class sc2 . In this case the tangent map of Tf ,

T (Tf) : T (TU) → T (TF )

is sc-continuous. We shall use the notation T 2f = T (Tf) and T 2U =
T (TU) and T 2F = T (TF ). Then T 2U = T (TU) = T (U1 ⊕ E) =
(U2 ⊕ E1) ⊕ (E1 ⊕ E) has the sc-smooth structure

(T 2U)m = Um+2 ⊕ Em+1 ⊕ Em+1 ⊕ Em, m ≥ 0.

Proceeding this way inductively, the map f : U → F is called of
class sck if the sc-continuous map T k−1f : T k−1U → T k−1F is of class
sc1. Its tangent map T (T k−1f) is then denoted by T kf . It is a sc-
continuous map T kU → T kF . A map which is of class sck for every k
is called sc-smooth or of class sc∞ . To illustrate these concepts we
shall prove the following consequences of the definitions.

Proposition 1.9. If f : U ⊂ E → F is of class sck, then

f : Um+k → Fm

is of class Ck for every m ≥ 0.

Proof. For k = 1 the proposition follows from our alternative
definition (Proposition 1.7). In this case the tangent map Tf : TU →
TF is of the form

Tf(x1, x2) = (f(x1), Df(x1)[x2]).

In particular, if (x1, x2) ∈ Um+1 ⊕ Em+1 ⊂ Em+1 ⊕ Em and df(x1) :
Em+1 → Fm is the derivative of f at x1, then Df(x1)[x2] = df(x1)[x2].
The general case follows from the following claim which we prove by
induction.
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Let f : U → F be of class sck. Then f : Um+k → Fm is of class
Ck for all m ≥ 0. In addition, if m ≥ 0 and π is the projection of
(T kF )m onto the last factor Fm, then, at every point x = (x1, . . . x2k) ∈
Em+k ⊕ Em+k ⊕ · · · ⊕ Em+k ⊂ (T kU)m, the composition π ◦ T kf(x) is
a linear combination of terms of the form

(1.4) djf(x1)[xi1 , . . . , xij ],

where 1 ≤ j ≤ k.

We already know that the claim is true when k = 1. Assuming
that our claim holds for k ≥ 1 we show that it is also true for a map
f : U → F of class sck+1. Given such a map f , then its tangent map
T kf : T kU → T kF is of class sc1. Thus, in view of Proposition 1.7,
the map T kf : (T kU)m+1 → (T kF )m is of class C1 for every m ≥ 0.
In particular, it is also of class C1 when considered as a map from
Em+k+1⊕· · ·⊕Em+k+1 ⊂ (T kU)m+1 into (T kF )m. Taking the projection
π from (T kF )m onto the last factor Fm the composition π ◦ T kf :
Em+k+1 ⊕Em+k+1 ⊕ · · · ⊕Em+k+1 → Fm is continuously differentiable.
By our inductive assumption, at points x = (x1, . . . , x2k) ∈ Em+k ⊕
· · · ⊕ Em+k, the map π ◦ T kf(x) is a linear combinations of maps of
the form (1.4). Because f is Ck, every term djf(x1)[xi1 , . . . , xij ] with
j ≤ k − 1 defines a C1-map whose derivative is equal to

(1.5) dj+1f(x1)[x̂1, xi1 , . . . , xij ] +
∑

1≤l≤j

djf(x1)[xi1 , . . . , x̂il , . . . xij ]

where (x̂1, x̂i1 , . . . , x̂ij ) ∈ Em+k+1 ⊕ · · · ⊕ Em+k+1.

Hence dkf(x1)[xi1 , . . . , xij ] also defines a C1 map from Em+k+1 ⊕ · · · ⊕
Em+k+1 into Fm and this implies that f is of class Ck+1. Denoting by
dk+1f(x1) the derivative of f of order k + 1 we see that the derivative
d(π ◦ T kf)(x) of π ◦ T kf at x ∈ Em+k+1 ⊕ · · · ⊕ Em+k+1 is a linear
combination of terms (1.5) and of the term

(1.6) dk+1f(x1)[x̂1, xi1, . . . , xik ] +
∑

1≤l≤k

djf(x1)[xi1 , . . . , x̂il, . . . xik ].

Hence taking a point (x, x̂) = (x1, . . . , x2k , x̂1, . . . , x̂2k) ∈ Em+k+1 ⊕
· · · ⊕ Em+k+1 ⊂ (T k+1U)m and evaluating the composition π ◦ T k+1f
at (x, x̂) we see that π ◦T k+1f(x, x̂) is a linear combination of terms of
the form (1.4). This finishes the induction and hence the proof of the
proposition. �

The following criterion for sc-smoothness will be handy later on.
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Proposition 1.10. Let E be a Banach space with a sc-smooth
structure and let U ⊂ E be an open subset. Assume that f : U → R is
sc-continuous and that the induced maps

fm := f |Um
: Um → R, m ≥ 0,

are of class Cm+1. Then f is of class sc∞.

We observe that the deeper we go down the nested sequence of
spaces the higher are the differentiability properties of the sc-smooth
functions. The space R is, as usual, equipped with the constant sc-
structure.

Proof. The proposition follows from the following statement which
we shall prove by induction.

(k) The map f : U → R is of class sck and the iterated tangent
map T kf : T kU → T kR has the following property for every m ≥ 0.
Let π : T kR → R be the projection on any factor R of T kR and let
x = (x1, . . . , x2k) ∈ (T kU)m. Then the composition π ◦ (T kf)(x) is a
linear combination of terms

(1.7) djf(x1)[xk1, ..., xkj
],

where 0 ≤ j ≤ k and x1 ∈ Um+k and xki
∈ Emi

with mi ≥ m + (j − 1).

We start with k = 1. Take x1 ∈ U1 and define the linear map
Df(x1) : E0 → R by

Df(x1)x2 = df(x1)x2

where df(x1) : E0 → R is the derivative of the map f : U0 → R. Clearly,
Df(x1) ∈ L(E0, R). Since f : U1 → R is of class C2, its derivative
df(x1) : E1 → R is equal to Df(x1)|E1. Hence part (1) of Definition
1.6 holds. The continuity of the map U1 ⊕E0 → R given by (x1, x2) �→
Df(x1)x2 follows from the continuity of x1 �→ Df(x1) = df(x1) ∈
L(E0, R). This also implies the continuity of the map Um+1 ⊕Em → R
given by (x1, x2) �→ Df(x1)x2 since the convergence in Um+1 ⊕ Em

implies the convergence in U1 ⊕ E0. The tangent map Tf : TU → TR
has the form

Tf(x1, x2) = (f(x1), Df(x1)x2) = (f(x1), df(x1)x2)

for (x1, x2) ∈ Um+1 ⊕ Em, m ≥ 0. We have verified the assertion (k)
for k = 1.

Next assume that the statement (k) holds for k ≥ 1. Let 1 ≤ j ≤ k.
Setting m = 0 at first we assume m1, . . . , mj ≥ j − 1. Abbreviate
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U ′ = Uk ⊕Em1 ⊕ · · · ⊕Emj
and E ′ = Ek ⊕Em1 ⊕ · · · ⊕Emj

. It suffices
to show that the map Φ : U ′ → R defined by

(1.8) Φ(x) := Φ(x1, xk1 , · · · , xkj
) = djf(x1)[xk1 , · · · , xkj

]

is of class sc1. Take x = (x1, xk1, . . . , xkj
) ∈ U ′

1 = Uk+1 ⊕Em1+1 ⊕ · · ·⊕
Emj+1 and define the linear map

DΦ(x) : E ′
0 = Ek ⊕ Em1 ⊕ · · · ⊕ Emj

→ R

by setting

DΦ(x)(y) = dj+1f(x1)[y1, xk1 , · · · , xkj
]

+
∑

1≤i≤j

djf(x1)[xk1 , · · · , yki
, · · · , xkj

].(1.9)

Since f : Uj → R is of class Cj+1 and x1 ∈ Uk+1 ⊂ Uj and y1 ⊂ Ek ⊂ Ej

and xki
⊂ Emi+1 ⊂ Ej , it follows that the map

Ek → R, y1 �→ dj+1f(x1)[y1, xk1 , · · · , xkj
]

is a continuous linear operator in y1. Also the maps

Emi
�→ R, yki

�→ djf(x1)[xk1 , · · · , yki
, · · · , xkj

]

are continuous linear maps. Consequently, DΦ(x) : E ′
0 → R is a contin-

uous linear operator. Moreover, the map Φ : U ′
1 → R is of class C1 and

its derivative dΦ(x) at the point x ∈ U ′
1 coincides with DΦ(x)|E ′

1. This
shows that condition (1) of Definition 1.6 is satisfied. Note also that if
(xn, yn) ∈ U ′

1 ⊕ E ′
0 converges in U ′

1 ⊕ E ′
0, then DΦ(xn)yn converges in

R and since the convergence in U ′
m+1 ⊕ Em implies the convergence in

U ′
1 ⊕ E ′

0 we conclude the continuity of the map (x, y) �→ DΦ(x)y from
U ′

m+1 ⊕ E ′
m into R. The tangent map TΦ : TU ′ → TR has the form

TΦ(x, y) = (Φ(x), DΦ(x)(y))

where Φ(x) is given by (1.8) and DΦ(x)(y) by formula (1.9) for (x, y) ∈
TU ′ = (U ′)1⊕E ′ = (Uk+1⊕Em1+1⊕· · ·⊕Emj+1)⊕(Ek⊕Em1⊕· · ·⊕Emj

).
The tangent map Tf is of class sc0 by the above remark. Inspecting the
terms of Φ(x) and DΦ(x)(y) we see that the components of TΦ(x, y) are
of the form (1.7) with indices satisfying the conditions in (k) however,
with k replaced by k + 1. Hence the statement (k+1) holds true and
the proof of Proposition 1.10 is complete. �

The next and more general criterion for sc-smoothness is proved
the same way as Proposition 1.10.
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Proposition 1.11. Let E and F be sc-Banach spaces and let U ⊂
E be open. Assume that the map f : U → F is sc0 and that the induced
map f : Um+k → Fm is Ck+1 for every m, k ≥ 0. Then f : U → E is
sc-smooth.

The example coming up has many of the features of situations we
are confronted with in the SFT, but is a little bit easier. It illustrates
the sharp contrast between the new concept of sc-smoothness and the
classical smoothness concept.

Example 1.12. The R-action of translation

Φ : R ⊕ E → E, (t, u) �→ t ∗ u

introduced in (1.1) is an sc-smooth map. The spaces are equipped with
the previously defined sc-structures. The tangent map

TΦ : R ⊕ E1 ⊕ R ⊕ E → E1 ⊕ E

is given by

(TΦ)(t, u)[δt, δu] =

(
t ∗ u, δt

(
t ∗

du

dt

)
+ t ∗ (δu)

)
.

This more difficult result is proved in Theorem 1.38 below. Here the
increasing weights play a decisive role.

We point out that Φ is not differentiable with respect to t in the
classical sense due to the loss of derivatives.

Taking the derivative of a function f or g, the target levels drop
by 1 according to Proposition 1.7. Therefore, one could expect for the
composition g ◦ f of the two maps, that the target level should drop
by 2 in order to obtain a C1-map. As it turns out, however, this is not
the case.

Theorem 1.13 (Chain Rule). Assume that E, F and G are sc-
smooth Banach spaces and U ⊂ E and V ⊂ F are open sets. Assume
that f : U → F and g : V → G are of class sc1 and f(U) ⊂ V . Then
the composition g ◦ f : U → G is of class sc1 and the tangent maps
satisfy

T (g ◦ f) = (Tg) ◦ (Tf).

Proof. We shall verifiy properties (1) and (2) in Definition 1.6 for
g ◦ f . From Proposition 1.7 we conclude that the functions g : V1 → G
and f : U1 → F are of class C1. Moreover, Dg(f(x))◦Df(x) ∈ L(E, G)
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if x ∈ U1. Fix x ∈ U1 and choose h ∈ E1 sufficiently small so that
f(x + h) ∈ V 1. Then, using the postulated properties of f and g,

g(f(x + h)) − g(f(x)) − Dg(f(x)) ◦ Df(x)h

=

∫ 1

0

Dg(tf(x + h) + (1 − t)f(x)) [f(x + h) − f(x) − Df(x)h]dt

+

∫ 1

0

(
[Dg(tf(x + h) + (1 − t)f(x)) − Dg(f(x))] ◦ Df(x)h

)
dt.

Consider the first term
(1.10)

1

‖h‖1

∫ 1

0

Dg(tf(x + h) + (1 − t)f(x))[f(x + h) − f(x) − Df(x)h]dt

=

∫ 1

0

Dg(tf(x + h) + (1 − t)f(x)) ·
1

‖h‖1

[f(x + h) − f(x) − Df(x)h]dt.

If h ∈ E1, the maps [0, 1] → Fm defined by t → tf(x+h)+(1−t)f(x)
are continuous and converge in C0([0, 1], F1) to the constant map t →
f(x) as ‖h‖1 → 0. Moreover, since f is of class sc1,

a(h) :=
1

‖h‖1

[
f(x + h) − f(x) − Df(x)h

]
converges to 0 in F0 as ‖h‖1 → 0. Therefore, by the continuity as-
sumption (2) in Definition 1.6, the map

(t, h) → Dg(tf(x + h) + (1 − t)f(x))[a(h)]

as a map from [0, 1]×E1 into G0 converges to 0 as h → 0, uniformly in
t. Consequently, the expression in (1.10) converges to 0 in G0 as h → 0
in E1. Next consider the second integral

(1.11)

∫ 1

0

[
Dg(tf(x + h) + (1− t)f(x))−Dg(f(x))

]
◦Df(x)

h

‖h‖1
dt.

The set of all h
‖h‖1

∈ E1 has a compact closure in E0, in view of Defi-

nition 1.1, so that the closure of the set of all

Df(x)
h

‖h‖1

is compact in F0 because Df(x) ∈ L(E0, F0) is a continuous map by
Definition 1.6. Consequently, again by property (2) of Definition 1.1,
every sequence hn converging to 0 in E1 possesses a subsequence having
the property that the integrand of the integral in (1.11) converges to 0
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in G0 uniformly in t. Hence the integral (1.11) also converges to 0 in
G0 as h → 0 in E1. We have proved that

1

‖h‖1

‖g(f(x + h)) − g(f(x)) − Dg(f(x)) ◦ Df(x)h‖0 → 0

as h → 0 in E1. Consequently, condition (1) of Definition 1.6 is satisfied
for the composition g ◦ f with the operator

D(g ◦ f)(x) = Dg(f(x)) ◦ Df(x) ∈ L(E0, G0),

where x ∈ U1. We conclude that the tangent map T (g◦f) : TU → TG,

(x, h) �→ ( g ◦ f(x), D(g ◦ f)(x)h )

is sc-continuous and, moreover, T (g ◦ f) = Tg ◦ Tf . The proof of
Theorem 1.13 is complete. �

The reader should realize that in the previous proof all conditions on sc1

maps were used, i.e. it just works. From Theorem 1.13 one concludes
by induction that the composition of two sc∞-maps is also of class sc∞

and, for every k ≥ 1,

T k(g ◦ f) = (T kg) ◦ (T kf).

Remark 1.14. There are other possibilities for defining new smooth-
ness concepts. For example, we can drop the requirement of compact-
ness of the embedding operator En → Em for n > m. Then it is
necessary to change the definition of smoothness in order to get the
chain rule. One needs to replace the second condition in the defini-
tion of being sc1 by the requirement that Df(x) induces a continuous
linear operator Df(x) : Em−1 → Fm−1 for x ∈ Um and that the map
Um → L(Em−1, Fm−1) for m ≥ 1 is continuous. For this theory the sc-
smooth structure on E given by Em = E recovers the usual Ck-theory.
However, this modified theory seems not to be applicable to SFT. In
particular, the R-action of translation in Example 1.12 would already
fail to be smooth using this alternative concept of smoothness.

A sc-diffeomorphism f : U → V , where U and V are open subsets
of sc-spaces E and F with the induced sc-structure*, is by definition
a homeomorphism U → V so that f and f−1 are sc-smooth. Let
us note that in view of Theorem 1.13 we can define the pseudogroup
of local sc-diffeomorphisms. As a corollary we obtain the category of

*In the following we will sometimes say that a Banach space has a sc-structure
rather than a sc-smooth structure.
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sc-manifolds consisting of second countable paracompact topological
spaces equipped with a maximal atlas of sc-smoothly compatible charts.
We will develop this concept later on where we will illustrate it with
some examples.

1.3. sc-Operators

We need several definitions.

Definition 1.15. Consider E equipped with a sc-smooth structure.

• An sc-smooth subspace F of E consists of a closed linear
subspace F ⊆ E, so that Fm = F ∩ Em defines a sc-smooth
structure for F in the sense of Definition 1.1.

• An sc-smooth subspace F of E splits if there exists an-
other sc-smooth subspace G so that on every level we have the
topological direct sum

Em = Fm ⊕ Gm

We shall use the notation

E = F ⊕sc G.

Definition 1.16. Let E and F be sc-smooth Banach spaces.

• An sc-operator T : E → F is a bounded linear operator
inducing bounded linear operators on all levels

T : Em → Fm.

• An sc-isomorphism is a surjective sc-operator T : E → F
such that T is invertible and T−1 : E → F is also an sc-
operator.

It is useful to point out that a finite-dimensional subspace K of E
which splits the sc-smooth space E necessarily belongs to E∞.

Proposition 1.17. Let E be a sc-smooth Banach space and K a
finite-dimensional subspace of E∞. Then K splits the sc-space E.

Proof. Take a basis e1, ..., en for K and fix the associated dual
basis. By Hahn Banach this dual basis can be extended to continuous
linear functionals λ1, ..., λn on E. Now P (h) =

∑n
i=1 λi(h)ei defines a

continuous projection on E with image in K ⊂ E∞. Hence P induces
continuous maps Em → Em. Therefore P is a sc-projection. Define
Ym = (Id − P )(Em). Setting Y = Y0 we have E = K ⊕ Y . We claim
that Ym = Em ∩ Y0. By construction, Ym ⊂ Em ∩ Y0. An element
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x ∈ Em ∩ Y0 has the form x = e − P (e) with x ∈ Em and e ∈ E0.
Since P (e) ∈ E∞ we see that e ∈ Em, implying our claim. Finally,
Y∞ = ∩m≥0Ym is dense in Ym for every m ≥ 0. Indeed, if x ∈ Ym, we
can choose xk ∈ E∞ satisfying xk → x in Em. Then (Id − P )xk ∈ Y∞

and (Id − P )xk → (Id − P )x = x in Ym. �

We can introduce the notion of a linear Fredholm operator in the
sc-setting.

Definition 1.18. Let E and F be sc-smooth Banach spaces. A
sc-operator T : E → F is called Fredholm provided there exist sc-
splittings E = K ⊕sc X and F = Y ⊕sc C with the following properties.

• K = kernel (T ) is finite-dimensional.

• C is finite-dimensional.

• Y = T (X) and T : X → Y defines a linear sc-isomorphism.

The above definition implies T (Xm) = Ym, that the kernel of T :
Em → Fm is K and that C spans its cokernel, so that

Em = ker T ⊕ Xm and Fm = T (Em) ⊕ C

for all m ∈ N. The following observation, called the regularizing prop-
erty, should look familiar.

Proposition 1.19. Assume T : E → F is sc-Fredholm and

Te = f

for some e ∈ E0 and f ∈ Fm. Then e ∈ Em.

Proof. Since Fm = T (Em) ⊕ C, the element f ∈ Fm has the
representation

f = T (x) + c

for some x ∈ Xm and c ∈ C. Similarly, e has the representation

e = k + x0,

with k ∈ K = ker T and x0 ∈ X0 because E0 = K ⊕ X0. From
T (e) = f = T (x) + c and T (x) = T (x0) one concludes T (x0 − x) = c.
Hence c = 0 because T (E0) ∩ C = {0}. Consequently, x0 − x ∈ K.
Since e − x = k + (x0 − x) ∈ K, x ∈ Em, and K ⊂ Em one concludes
e ∈ Em as claimed. �
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We end this subsection with an important definition and stability
result for Fredholm maps.

Definition 1.20. Let E and F be sc-Banach spaces. An sc-operator
R : E → F is said to be an sc+

− operator if R(Em) ⊂ Fm+1 and if
R induces a sc0-operator E → F1.

Let us note that due to the (level-wise) compact embedding F1 → F
a sc+-operator induces on every level a compact operator. This follows
immediately from the factorization

R : E → F 1 → F.

The stability result is the following statement.

Proposition 1.21. Let E and F be sc-Banach spaces. If T : E →
F is a sc-Fredholm operator and R : E → F a sc+-operator, then T +R
is also a sc-Fredholm operator.

Proof. Since R : Em → Fm is compact for every level we see that
T + R : Em → Fm is Fredholm for every m. Let Km be the kernel
of T + R : Em → Fm. We claim that Km = Km+1 for every m ≥ 0.
Indeed, Km+1 ⊂ Km. If x ∈ Km, then Tx = −Rx ∈ Fm+1. Applying
Proposition 1.19, x ∈ Em+1 so that x ∈ Km+1. Hence the kernel Km

is independent of m. Set K = K0. By Proposition 1.17, K splits the
sc-space E since it is a finite dimensional subset of E∞. Hence we have
the sc-splitting E = K ⊕ X for a suitable sc-subspace X. Next define
Ym = (T + R)(Em). This defines a sc-structure on Y = Y0. Let us
show that F induces a sc-structure on Y and that this is the one given
by Ym. For this it suffices to show that

(1.12) Y ∩ Fm = Ym.

Clearly,

Ym = (T +R)(Em) ⊂ Fm∩(T +R)(Em) ⊂ Fm∩(T +R)(E0) = Y ∩Fm.

Next assume that y ∈ Y ∩Fm. Then there exists x ∈ E0 with Tx+Rx =
y. Since R is a sc+-section it follows that y − Rx ∈ F1 implying that
x ∈ E1. Inductively we find that x ∈ Em implying that y ∈ Ym and
(1.12) is proved. Observe that we also have

F∞ ∩ Y = (
⋂

m∈N

Fm) ∩ Y =
⋂

m∈N

(Fm ∩ Y ) =
⋂

m∈N

Ym = Y∞

In view of Lemma 1.22 below, there exists a finite dimensional sub-
space C ⊂ F∞ satisfying F0 = C ⊕ Y . From this it follows that
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Fm = C ⊕ Ym. Indeed, since C ∩ Ym ⊂ C ∩ Y , we have C ∩ Ym = {0}.
If f ∈ Fm, then f = c + y for some c ∈ C and y ∈ Y since Fm ⊂ Y
and F0 = C ⊕Y . Hence y = f − c ∈ Fm and using Proposition 1.19 we
conclude y ∈ Fm. This implies, in view of (1.12), that Fm = C ⊕ Ym.
We also have F∞ = C ⊕ (F∞ ∩ Y ) = C ⊕ Y∞. It remains to show
that Y∞ is dense in Ym for every m ≥ 0. Since Fm = C ⊕ Ym with C
finite-dimensional and Ym closed, the norm ‖c + y‖ = ‖c‖m + ‖y‖m is
equivalent to the norm ‖c+y‖m. Take y ∈ Ym. Then since F∞ is dense
in Fm we find sequences cn ∈ C and yn ∈ Y∞ such that cn + yn → y
in Fm. From the above remark about equivalent norms we conclude
that the sequence cn is bounded and we may assume cn → c. Hence
the sequence yn converges to some y′ ∈ Ym because Y∞ ⊂ Ym and Ym

is closed. Thus, c + y′ = y so that c = 0 and yn → y in Fm, proving
our claim. Consequently, we have the sc-splitting

F = Y ⊕sc C

and the proof of the proposition is complete. �

Lemma 1.22. Assume F is a Banach space and F = D⊕Y with D
of finite-dimension and Y a closed subspace of F . Assume, in addition,
that F∞ is a dense subspace of F . Then there exists a finite dimensional
subspace C ⊂ F∞ such that F = C ⊕ Y .

Proof. Denoting by d1, . . . , dn a basis of D we define the finite

dimensional subspaces Ni of F by setting Ni = span{d1, . . . , d̂i, . . . , dn}

where d̂i means that the vector di is omitted. The space Ni⊕Y is closed
and since di �∈ Ni ⊕ Y we have εi := dist(di, Ni ⊕ Y ) > 0. Choose
0 < ε < mini εi. In view of the fact that F∞ is dense in F we find,
for every 1 ≤ i ≤ n, an element ci ∈ F∞ satisfying ‖di − ci‖ < ε/(2n).
The vectors c1, . . . , cn are linearly independent. Indeed, arguing by
contradiction we assume

∑
i αici = 0 with

∑
i|αi| > 0. Without loss

of generality we may also assume |α1| ≥ |α2|, . . . , |αn|. Hence c1 =∑
i≥2(−αi/α1)ci =

∑
i≥2 βici with |βi| ≤ 1. Then one estimates

ε

2n
> ‖d1 − c1‖ = ‖c1 −

∑
i≥2

βici‖ = ‖(d1 −
∑
i≥2

βidi) −
∑
i≥2

βi(ci − di)‖

≥ ‖d1 −
∑
i≥2

βidi‖ −
∑
i≥2

|βi|‖ci − di‖ ≥ ε −
n − 1

2n
ε >

ε

2n
.

This contradiction shows that the vectors ci are linearly independent.
Abbreviating C := span{c1, . . . , cn} we will show that C ∩ Y = {0}.
Once again arguing by contradiction we assume that

∑
i αici ∈ Y for
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some constants αi satisfying
∑

i|αi| > 0. We may assume |a1| ≥
|a2|, . . . , |αn| so that c1 +

∑
i≥2 βici ∈ Y where βi = αi/α1. Note that

(−
∑

i≥2 βidi) + (c1 +
∑

i≥2 βici) ∈ Ni ⊕ Y . Since dist(d1, N1 ⊕ Y ) =
εi > ε, we reach a contradiction as the following estimates show,

ε < ε1 ≤ ‖d1 −
[
−

∑
i≥2

βidi + (c1 +
∑
i≥2

βici)
]
‖

= ‖(d1 − dc1) +
∑
i≥2

βi(di − ci)‖ ≤
∑
i≥1

‖di − ci‖ ≤ n ·
ε

2n
=

ε

2
.

Finally, we prove F = C ⊕Y . Since C and D have the same dimension
there is a linear isomorphism ψ : C → D. Define Ψ : C⊕Y → D⊕Y by
Ψ(c+y) = ψ(c)+y. Then Ψ is injective and since Ψ(ψ−1(d)+y) = d+y
it is also surjective. Hence C ⊕ Y = D⊕ Y = F as claimed. The proof
of the lemma is complete. �

1.4. sc-Manifolds

In this section we are going to introduce the spaces needed to for-
mulate the general Fredholm theory.

1.4.1. Topological Considerations. We start by recalling some
definitions.

Definition 1.23. Let X be a topological space.

• The space X is said to be second countable if it has a countable
basis for its topology.

• The space X is said to be completely regular if for every point
x ∈ X and every neighborhood U(x) of x there exists a con-
tinuous map f : X → [0, 1] satisfying f(x) = 0 and f(y) = 1
for all y ∈ X \ U(x).

• A space X is said to be normal provided it is Hausdorff and
disjoint closed subsets admit disjoint open neighborhoods.

• A space X is said to be paracompact if it is Hausdorff and for
every open covering of X there exists a finer open covering
which is locally finite.

The crucial result concerning paracompact spaces is the existence
of partitions of unity, see for example Dugundji [6].

Proposition 1.24. If X is a paracompact space and U an open
covering of X, then there exists a sub-ordinate partition of unity.

The following is a useful classical result by Urysohn.
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Proposition 1.25. For a second countable topological space the
notions of being normal or completely regular or metrizable are equiv-
alent.

An obvious consequence is the following corollary.

Corollary 1.26. A second countable Hausdorff space X which is
locally homeomorphic to open subsets of Banach spaces is metrizable
and hence, in particular, paracompact.

Proof. The space X is completely regular since it is locally homeo-
morphic to open subsets of Banach spaces. Therefore, as a consequence
of Proposition 1.25, the space X is metrizable and hence paracom-
pact. �

1.4.2. sc-Manifolds. Using the results so far we can define sc-
manifolds. This concept will not yet be sufficient to describe the spaces
arising in SFT. However, certain components of the ambient spaces
have subspaces which will inherit the structure of an sc-manifold.

Definition 1.27. Let X be a second countable Hausdorff space. An
sc-chart for X consists of a triple (U, ϕ, E), where U is an open subset
of X, E a Banach space with a sc-smooth structure and ϕ : U → E is
a homeomorphism onto an open subset V of E. Two such charts are
sc-smoothly compatible provided the transition maps are sc-smooth. An
sc-smooth atlas consists of a family of charts whose domains cover
X so that any two charts are sc-smoothly compatible. A maximal sc-
smooth atlas is called a sc-smooth structure on X . The space X
equipped with a maximal sc-smooth atlas is called an sc-manifold .

Let us observe that a second countable Hausdorff space which ad-
mits an sc-smooth atlas has to be metrizable and paracompact since it
is locally homeomorphic to open subsets of Banach spaces.

As a side remark we also note that the above construction addresses
certain issues arising in the analysis underlying Gromov-Witten theory.
For example, if we have a holomorphic curve with an unstable domain
component we have to divide out by a non-discrete group. These issues
will arise later when we construct the ambient spaces for SFT.

Assume that X has a sc-smooth structure. Then it possesses the
filtration given by Xm for all m ≥ 0, from which every Xm inherits an
sc-smooth structure. We shall define the tangent bundle TX → X1 in
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a natural way so that the tangent projection is sc-smooth*. In order to
do so we use an appropriate modification of the definition found, for
example, in Lang’s book [16]. Namely consider tuples (U, ϕ, E, x, h)
where (U, ϕ, E) is a sc-smooth chart, x ∈ U1 and h ∈ E. Call two
such tuples equivalent provided x = x′ and D(ϕ′ ◦ ϕ−1)(ϕ(x))h = h′.
An equivalence class [U, ϕ, E, x, h] is called a tangent vector. Denote
the whole collection of tangent vectors by TX. We have a canonical
projection p : TX → X1. We define for an open subset U ⊂ X the set
TU by TU = p−1(U ∩ X1) . For a chart (U, ϕ, E) we define the map

Tϕ : TU → E1 ⊕ E

by

Tϕ([U, ϕ, E, x, h]) = (x, h).

One easily checks that the collection of all these maps defines a smooth
atlas for TX and that the projection p is sc-smooth.

1.5. A Space of Curves

This section is the first installment of several sections in which we
illustrate the abstract concepts in the classical Morse theory. Recall
that for a Morse function f : M → R on the compact Riemannian
manifold M one studies the gradient flow on M defined by the equation

ẋ(s) = ∇f(x(s)), s ∈ R

x(0) = x ∈ M.

Every solution x(s) converges as s → ∞ and s → ∞ to critical points
of the function f . The aim is to investigate the structure of the set of
all these orbits connecting critical points and, moreover, the compact-
ifications of these solution spaces consisting of broken trajectories.

For simplicity we first consider a set of curves in Rn connecting the
point a ∈ Rn at −∞ with the point b ∈ Rn at ∞, where a �= b. We
first choose a smooth reference curve ϕ : R → Rn connecting the two
points and satisfying

ϕ(s) = a for s ≤ −1 and ϕ(s) = b for s ≥ 1.

*The definition of sc-smooth maps between sc-manifolds is the obvious modifi-
cation from standard manifold theory.
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Then we equip the Sobolev space E = H2(R, Rn) with the sc-smooth
structure Em = Hm+2,δm , where δ0 = 0 < δ1 < · · · is a strictly increas-
ing sequence of weights. Now we introduce the space

X̂ = {u = ϕ + h| h ∈ E}

of parametrized curves u : R → Rn connecting the point a at −∞ with
the point b at +∞ and having Sobolev regularity equal to 2.

a

b

u

Figure 1.1

The topology of X̂ is induced by the complete metric d̂ on X̂,

d̂(u, v) = ‖u − v‖0

where the norm on the right hand side is the Sobolev norm on E = E0.
The metric is invariant under the R-action of translation,

d̂(t ∗ u, t ∗ v) = d̂(u, v)

for all t ∈ R and u, v ∈ X̂. In order to divide out the R-action we define
an equivalence relation calling two elements in X̂ equivalent, u ∼ v, if
there exists a constant t ∈ R satisfying

u(s) = (t ∗ v)(s) = v(s + t) for all s ∈ R.

By [u] we shall denote the equivalence class containing u. The quotient
space

X = X̂/ ∼



34 1. SC-CALCULUS IN BANACH SPACES

consisting of the equivalence classes is equipped with the quotient
topology which, as we show next, is determined by a complete met-
ric. We define d : X × X → [0,∞) by

d(α, β) = inf{d̂(u, v)| u ∈ α, v ∈ β}.

Lemma 1.28. The function d is a complete metric on X.

Proof. Clearly d is symmetric. Let [u1], [u2] and [u3] be three ele-

ments in X. Given ε > 0 we find representatives u1, u2 in X̂ satisfying

d̂(u1, u2) ≤ d([u1], [u2]) + ε

and representatives u′
2 of [u2] and u3 of [u3] so that

d̂(u′
2, u3) ≤ d([u2], [u3]) + ε.

Now u′
2 and u2 belong to the same orbit of the R-action. Using the

R-invariance of d̂ we may therefore assume, replacing u3 by some other
representative, that u2 = u′

2. Hence,

d̂(u1, u3) ≤ d([u1], [u2]) + d([u2], [u3]) + 2ε.

This implies the triangle inequality for d. Finally, we have to show that
d(α, β) = 0 implies α = β. If d(α, β) = 0 we find sequences tn, sn and
representatives u and v of α and β such that

d̂(tn ∗ u, sn ∗ v) → 0.

By the R-invariance,

d̂(tn ∗ u, sn ∗ v) =‖ tn ∗ u − sn ∗ v ‖0=‖ (tn − sn) ∗ u − v ‖0 .

Thus, setting τn = tn − sn,

‖τn ∗ u − v‖0 → 0.

The sequence τn is bounded. Indeed, if τn → ∞ (for some subsequence),
then one concludes from the definition of ϕ, using a �= b, that ‖τn ∗
u − v‖0 → ∞. Similarly, the sequence τn cannot have a subsequence
converging to −∞. Hence, after taking a subsequence we may assume
that τn → τ0. This implies τ0 ∗ u = v implying α = β. We have proved
that d defines a metric on X implying that X is paracompact.

Next we show that the metric space (X, d) is complete. Given a
Cauchy-sequence αn ∈ X we can take a fast subsequence αnj

satisfying
d(αnj+1

, αnj
) < 2−j. Pick a representative u1 for αn1 . Then we find a

representative u2 of αn2 satisfying

d̂(u2, u1) < d(αn2, αn1) + 2−1.
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Then we can take a representative u3 of αn3 (applying the already
previously used R-invariance) so that

d̂(u3, u2) < d(αn3, αn2) + 2−2.

Inductively we choose representatives uj+1 ∈ X̂ satisfying

d̂(uj+1, uj) < d(αnj+1
, αnj

) + 2−j ≤ 2−j+1.

Hence (uj) is a Cauchy sequence in X̂ and therefore has a limit w ∈ X̂.
By construction,

lim
j→∞

αnj
= [w],

implying that the subsequence (αnj
) and hence the whole sequence (αn)

converges, showing that the metric space (X, d) is complete. �

The projection map

p : X̂ → X : u → [u]

satisfies

d([u], [v]) ≤ d̂([u], [v]).

Moreover, the map p is open. Indeed,

p−1(p(U)) =
⋃
t∈R

t ∗ U.

Consequently, p−1(p(U)) is open if U is open, implying, by definition
of the quotient topology of X, that p(U) is open. We leave it as an
exercise to prove that d determines the quotient topology. The space
E is separable since it can be viewed as a closed linear subspace of
a three-fold product of L2-spaces which are known to be separable.
(For example, rational linear combinations of characteristic functions
of closed intervals with rational boundaries constitute a countable dense
subset). For a dense sequence uj in X̂, the sequence αj = [uj] is dense
in X. Now taking metric balls with rational radii around these points
we obtain a countable basis for the topology on X. We have proved
the following statement.

Lemma 1.29. The previously constructed space X is a complete
metric space with a countable dense subset. In particular, it is a second
countable paracompact space. Moreover, the projection map

p : X̂ → X

is continuous and open.
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Next we show that X carries the structure of a sc-manifold. Fix a
class [u] which is represented by

(1.13) u = φ + h0 for some h0 ∈ E∞.

Let Σ = Σu be an affine hyperplane in Rn such that the path u in-
tersects Σ transversally for some parameter value t0. Using the R-
action we may assume that t0 = 0. Recall the continuous embedding
E ↪→ C1(R, Rn) by the Sobolev embedding theorem.

a

b

Σ
u(0)

u = ϕ + h0 ∈ ϕ + E∞

Figure 1.2

Lemma 1.30. Consider the path u as described in (1.13). Then
there exists a real number ε > 0 such that for every h ∈ E satisfying

‖h‖C1([−ε,ε],Rn) < ε2,

the path u + h has a unique intersection with Σ at some time t(h) ∈
(−ε, ε). In addition, defining the open subset U ⊂ E by

U = {h ∈ E| ‖h‖C1([−ε,ε],Rn) < ε2},

the map h �→ t(h) from U into R is sc-smooth.
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Proof. We represent the hyperplane Σ as Σ = {x ∈ Rn|λ(x) = c}
for a linear map λ : Rn → R and a constant c ∈ R. By assumption,
λ(u(0)) = c and λ(u′(0)) �= 0 since u intersects Σ transversally at time
t = 0. Now introduce the function F : [−ε, ε]×C1([−ε, ε], Rn) → R by

F (t, h) = λ(u(t) + h(t)) − c.

Then F (0, 0) = 0 and the derivative dtF (0, 0) of F with respect to
t at the point (0, 0) is equal to dtF (0, 0) = λ(u′(0)) �= 0. Using the
implicit function theorem one finds ε > 0 and, for every h satisfying
‖h‖C1([−ε,ε],Rn) < ε2, a unique time t(h) ∈ (−ε, ε) solving the equation
F (t(h), h) = 0 and satisfying t(0) = 0. In addition, the map h �→ t(h)
is of class C1. This shows that u + h intersects Σ at a unique time
in (−ε, ε) given by t(h). In order to prove the second statement in
the lemma we take the sc-smooth space F = H2((−ε, ε), Rn) with the
nested sequence Fm = Hm+2((−ε, ε), Rn) of Sobolev spaces. Define the
open subset V ⊂ E by V = {h ∈ F | ‖h‖C1([−ε,ε],Rn) < ε2} filtrated by
V m := V ∩Fm for all m ≥ 0. Since F ⊂ C1([−ε, ε], Rn) is continuously
embedded, the function h �→ t(h) from V 0 → R is continuously dif-
ferentiable. Now consider the map h �→ t(h) from V m into R and use
the fact that Fm ⊂ Cm+1([−ε, ε], Rn) is continuously embedded. Since
u ∈ C∞([−ε, ε], Rn), the map F : [−ε, ε] × Cm+1([−ε, ε], Rn) → R is
of class Cm+1. By the implicit function theorem and the Sobolev em-
bedding theorem again the map h �→ t(h) from V m into R is also of
class Cm+1. Consequently, Proposition 1.10 implies the sc-smoothness
of the map h �→ t(h) from V ⊂ F into R. Finally, defining the open
set U ⊂ E by U = {h ∈ E| ‖h‖C1([−ε,ε],Rn) < ε2}, the composition
U → V → R given by h �→ t(h|[−ε,ε]) =: t(h) is also sc-smooth as
claimed in Lemma 1.30. �

Lemma 1.31. Given δ > 0 there exists a number ε1 > 0 so that the
following holds. If h, k ∈ E satisfy |h(s)|, |k(s)| < ε1 for all s ∈ R and

t ∗ (u + h) = u + k

for some t ∈ R, then |t| < δ.

Proof. Arguing indirectly assume that for a given δ > 0 such a
number ε1 > 0 cannot be found. Then we find sequences (hj) and (kj)
in E converging uniformly to 0 and a sequence (tj) of real numbers so
that |tj| ≥ δ and

tj ∗ (u + hj) = u + kj .

If the sequence (tj) has a converging subsequence and t is its limit, then
t ∗ u = u. This implies that t = 0 which contradicts |t| ≥ δ. Hence



38 1. SC-CALCULUS IN BANACH SPACES

tj → ±∞. Consider the case +∞. From

(u + hj)(tj + s) = (u + kj)(s)

we conclude as tj → ∞ that

b = u(s)

for all s. However, if s � 0 we know that u(s) is close to the point
a �= b giving a contradiction. This completes the proof. �

Finally, we are able to introduce sc-smooth charts on the metric

space X. We fix a class [u] ∈ X with the smooth representative u ∈ X̂
as described in (1.13) and recall that u intersects the hyperplane Σ ⊂
Rn at u(0) ∈ Σ transversally.

We choose δ = ε in Lemma 1.31 where ε > 0 is the number guaran-
teed by Lemma 1.30 and let ε1 > 0 be the number associated with δ in
Lemma 1.31. Let ΣT be the tangent plane of Σ such that Σ = u(0)+ΣT .
Denote by F the codimension 1 subspace of E consisting of all h sat-
isfying h(0) ∈ ΣT . Let U ⊂ F be the open neighborhood of 0 ∈ F
consisting of all h ∈ F satisfying

‖ h ‖C1([−ε,ε]) < ε2

and
|h(s)| < ε1 for all s ∈ R.

Then we define

A : U ⊂ F → X by A(h) = [u + h],

where u is the distinguished path from (1.13). Geometrically, h rep-
resents a small vector field along a smooth curve u such that h(s) ∈
Tu(s)R

n. We have identified the tangent space Tu(s)R
n at the point u(s)

with Rn itself and have used the exponential map of the Euclidean met-
ric on Rn to present the curves near u by expu(s)(h(s)) = u(s) + h(s).
All these curves connect the point a ∈ Rn at s = −∞ with the point
b ∈ Rn at s = ∞.

Lemma 1.32. The map A is a homeomorphism of U ⊂ F onto some
open subset of X.

Proof. In order to prove that A is injective we assume A(h) =
A(k). Then

t ∗ (u + h) = u + k
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for some t ∈ R. Because |h(s)|, |k(s)| < ε1 for all s we deduce from
Lemma 1.31 that |t| < δ = ε. Since ‖h‖C1([−ε,ε]) < ε2 there is, by
Lemma 1.30, a unique point t(h) ∈ (−ε, ε) so that (u + h)(t(h)) ∈ Σ.
Since h ∈ F and hence (u + h)(0) ∈ Σ we must have t(h) = 0 and
consequently h = k. This shows that the map A is injective. Clearly
A is continuous.

Let us finally show that A is open. Assume [u0] = A(h0) for some
h0 ∈ U . We find t0 ∈ R such that

t0 ∗ u0 = u + h0.

Taking the appropriate representative for u0 we may assume that t0 = 0
so that u0(0) ∈ Σ. Since h0 ∈ U we have

‖h0‖C1([−ε,ε]) < ε2

|h0(s)| < ε1 for all s ∈ R.

By the definition of the topology on X, an open neighborhood of [u0] is
generated by taking the equivalence classes of the elements of an open
neighborhood of the representative u0. Thus we take a sufficiently small
open neighborhood V1 ⊂ X̂ of u0 so that for v ∈ V1 we still have

‖v − u‖C1([−ε,ε]) < ε2

and

|v(s) − u(s)| < ε1 for all s ∈ R.

Since v = u+(v−u) there exists by Lemma 1.30 a unique t(v) ∈ (−ε, ε)
such that v(t(v)) ∈ Σ. Now define

P (v) := t(v) ∗ v − u.

If v = u0, so that v = u + h0 we conclude from h0(0) ∈ ΣT that
(u + h0)(0) ∈ Σ. Hence t(v) = t(u0) = 0 and consequently P (u0) =
u+h0−u0 = h0 ∈ F . It follows from the definition that P (v) ∈ F . Since

by Lemma 1.30 the map v �→ t(v) from V1 ⊂ X̂ into R is continuous
and since the R-action by Theorem 1.38 is sc-smooth, the composition

v �→ (t(v), v) �→ t(v) ∗ v − u = P (v)

from V1 into F is continuous. Therefore, if v is close enough to u0 then

P (v) lies in U . Since V1 is open in X̂ and since [v] = [u + (v − u)] =
[u + P (v)] we have proved that the map A is open, and the proof of
Lemma 1.32 is complete. �

From Lemma 1.32 we conclude that the map

Φ = A−1
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defines an sc-chart on X whose domain is the open set A(U) ⊂ X. We
next show that the transition maps are sc-smooth.

Lemma 1.33. Assume that Φ : O → U and Φ′ : O′ → V are sc-
charts with O ∩ O′ �= ∅ as described above. Then the transition map

Φ′ ◦ Φ−1 : Φ(O ∩ O′) → Φ′(O ∩ O′)

is sc-smooth.

Proof. In view of the definition of an sc-chart we have Φ = A−1

and Φ′ = A′−1 where

A : U → O

A(h) = [u + h]

and where

A′ : V → O′

A′(k) = [v + k]

with U and V as described above, and with the paths u and v on the
∞-level. Assume

[u + h0] = [v + k0]

for some h0 in U and k0 in V . Then

t0 ∗ (u + h0) = v + k0

for some real number t0. Evaluating at s = 0 we conclude (u+h0)(t0) =
v(0)+k0(0) ∈ Σv, where Σv is the hypersurface used in the construction
of the “v-chart”. Using the implicit function theorem as in Lemma
1.30 we find an sc-smooth map h �→ t(h) defined for h close to h0 in E
so that the path (u + h) intersects Σv transversally at the parameter
value t(h), and, in addition, satisfies t(h0) = t0. Now the transition
map Φ′ ◦ Φ−1 = A′−1 ◦ A near h0 is the map

h → t0(h) ∗ (u + h) − v.

Since the R-action is sc-smooth, the composition

h → (t(h), h) → t(h) ∗ h + (t(h) ∗ u − v)

shows the sc-smoothness of the transition map Φ′ ◦Φ−1 as claimed. �

We now consider all pairs (u0, Vu0) having the above properties, define
the maps

Au0 : Vu0 → X : h → [u0 + h]

and summarize the discussion in the following two statements.
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Proposition 1.34. The maps Au0 are homeomorphisms onto open
subsets of X.

Denoting the image of Au0 by Uu0 and setting Φu0 = A−1
u0

, the main
result of this section is as follows.

Theorem 1.35. The collection of all (Uu0 , Φu0) where u0 varies

over all smooth elements in X̂, i.e. elements in ϕ + E∞, defines an
atlas for X whose transition maps are sc-smooth.

It turns out to be useful for our M-polyfold constructions later on to
have the following somewhat sharper version of Lemma 1.30 available.

Consider the distinguished path u in (1.13) which connects, in par-
ticular, the point a at −∞ with the point b at ∞. Since a �= b we can
define the positive number σ by

σ := 1
10

· |a − b|.

Then there exists a positive number α such that |b−u(s)| < σ if s ≥ α
and |a − u(s)| < σ if s ≤ −α.

Lemma 1.36. Let u and α be as above. Given δ > 0 there exists a
number ε2 > 0 having the following properties. If h and k ∈ E satisfy
‖h‖C0(R) < ε2 and ‖k‖C0(R) < ε2, and if there exists t ∈ R satisfying

t ∗ (u + h) = u + k on [−α, α],

then |t| < δ.

Proof. Arguing by contradiction we assume that the assertion is
wrong. Then there exists δ > 0 and there exist sequences hn, kn and tn
so that |tn| ≥ δ, ‖hn‖C0 → 0, ‖kn‖C0 → 0 and

(1.14) tn ∗ (u + hn) = u + kn on [−α, α].

If tn does not have a bounded subsequence we may assume without
loss of generality that tn → ∞. Consequently, evaluating (1.14) at
s ∈ [−α, α] and taking the limit as n → ∞ we obtain

b = u(s) for s ∈ [−α, α],

which is not possible because the interval [−α, α] necessarily contains
points s where u(s) is different from b. We may therefore assume that
the sequence tn is bounded and going over to a subsequence we may
assume that tn → t0. Hence taking the limit in (1.14) as n → ∞ we
obtain

t0 ∗ u = u on [−α, α].
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Assume that t0 > 0. If on one hand t0 ≥ 2α, then u(−α) = u(−α+ t0).
Since u(−α) is σ-close to a while u(−α + t0) is σ-close to b we have
a contradiction. If on the other hand 0 < t0 < 2α, then there exists
an integer j ≥ 1 such that −α + jt0 ≤ α and −α + (j + 1)t0 > α, so
that u(−α) = u(−α + (j + 1)t0), and again we obtain a contradiction.
Similarly, t0 < 0 is not possible, so that necessarily t0 = 0. This,
however, contradicts |t0| ≥ δ and completes the proof of Lemma 1.36.

�

We end this section with a recipe for constructing smoothly com-
patible charts. We formulate it for manifolds and leave it as an exercise
to the reader to fill in the details using Lemma 1.36 above.

Recipe 1.37. Let M be a smooth manifold and a, b ∈ M distinct
points. Denote by X̂ the space of maps u : R → M which are in
H2

loc so that lims→∞ u(s) = b and lims→−∞ u(s) = a. We require,
moreover, that in local coordinates at a and b the following holds. If
ϕ are local coordinates at the point b satisfying ϕ(b) = 0, then the
map ϕ ◦ u(s) is defined for large s and belongs to H2([s0,∞), Rn) for
some large s0. Similarly at the point a in which case we choose the
Sobolev space H2((−∞,−s0], Rn). The definition does not depend on

the choice of ϕ. Let X be the quotient of X̂ by the R-action. As before
we can distinguish between elements of class Hm+2,δm for m ≥ 0 giving
a subset Xm of X. Choose [u0] ∈ X∞. Then we find a parameter
value s0 satisfying u′

0(s0) �= 0. Take a chart ϕ mapping u(s0) to 0 and
u′

0(s0) to e1 = (1, 0.., 0). Then pull back the standard metric on Rn

to a neighborhood of u(s0) and extend it as a complete Riemannian
metric to M . Taking if necessary a different representative we may
assume that s0 = 0. We define Fu0 to consist of all H2-sections h of
u∗

0TM → R so that h(0) ⊥ u′
0(0). Let Σ be the hyperplane in Tu0(0)M

perpendicular to u′
0(0) and let Σε be the image of the ε-ball around 0 in

Σ. The definition of H2-sections depends a priori on the trivialization
since R is non-compact. But it is fixed if we take the ends of the
trivialization coming from the chart ϕ. Now let us denote by exp the
exponential map. Then there exist numbers α > 0, ε > 0 and ε1 > 0
depending on u0 so that the following holds.

• If h, k are in H2 with |h(s)|, |k(s)| < ε1 for all s and t∗expu0
h =

expu0
k on [−α, α] for some t ∈ R, then |t| < ε.

• If h satisfies |h(s)| + |∇h(s)| < ε2 for all s ∈ [−ε, ε] then
expu0

(h) is transversal to expu0(0) Σε at a unique point param-
eterized by some s ∈ (−ε, ε).
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Denote by Ou0 the open neighborhood of 0 ∈ Fu0 consisting of those
h which satisfy |h(s)| < ε1 for all s ∈ R and |h(s)| + |∇h(s)| < ε2 for
all s ∈ [−ε, ε]. Then the map

Au0 : Ou0 → X : Au0(h) = [expu0
(h)]

defines a homeomorphism onto some open neighborhood Uu0 of [u0].
The inverse Φu0 then defines a chart and the union of all these charts
will cover X. (Note that by the discussion in the Rn-case this can be
guaranteed by taking any element in X and replacing it by a sufficiently
close smooth representative.) Moreover, the transition maps are sc-
smooth.

1.6. Appendix I

Consider the Hilbert space E = L2(R) which we equip with the sc-
structure Em = Hm,δm consisting of all maps having weak derivatives
Dku up to order m so that (Dku)eδm|s| belongs to L2. Here δ0 = 0 <
δ1 < . . . is a strictly increasing sequence. We are going to study the
R-action

R ⊕ E → E : (t, u) → t ∗ u,

defined by the translation (t ∗ u)(s) = u(s + t) and prove the following
theorem.

Theorem 1.38. The translation map R ⊕ E → E : (t, u) → t ∗ u
is sc-smooth.

We begin the proof with a simple observation.

Lemma 1.39. The map (t, u) → t ∗ u is of class sc0.

Proof. Fix a level m. It is easy to see that the smooth maps
having compact support are dense in Em. We can estimate ‖ t ∗ u ‖m

in terms of t and u as follows:

‖t ∗ u‖2
m =

∑
k≤m

∫
R

|u(k)(s + t)|2e2δm|s|ds

≤
∑
k≤m

∫
R

|u(k)(s + t)|2e2δm|s+t|e2δm|t|ds

= e2δm|t| · ‖u‖2
m.

Hence,

‖ t ∗ u ‖m≤ eδm|t|· ‖ u ‖m .
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If v is smooth and compactly supported, then t∗v → v in C∞ as t → 0.
Let u0 and u be elements in Em and v a compactly supported smooth
map. Then

‖t ∗ u − u0‖m

= ‖(t ∗ u − t ∗ u0) + (t ∗ u0 − t ∗ v) + (t ∗ v − v) + (v − u0)‖m

≤ eδm|t| ·
(
‖u − u0‖m + ‖u0 − v ‖m

)
+ ‖ t ∗ v − v‖m + ‖v − u0‖m

≤ (eδm|t| + 1) · [‖u − u0‖m + ‖u0 − v‖m] + ‖t ∗ v − v‖m.

Given ε > 0 we choose v so that ‖u0−v‖m < ε. Thus for all ‖u−u0‖ < ε
and |t| small enough,

‖ t ∗ u − u0 ‖m≤ 10 · ε+ ‖ t ∗ v − v ‖m

and taking |t| even smaller the right-hand side is smaller than 11 · ε.
This proves the continuity of (t, u) → t ∗ u on level m at the point
(0, u0). Writing

t ∗ u − t0 ∗ u0 = (t − t0) ∗ (t0 ∗ u) − t0 ∗ u0

we obtain continuity on level m at every point as a consequence of the
previous discussion. �

At this point it is useful to recall some rudimentary background on
strongly continuous semigroup theory as for example can be found in
A. Friedman’s book about partial differential equations (page 93-100).
As a consequence of the previous lemma we obtain on every level m
a strongly continuous group of operators. Let Am be the associated
infinitesimal generator on Em. By definition it has the domain

D(Am) =

{
u ∈ Em | lim

h→0+

h ∗ u − u

h
exists

}
.

Moreover, Am is defined by

Am(u) = lim
h→0+

h ∗ u − u

h
.

From the theory of Sobolev spaces (in the simple case of one variable)
we deduce that the operator Am is equal to the weak derivative d

ds
. We

summarize these facts in the following lemma.

Lemma 1.40. The infinitesimal generator Am has as domain all
elements in Em which have weak derivatives up to order m which again
belong to Em. Hence

D(Am) = Hm+1,δm(R).
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The standard semigroup theory tells us for u ∈ D(Am) that the
map

R → Em : t → t ∗ u

is C1 and also gives a continuous map into D(Am) equipped with its
graph norm. Moreover,

d

dt
(t ∗ u) = Am(t ∗ u) = t ∗ (Amu).

If u ∈ Em+1 , then u ∈ D(Am). Indeed, since δm < δm+1 we have
Em+1 = Hm+1,δm+1 ⊂ Hm+1,δm = D(Am). Hence the derivative of
Φm+1(t, u) = t ∗ u, viewed as a map from R ⊕ Em+1 into Em, is given
by

DΦm+1(t, u)(δt, δu) = δt · (t ∗ (Amu)) + t ∗ (δu).

We shall show that the map from R ⊕ Em+1 into L(R ⊕ Em+1, Em)
defined by

(t, u) → DΦm+1(t, u)

is continuous. What will make this true is that Hm+1,δm+1 is a subspace
of D(Am) = Hm+1,δm . Let a ∈ R and h ∈ Em+1. Then

‖a(t ∗ Amu − t0 ∗ (Amu0)) + t ∗ h − t0 ∗ h‖m

≤ |a|‖t ∗ (Am(u − u0)) + t ∗ (Amu0) − t0 ∗ (Amu0)‖m

+ ‖ t ∗ h − t0 ∗ h ‖m .

We look for an estimate uniform over |a| + ‖h‖m+1 ≤ 1. Taking the
supremum over all such elements we obtain

‖DΦm+1(t, u) − DΦm+1(t0, u0)‖L(R⊕Em+1,Em)

≤‖ t ∗ (Am(u − u0)) + t ∗ (Amu0) − t0 ∗ (Amu0) ‖m

+ sup
‖h‖m+1=1

‖t ∗ h − t0 ∗ h‖m

=: I + II.

Clearly, I → 0 as (t, u) → (t0, u0) in R ⊕ Em+1. In order to deal with
expression II we recall that the embedding Em+1 → Em is compact
which implies that II → 0 as t → t0. Indeed, arguing indirectly we
would find sequences tk → t0 and (hk) ⊂ Em+1 with ‖ hk ‖m+1= 1 so
that for a suitable δ > 0

‖tk ∗ hk − t0 ∗ hk‖m ≥ δ.

However, using the compact embedding Em+1 → Em, we may assume,
perhaps passing to a subsequence, that hk → h0 in Em for some h0 ∈
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Em. This implies

tk ∗ hk − t0 ∗ hk → t0 ∗ h0 − t0 ∗ h0 = 0

in Em contradicting the estimate above.

Remark 1.41. We would like to point out that the statement we
just proved would fail if we had used the previously discussed different
notion of sc-structure (without the compactness assumption).

So far we have verified that Φm+1 : R ⊕ Em+1 → Em is C1. We
note that the expression for DΦm+1(t, u)(a, h) also defines for (t, u) ∈
R⊕Em+1 a bounded linear operator R⊕Em → Em because the right-
hand side of

DΦm+1(t, u)(a, h) = a · (t ∗ (Amu)) + t ∗ h

is well defined for such data and Amu ∈ Em. Clearly, the map

R ⊕ Em+1 ⊕ R ⊕ Em → Em : (t, u, a, h) → DΦm+1(t, u)(a, h)

is continuous. We define the sc-map Φ : R ⊕ E → E by setting Φ|R ⊕
Em := Φm : R ⊕ Em → Em for all m ≥ 0. Having found the required
extension for the derivative DΦm+1(t, u) to the larger space R⊕Em we
have proved that Φ is of class sc1. We introduce the linear sc-operator

A : E1 → E

by setting A|Em+1 = Am|Em+1 : Em+1 → Em for all m ≥ 0. The
tangent map

TΦ : T (R ⊕ E) → TE : (t, u, a, h) → (t ∗ u, a · (t ∗ Au) + t ∗ h),

explicitly given by

(TΦ)m : T (R⊕E)m = (R⊕Em+1)⊕ (R⊕Em) → (TE)m = Em+1⊕Em

(TΦ)m(t, u, a, h) = (t ∗ u, a · (t ∗ Amu) + t ∗ h),

is of class sc0. In order to prove that the map TΦ is of class sc1

we observe that the previous discussion proves the assertion with the
exception of the term

(t, u, a, h) → a(t ∗ Au).

The scalar multiplication by a is smooth and so it suffices to prove that
the map

R ⊕ E1 → E : (t, u) → t ∗
du

dt
= t ∗ (Au)
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is sc-smooth. Using t∗Au = A(t∗u) for u ∈ E1 we can factor the map
as

R ⊕ E1 → R ⊕ E → E : (t, u) → (t, Au) → t ∗ (Au).

It is the composition of a sc-smooth map and a map we have previously
established to be sc1. Hence we conclude by Theorem 1.13 that TΦ is
sc1 allowing us to define the sc0-map T 2Φ. Arguing as above the higher
differentiability is reduced by induction to the sc-smoothness of

R ⊕ Ek → E : (t, u) → t ∗ (Aku)

which can be factored as

(t, u) → (t, Aku) → t ∗ (Aku)

the first map being a linear sc-operator

R ⊕ Ek → R ⊕ E.

This completes the proof of Theorem 1.38. �





CHAPTER 2

M-Polyfolds

In this chapter we introduce a new class of spaces which can have
locally varying dimensions but still admit some kind of tangent spaces.

2.1. Cones and Splicings

Let us call a subset C of some finite-dimensional vector space W
a cone if there is a linear isomorphism T : W → Rn mapping C onto
[0,∞)n. If C can be mapped onto [0,∞)k × Rn−k, then it is called a
partial cone.

0 0

cone partial cone

Figure 2.1

Definition 2.1. Assume V is an open subset of some (partial)
cone C and E is a Banach space with a sc-smooth structure. Moreover,
let πv : E → E with v ∈ V , be a family of sc-projections so that the
induced map

Φ : V ⊕ E → E

Φ(v, e) = πv(e)

is sc-smooth. Then the triple S = (π, E, V ) is called an sc-smooth
splicing.

49
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Remark 2.2. diffcorner At this point we would like to recall the
concept of linearization or differentiation at the boundaries with cor-
ners. If C ⊂ W is a cone or a partial cone and E and F are Banach
spaces, and if V is an open set in C ⊕ E, then the map f : V → F is
called differentiable at the point x ∈ V , if there exists a bounded linear
map

Df(x) ∈ L(W ⊕ E, F )

which is the linearization at the point x in the sense that

1

‖h‖
· ‖f(x + h) − f(x) − Df(x)h‖ → 0

as h → 0 and x + h ∈ V . If the map x �→ Df(x) from V into
L(W ⊕E, F ) is continuous, then f is of class C1(V, F ), and so on. The
same concept of linearization also applies to the definitions and results
concerning the sc-smoothness in Section 1.2.

Since πv is a projection,

(2.1) Φ(v, Φ(v, e)) = Φ(v, e).

The left-hand side is the composition of Φ with the sc-smooth map
(v, e) → (v, Φ(v, e)). Introduce for fixed (v, δv) ∈ V ⊕ W the map

P(v,δv) : TE → TE

(e, δe) → (Φ(v, e), DΦ(v, e)[δv, δe]).

It has the property that the induced map

TV ⊕ TE → TE : (a, b) → Pa(b)

is sc-smooth because, modulo the identification TV ⊕TE = T (V ⊕E),
it is equal to the tangent map of Φ. From (2.1) one deduces by means
of the chain rule (Theorem 1.13) at the points (v, e) ∈ V ⊕ E1,

DΦ(v, Φ(v, e))[δv, DΦ(v, e)(δv, δe)] = DΦ(v, e)[δv, δe]

and together with the definition of P one computes

P(v,δv) ◦ P(v,δv)(e, δe) = P(v,δv)(πv(e), DΦ(v, e)(δv, δe))

= (π2
v(e), DΦ(v, πv(e))(δv, DΦ(v, e)(δv, δe)))

= (πv(e), DΦ(v, e)(δv, δe)) = P(v,δv)(e, δe).

Consequently, P(v,δv) ◦ P(v,δv) = P(v,δv) so that the triple

TS = (P, TV, TE)

is a sc-smooth splicing called the tangent of the splicing S.
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Definition 2.3 (Splicing Core). If S = (π, E, V ) is an sc- smooth
splicing, then the associated splicing core is the image bundle of the
projection π over V , i.e., it is the subset KS ⊂ V ⊕ E defined by

(2.2) KS := {(v, e) ∈ V ⊕ E| πv(e) = e}.

The projection πv depends smoothly on the parameter v ∈ V .
Therefore, if the dimension of E is finite, the images of the projec-
tions πv have all the same rank so that the splicing core is a smooth
vector bundle over V . If, however, the dimension of E is infinite, then
the ranks of the fibers can change with the parameter v thanks to the
definition of sc-smoothness. This truly infinite dimensional phenome-
non is crucial for our purposes.

The splicing core of the tangent splicing TS is the set

(2.3) KTS = {(v, δv, e, δe) ∈ TV ⊕ TE| P(v,δv)(e, δe) = (e, δe)}

and we have the canonical projection

KTS → KS

(v, δv, e, δe) �→ (v, e).

Clearly the fiber over every point (v, e) ∈ V ⊕ E1 is the sc-Banach
space W ⊕ E.

Definition 2.4. A local m-polyfold model consists of a pair
(O,S) where O is an open subset of the splicing core KS ⊂ V ⊕ E
associated with the sc-smooth splicing S. The tangent T (O,S) of the
local m-polyfold model (O,S) is the object defined by

T (O,S) = (KTS |O, TS)

where KTS |O denotes the collection of all points in KTS which project
under the canonical projection KTS → KS onto O1.

The above discussion gives us the natural projection

KTS |O → O1 : (v, δv, e, δe) → (v, e).

In the following we shall write O instead of (O,S), but keep in mind
that S is part of the structure. Hence the tangent TO = T (O,S) of
the open subset O of the splicing core KS is simply the set

(2.4) TO = KTS |O.
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Note that for an open subset O of a splicing core we have an induced
filtration. Hence we may talk about sc0-maps. We will see in Section
2.3 that there is also a well-defined notion of a sc1-map in this setting.
Before we discuss this, we first study an example which has some of
the properties showing up later on. Moreover, it clarifies the close rela-
tionship between splicings and gluing. In fact, the concept of splicing
captures on a very abstract level the features of gluing constructions.
Gluing operations come up in many nonlinear elliptic problems as in-
verse operations of bubbling-off phenomena.

2.2. Example of a Splicing

Consider the linear space E = E+ ⊕E− consisting of pairs (u, v) of
maps

u ∈ E+ = H2([0,∞), Rn) and v ∈ E− = H2((−∞, 0], Rn).

We equip the Banach space E with a sc-structure requiring (u, v) on
the level m to be of Sobolev class (m + 2, δm) where, as before, δm is a
strictly increasing sequence of real numbers starting with δ0 = 0.

We now choose a smooth cut-off function β : R → [0, 1] having the
following properties

(2.5)

• β(−s) + β(s) = 1 for all s ∈ R

• β(s) = 1 for all s ≤ −1

• β ′(s) < 0 for all s ∈ (−1, 1)

We also need the gluing profile

(2.6) ϕ(r) = e1/r − e.

It establishes a special diffeomorphism ϕ : (0, 1] → [0,∞). Next define
the real number R and the functions τ and α from R into R as follows.

(2.7)

• R = ϕ(r)

• τR(s) ≡ τ(s) = β(s − R
2
)

• α(s) = τ(s)2 + [1 − τ(s)]2.

After all these definitions we can introduce the family of projections

πr : E → E

parametrized by r ∈ [0, 1). If r = 0, we set π0 = Id and if 0 < r < 1
we define, recalling that E = E+ ⊕ E−,

πr(h, k) = (ĥ, k̂) ∈ E+ ⊕ E−
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1

0 R
2

+ 1R
2
− 1 R

2

τ(s)

s

Figure 2.2. Graph of the function τ

(2.8)

ĥ(s) =
τ(s)

α(s)

[
τ(s) · h(s) + (1 − τ(s)) · k(s − R)

]
k̂(s′) =

τ(−s′)

α(−s′)

[
(1 − τ(−s′)) · h(s′ + R) + τ(−s′) · k(s′)

]
for s ≥ 0 and s′ ≤ 0, respectively. The dependence on r of the right
hand side is hidden in R = ϕ(r) and τ(s) = τR(s) = β(s − R

2
). We

point out that near s = 0 the functions are not changed. Indeed, in
view of the properties of the cut-off function β,

ĥ(s) = h(s) 0 ≤ s ≤
R

2
− 1

k̂(s′) = k(s′) −
R

2
+ 1 ≤ s ≤ 0

One readily verifies using formulae (2.12) below that

πr ◦ πr = πr.

The maps πr : E → E have the following useful symmetry. Define the
linear operator S : E → E by

S(u, v) = (û, v̂) ∈ E+ ⊕ E−

where

û(s) = v(−s) and v̂(s′) = u(−s′).

Then

(2.9) S ◦ πr = πr ◦ S.

The main result in this section is as follows.
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Theorem 2.5. The triple (π, E, [0, 1
2
)) defines a sc-smooth splicing.

Proof. In view of the above symmetry we only have to prove that
the map

[0, 1
2
) ⊕ E → E+

(r, h, k) �→ ĥ

is sc-smooth. Here ĥ is defined by the formula in (2.8) for 0 < r < 1
2

and by ĥ = h for r = 0. Recall that R = ϕ(r) if r > 0 where ϕ is the
gluing profile function (2.6). We note

ĥ(s) = h(s)

if s ∈ [0, R
2
− 1] ⊃ [0, 1]. Moreover, ĥ depends only on the values of

k ∈ E− on the interval [−R
2
− 1,−R

2
+ 1] ⊂ (−∞,−1]. Take a smooth

function σ : R → [0, 1] satisfying σ(s) = 0 if s ≤ 1
4

and σ(s) = 1 if

s ≥ 3
4

while σ′(s) > 0 for s ∈ (1
4
, 3

4
). We also note that the support of

τ · (1 − τ) lies in the interval IR = [R
2
− 1, R

2
+ 1] and σ(R − s) = 1 if

s ∈ IR. Using this one computes

(2.10) ĥ(s) = (1 − σ(s)) · h(s) +
[
πr(σh, σ(−·)k)

]
1
(s)

for all s ≥ 0, where [ · ]1 stands for the first component of πr which is
an element in E+. Explicitly,[

πr(σh, σ(−·)k)
]
1
(s)

=
τ(s)

α(s)

[
τ(s) · σ(s) · h(s) + (1 − τ(s)) · σ(R − s) · k(s − R)

]
.

The first part of the map (2.10), namely h �→ (1− σ) · h : E+ → E+ is
clearly sc-smooth. The second part of (2.10), namely

(h, k) �→
[
πr(σh, σ(−·)k)

]
1
,

from E into E+ can be factored as follows,

[0, 1
2
)⊕E = [0, 1

2
)⊕E+ ⊕E− A

−→ [0, 1
2
)⊕F ⊕F

B
−→ F ⊕F

C
−→ F

D
−→ E+.

Here, F = H2(R, Rn) with the sc-structure as before, the level m
corresponding to (m + 2, σm). The map A is defined by (r, h, k) �→

(r, σ · h, σ(−·) · k) and B is the map (r, h̃, k̃) �→ πr(h̃, k̃) according to
the formula (2.8) but this time for all s ∈ R and s′ ∈ R. Finally, C
is the projection onto the first component and D the restriction of the
domain of definitions of the functions. It remains to prove that B is
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sc-smooth. For this purpose it is sufficient, by symmetry (2.9) again,
to study the first component of B, namely

Γ : [0, 1
2
) ⊕ F ⊕ F → F

(r, h, k) �→ ĥ.

We split Γ = Γ1 + Γ2 into the sum of two maps Γj : [0, 1
2
) ⊕ F → F

where j=1, 2. Abbreviating

ϕ1(s) =
τ(s)2

α(s)
and ϕ2(s) =

τ(s) · (1 − τ(s))

α(s)
,

we define Γj : [0, 1
2
) ⊕ F → F by

Γ1(r, h)(s) = ϕ1(s) · h(s)

Γ2(r, k)(s) = ϕ2(s) · k(s − R)

if 0 < r < 1
2
. For r = 0, Γ1(0, h) = h and Γ2(0, k) = 0. Recalling

τ(s) = β(s− R
2
) the desired sc-smoothness is now a consequence of the

technical Lemma 2.6 below. �

In order to formulate Lemma 2.6 we define three maps Γj : [0, 1)⊕
F → F for j = 1, 2, 3.

(a) Let f1 : R → R be a smooth function which is constant outside of a
compact interval so that f1(∞) = 0. Then we define Γ1 : [0, 1)⊕F → F
by

Γ1(0, h)(s) = f1(−∞) · h(s)

Γ1(r, h)(s) = f1(s −
R
2
) · h(s), 0 < r < 1,

(b) Let f2 : R → R be a smooth function which is constant outside of
a compact interval so that f1(−∞) = 0, we define Γ2 : [0, 1) ⊕ F → F
by

Γ2(0, h)(s) = f1(−∞) · h(s)

Γ2(r, h)(s) = f2(s −
R
2
) · h(s), 0 < r < 1.

(c) If f3 : R → R is a smooth function having compact support, then
Γ3 : [0, 1) ⊕ F → F is defined as follows.

Γ3(0, h)(s) = 0

Γ3(r, h)(s) = f3(s −
R
2
) · h(s − R), 0 < r < 1.

Lemma 2.6. The three maps Γj : [0, 1)⊕F → F , j = 1, 2, 3, defined
above are sc-smooth.
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The proof of the lemma is postponed to Appendix II. We would
like to point out that the lemma will be crucial in the proof of the
smoothness of the transition maps later on.

Next we explain the relationship between gluing and splicings. Given
the gluing profile ϕ and the cut-off function β we define for (h, k) ∈
E = E+ ⊕ E− and r ∈ [0, 1

2
) the full gluing �r(h, k) as follows. If

r = 0, then

�0(h, k) = (⊕0(h, k),�0(h, k)) = ((h, k), 0).

If r ∈ (0, 1), we set R = ϕ(r) and define

�r(h, k) = (⊕r(h, k),�r(h, k))

by

(2.11)
⊕r(h, k)(s) = τ(s) · h(s) + (1 − τ(s)) · k(s − R)

�r(h, k)(s) = −(1 − τ(s)) · h(s) + τ(s) · k(s − R),

where

τ(s) = β(s − R
2
).

The first equation in (2.11) holds for s ∈ [0, R] and the second for
all s ∈ R. Recall that τ(s) = τR(s) = 0 if s ≥ R

2
+ 1 and τ(s) = 1 if

s ≤ R
2
− 1 and R = ϕ(r) → ∞ as r → 0. Near the boundaries of the

interval [0, R] the functions are not changed,

⊕r(h, k)(s) = h(s) 0 ≤ s ≤ R
2
− 1

⊕r(h, k)(s) = k(s − R) R
2

+ 1 ≤ s ≤ R.

Moreover, on R,

�r(h, k)(s) = k(s − R) s ≤ R
2
− 1.

�r(h, k)(s) = −h(s) R
2

+ 1 ≤ s

From the formulae (2.11) we deduce the following limits as r → 0,

lim
r→0

⊕r(h, k)(s) = h(s), s ≥ 0

lim
r→0

⊕r(h, k)(s′ + R) = k(s′), s′ ≤ 0.
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Moreover, recalling that (h, k) ∈ E+ ⊕ E−,

lim
r→0

�r(h, k)(s) = lim
R→∞

h(s − R) = 0, s ≥ 0

lim
r→0

�r(h, k)(s′ + R) = − lim
R→∞

k(s′ + R) = 0, s′ ≤ 0.

The map ⊕r(h, k) is called the glued map for the gluing parameter
r. In order to remove ambiguities in the inverse gluing we have added
the so called anti-glued map �r(h, k). One should think of ⊕r(h, k)
as defined on the abstract interval Ir obtained by identifying a point
s ∈ [0, R] ⊂ [0,∞) (the domain of h) with the point s′ ∈ [−R, 0] ⊂
(−∞, 0] (the domain of k) via s − R = s′.

0

0

s

s′−R

R

Figure 2.3. Identification −R + s = s′

From this point of view we have taken the coordinate s (rather
than s′) on Ir. The formulae, though they do not look symmetric in s
and s′, are indeed symmetric (the procedure is symmetric around R

2
).

Moreover, the anti-glued map has been defined on the abstract line
obtained by gluing the two half-lines together by means of the same
identification.

Proposition 2.7. The relation between splicing and gluing is as
follows.

⊕r ◦ (πr − Id) = 0

�r ◦ πr = 0
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0

0

0

0

R

R

R

−R

h

k

⊕R(h, k)

�R(h, k)

Figure 2.4. Graphs of functions h, k and the glued
functions ⊕r(h, k) and the anti-glued map �r(h, k)

on E = E+ ⊕ E−, for all r ∈ [0, 1). In addition, for (h+, h−) ∈
H+ ⊕ E−,

πr(h
+, h−) = (h+, h−) if and only if ⊕r(h

+, h−) = 0.
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Proof. Recalling β(s) + β(−s) = 1, τ(s) = β(s − R
2
), and α(s) =

τ(s)2 + (1 − τ(s))2 one finds

τ(R − s) = 1 − τ(s)

α(R − s) = α(s).

Hence, setting s′ = s − R in (2.8), one obtains

(2.12)

ĥ(s) =
τ(s)

α(s)

[
τ(s) · h(s) + (1 − τ(s)) · k(s − R)

]
k̂(s − R) =

1 − τ(s)

α(s)

[
τ(s) · h(s) + (1 − τ(s)) · k(s − R)

]
and the proposition follows immediately. �

The geometric meaning of the splicing is now apparent. If r = 0 we
do not do anything. However, if r ∈ (0, 1) there are two distinguished
sc-subspaces of E, namely the one consisting of pairs (h, k) which if
glued give the zero map and the other subspace consisting of elements
which if anti-glued give the zero map. Moreover, E is the sc-direct sum
of these subspaces and πr the projection onto the second along the first.
The second subspace has the property that ⊕r-gluing produces a bijec-
tive correspondence between this subspace and the maps on Ir = [0, R].

The splicing core KS of [0, 1
2
) ⊕ E associated with the sc-smooth

splicing S = (π, [0, 1
2
), E) consists by definition of all pairs (r, h+⊕h−) ∈

[0, 1
2
)⊕E+ ⊕E− satisfying πr(h

+ ⊕ h−) = h+ ⊕ h−. It is the following
set.

If 0 < r < 1
2

the set of points (r, h+, h−) ∈ KS can be characterized
by

(2.13) �r(h
+, h−) = 0

or, explicitly, by

[1 − τ(s)] · h+(s) = τ(s) · h−(s − R)

for all s ∈ R, where R = ϕ(r). This follows immediately from Propo-
sition 2.7 and formula (2.11).

2.3. Smooth maps between splicing cores

The aim of this section is to introduce the concept of an sc1-map
between open subsets of splicing cores.

Consider two open subsets O ⊂ KS ⊂ V ⊕ E and O′ ⊂ KS′
⊂

V ′ ⊕ E ′ of splicing cores belonging to the splicings S = (π, V, E) and
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S ′ = (π′, V ′, E ′). The cones V and V ′ are contained in the vector
spaces W resp. W ′. Consider an sc0-map

f : O → O′.

If O is an open subset of the splicing core KS ⊂ V ⊕ E we define
the subset Ô of V ⊕ E by

Ô = {(v, e) ∈ V ⊕ E| (v, πv(e)) ∈ O}.

Clearly, Ô is open in V ⊕ E. Indeed, introduce the sc-map Φ : V ⊕
E → V ⊕ E by setting Φ(v, e) = (v, πv(e)). In view of the defini-
tion of the splicing, the map Φ is sc-smooth, hence in particular, sc0-

continuous. Since O = Õ ∩ KS for some open subset Õ of V ⊕ E
and since Φ−1(KS) = V ⊕ E, we conclude that Ô = Φ−1(O) =

Φ−1(Õ) ∩ Φ−1(KS) = Φ−1(Õ) ∩ (V ⊕ E), proving our claim.

Definition 2.8. The sc0-continuous map f : O → O′ is called of
class sc1 if the map

f̂ : Ô ⊂ V ⊕ E → W ′ ⊕ E ′

f̂(v, e) = f(v, πv(e))

is of class sc1.

Splitting the map f̂ according to the splitting of the image space
and setting

f̂(v, e) = (f̂1(v, e), f̂2(v, e)) ∈ KS ⊂ W ′ ⊕ E ′,

the tangent map Tf associated with the sc1-map f is defined as

(2.14) Tf(v, δv, e, δe) := (T f̂1(v, δv, e, δe), T f̂2(v, δv, e, δe)).

The map Tf is of class sc0.

Lemma 2.9.

Tf : KTS |O → KTS′

|O′

hence, in the notation of (2.4), we have Tf : TO → TO′.

Proof. By definition of KS′
we have, with the associated projec-

tion π′
w(e′), the relation

π′
bf1(v,e)

(f̂2(v, e)) = f̂2(v, e).
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Differentiating this identity in the variable (v, e) we obtain
(2.15)

Dwπ′
bf1(v,e)

(f̂2(v, e)) ◦ Df̂1(v, e)[δv, δe] + π′
bf1(v,e)

◦ Df̂2(v, e)[δv, δe]

= Df̂2(v, e)[δv, δe].

Setting w = f̂1(v, e) and e′ = f̂2(v, e) and δw = Df̂1(v, e)[δv, δe] and

δe′ = Df̂2(v, e)[δv, δe] it follows from (2.15) together with the definition
of the projection P ′

(w,δw) associated with the splicing TS ′ that

P ′
(w,δw)(e

′, δe′) = (e′, δe′)

so that indeed Tf(v, δv, e, δe) = (w, δw, e′, δe′) ∈ KTS′
as was to be

proved. �

Theorem 2.10. Let O, O′, O′′ be open subsets of splicing cores and
f : O → O′ and g : O′ → O′′ be of class sc1. Then the composition
g ◦ f is of class sc1 and the tangent maps satisfy

T (g ◦ f) = Tg ◦ Tf.

Proof. This is a consequence of the sc-chain rule (Theorem 1.13),
the definition of the tangent map and the fact that our reordering of
the terms in our definition (2.14) of the tangent map is consistent.

Considering f̂ and ĝ the composition ĝ ◦ f = ĝ ◦ f̂ is clearly of class

sc1 and T (ĝ ◦ f̂) = T ĝ ◦ T f̂ . From Definition (2.14) we deduce

T (g ◦ f)(v, δv, e, δe) = (T (ĝ1 ◦ f̂)(v, e, δv, δe), T (ĝ2 ◦ f̂)(v, e, δv, δe))

= ((T ĝ1) ◦ (T f̂)(v, e, δv, δe), (T ĝ2) ◦ (T f̂)(v, e, δv, δe))

= (Tg)(T f̂1(v, e, δv, δe), T f̂2(v, e, δv, δe))

= (Tg) ◦ (Tf)(v, δv, e, δe).

�

Given a sc1-map f : O → O′ between open sets of splicing cores we
obtain, in view of Lemma 2.9, an induced tangent map Tf : TO →
TO′. Since TO and TO′ are again open sets in the splicing cores KTS

and KTS′
we can iteratively define the notion of f being of class sck or

even sc-smooth.
Assume now that f : O → O′ is a homeomorphism and f and f−1

are sc-smooth maps between the open sets of splicing cores. Then,
setting g = f−1,
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Tf ◦ Tg = T (Id) and Tg ◦ Tf = T (Id).

Hence Tf is sc-smooth as is its inverse.

Definition 2.11. Let O be an open subset of a splicing core KS

and (v, e) ∈ O1. The tangent space to O at the point (v, e) is the
sc-Banach space

(2.16) T(v,e)O = {(δv, δe) ∈ W ⊕ E | (v, δv, e, δe) ∈ TO}.

We then have
TO =

⋃
(v,e)∈O1

T(v,e)O.

If f : O → O′ is a homeomorphism our tangent map Tf defined in
(2.14) induces the linear sc-isomorphism

Tf(v, e) : T(v,e)O → Tf(v,e)O
′.

2.4. M-Polyfolds

Now we are able to introduce the notion of an M-polyfold*.

Definition 2.12. Let X be a second countable Hausdorff space.
An M-polyfold chart for X is a triple (U, ϕ,S), where U is an open
subset of X and ϕ : U → KS a homeomorphism onto an open subset of
a splicing core. Two charts are called compatible if the transition maps
between open subsets of splicing cores are sc-smooth in the sense defined
in Section 2.3. A maximal atlas of sc-smoothly compatible M-polyfold
charts is called a M-polyfold structure on X.

An M-polyfold is necessarily metrizable by using an argument sim-
ilar to the one used already for sc-Manifolds.

Each splicing core KS carries the structure of a M-polyfold with
the global chart being the identity.

Example 2.13. The example illustrates that the set ((R \ {0}) ×
R) ∪ {(0, 0)} can be equipped with the structure of a M-polyfold. Let
E = L2(R) and define Em to be Hm,δm(R), where δm is a strictly

*The “M” indicates the “manifold flavor” of the polyfold. A general polyfold
will be a generalization of an orbifold.
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increasing sequence starting with δ0 = 0. Let γ : R → R be a smooth
function having compact support and L2-norm equal to 1. With 〈·, ·〉
being the L2-inner product we define the family of projections πt : E →
E by setting π0 = 0 and

(2.17) πtf = 〈f, γt〉 · γt

if t �= 0 where have abbreviated γt(s) = γ(s + e
1
|t| ). Then (π, R, V ) is

an sc-smooth splicing and the splicing core is homeomorphic to ((R \
{0}) × R) ∪ {(0, 0)}.

Figure 2.5. The splicing core in the example is home-
omorphic to ((R \ {0}) × R) ∪ {(0, 0)}

Indeed, assume for the moment that π : R ⊕ E → E is sc-smooth.
Clearly, π0(f) = f only when f = 0. If πt(f) = f with t �= 0, then
|〈f, γt〉|

2 · |γt|
2 = |f |2 a.e. so that after integrating, using ‖γt‖0 = 1,

we obtain |〈f, γt〉| = ‖f‖0 = ‖f‖0 · ‖γt‖0 and this implies that f is a
multiple of γt.

It remains to show that π is of class sc∞. We only show that
the map is of class sc1 leaving the sc-smoothness to the reader. The
proof follows from the following two estimates. Consider two smooth
functions φ, ψ : R → R having their supports in the interval I = [−a, a].

Introducing the intervals It = [−a − e
1
|t| , a − e

1
|t| ] and the function
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φt(s) = φ(s + e
1
|t| ), we estimate for f ∈ Em+1,

〈f, φt〉
2 =

∫
R

|f(s)|2 · |φ(s + e
1
|t| )|2ds

=

∫
It

|f(s)|2 · |φ(s + e
1
|t| )|2 · e−2δm+1s · e2δm+1sds

≤ Ce−2δm+1e
1
|t|

· ‖f‖2
m+1.

(2.18)

Next we consider the map (t, f) �→ p(t)〈f, φ〉ψt from R ⊕ Em+1 into

Em+1 where p(t) is a polynomial of degree k in variable 1
|t|

e
1
|t| . Using

(2.18) we estimate

‖p(t)〈f, φt〉ψt‖
2
m = |p(t)〈f, φt〉|

2
∑
j≤m

∫
It

|Djψ(s + e
1
|t| )|2e2δm|s|ds

≤ |p(t)〈f, φt〉|
2
∑
j≤m

∫
I

|Djψ(s)|2e−2δm(s−e
1
|t| )ds

≤ C|p(t)|2e−2(δm+1−δm)e
1
|t|
‖f‖2

m.

(2.19)

Since δm+1 − δm > 0, the last estimate tends to 0 as t → 0. With
these two observations we prove our claim. The function γ and hence
its derivatives have compact support. If t �= 0 and f ∈ Em+1, then by
(2.18),

‖π(t, f)‖m → 0

as t → 0, and since π(0, f) = 0, we conclude that the map π is differ-
entiable at the point (0, f) and its derivative is equal to 0. For t �= 0,
the derivative dπ(t, f) : R ⊕ Em+1 → Em is given by

dπ(t, f)[δt, δf ] = 〈δf, γt〉γt − sign(t) 1
|t|2

e
1
|t| 〈f, γ̇t〉γt · [δt]

− sign(t) 1
|t|2

e
1
|t| 〈f, γ̇t〉γ̇t · [δt]

where γ̇t denotes the derivative of γt with respect to the variable s.
Since the function γ has a compact support we may apply (2.19)
to estimate each term. It follows each term tends to 0 in Em as
t → 0 showing that the map (t, f) �→ dπ(t, f) from R ⊕ Em+1 into
Em is continuous and the map π : R ⊕ Em+1 → Em is of class C1.
Note that, in view of (2.19), the map δf �→ 〈δf, γt〉γt from Em+1

into Em has an extension to a bounded linear map from Em → Em

so that dπ(t, f) : R ⊕ Em+1 → Em has an extension to a linear
bounded operator Dπ(t, f) : R ⊕ Em → Em having the property that
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(t, f, δt, δf) �→ Dπ(t, f)(δt, δf) from R⊕Em+1 ⊕R⊕Em → Em is con-
tinuous. In view of Proposition 1.7 we have verified that π : R⊕E → E
is of class sc1.

What is KTS? One can, of course generalize these ideas. For exam-
ple, take the open unit disk D◦ in R2 and add a closed interval [−1, 1]
and identify the ends ±1 with the points (±1, 0) in the boundary of the
closed disk. A small open disc centered at (±1, 0) intersected with Fig-
ure 2.6 (b) is homeomorphic to the splicing core in Figure 2.6 (a). The
splicing core represented by Figure 2.6 (a) can be obtained by taking
E as above and setting πt = 0 for t ≤ 0 and for t > 0 by defining the
projection πt by (2.17). This can be generalized to higher dimensions.

D0

(a) (b)

Figure 2.6

Let us note the following useful result about sc-smooth partitions
of unity.

Theorem 2.14. Let X be an M-polyfold with local models being
splicing cores build in sc-Hilbert spaces. Assume that (Uλ)λ∈Λ is an
open covering. Then there exists a subordinate sc-smooth partition of
unity (βξ)ξ∈Ξ.

Let us note that the product X × Y of two M-polyfolds is in a
natural way a M-polyfold. For charts (U, ϕ,S) and (W, ψ, T ) of X and
Y , respectively, we define the product chart (U × W, φ × ψ,S ⊕ T ).
Here

S × T = (π, V, E) × (ρ, V ′, F ) = (σ, V × V ′, E ⊕ F ),
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with

σ(v, v′) = πv ⊕ ρv′ .

We call S × T the product of the splicings. There are several possible
notions of subpolyfolds (we suppress the M in the notation) and we
describe them in a later chapter.

2.5. Corners and Boundary points

In this section we will prove the extremely important fact that sc-
smooth maps are able to recognize corners. This will be crucial for
SFT since most of the algebra is a consequence of the corner structure.

Let X be a M-polyfold. For a point x ∈ X we take a M-polyfold
chart ϕ : U → KS where KS is the splicing core associated with
the splicing S = (π, V, E). Here V is an open subset of a cone C
contained in an n-dimensional vector space W . By definition there
exists a linear isomorphism from W to Rn mapping C onto [0,∞)n.
Identifying the cone C with [0,∞)n ⊂ Rn we shall use the notation
ϕ = (ϕ1, ϕ2) ∈ [0,∞)n ⊕ E according to the splitting of the target
space of ϕ. We associate with x ∈ U the integer d(x) defined by

(2.20) d(x) = �{coordinates of ϕ1(x) which are equal to 0}.

Theorem 2.15. The map d : X → N is well-defined and does not
depend on the choice of the compatible polyfold chart. Moreover, every
point x ∈ X has an open neighborhood O satisfying

d(y) ≤ d(x) for all y ∈ O.

The map d is called the degeneracy index. A point with d(x) = 0
is an interior point. A point with d(x) = 1 is called a good boundary
point. A point with d(x) ≥ 2 is called a corner. In general, d(x) is
the order of the corner .

Proof of Theorem 2.15. Consider two M-polyfold charts ϕ :

Û ⊂ X → KS and ϕ′ : Û ′ ⊂ X → KS′
such that x ∈ Û ∩ Û ′. In-

troducing the open subsets U = ϕ(Û ∩ Û ′) and U ′ = ϕ′(Û ∩ Û ′) of
KSand KS′

resp., and setting ϕ(x) = (r, e) and ϕ′(x) = (r′, e′) we
define the sc-diffeomorphism Φ : U → U ′ by Φ = ϕ′ ◦ ϕ−1. Obvi-
ously, Φ(r, e) = (r′, e′). Now the proof of Theorem 2.15 reduces to the
following proposition.

Proposition 2.16. Let S = (π, V, E) and S ′ = (π′, V ′, E ′) be two
splicings having the parameter sets V = [0,∞)k and V ′ = [0,∞)k′

.
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d = 1

d = 1d = 2

d = 0

Figure 2.7

Assume that U and U ′ are open subsets of the splicing cores KS and
KS′

containing the points (r, e) and (r′, e′) and assume that the map

Φ : U → U ′

is an sc-diffeomorphism mapping (r, e) to (r′, e′). Then r and r′ have
the same number of vanishing coordinates.

Proof. We first prove the assertion of the proposition under the
additional assumption that the point p0 = (r, e) belongs to U∞. Then
the image point q0 = (r′, e′) = Φ(p0) belongs to U ′

∞. Denote by J
the subset of {1, · · · , k} consisting of those indices j for which xj = 0.
Similarly, j ∈ J ′ ⊂ {1, · · · , k′} if r′j = 0. Denoting by �r and �r′

the cardinalities of J and J ′ we claim that �r = �r′. Since Φ is a
sc-diffeomorphism it suffices to prove the inequality �r ≥ �r′ since the
inequality has to also hold true for the sc-diffeomorphism Ψ = Φ−1.
If πr(e) = e, then differentiating πr ◦ πr(e) = πr(e) in r one finds
πr ◦ Dr(πr(e)) = 0 so that Dr(πr(e)) · [δr] is contained in the range of
id − πr. Therefore, given (r, e) ∈ U∞ satisfying πr(e) = e and given
δr ∈ Rk, there exists δe ∈ E∞ solving

(2.21) δe = πr(δe) + Dr(πr(e))[δr].

In particular, taking δr ∈ Rl with (δr)j = 0 for j ∈ J , there exists
δe ∈ E∞ solving the equation (2.21). This is equivalent to (δr, δe) ∈
(T(r,e)U)∞. Introduce the path

τ �→ pτ = (r + τδr, πr+τδr(e + τδe))
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for |τ | < ρ and ρ small. From (r, e) ∈ U∞ and δe ∈ E∞ one concludes
pτ ∈ U∞. Moreover, considering τ → pτ as a map into Um for m ≥ 0,
its derivative at τ = 0 is equal to (δr, δe). Fix a level m ≥ 1 and
consider the map

(−τ0, τ0) → Rk × Fm : τ → Φ(pτ ).

The map Φ : U → U ′ is C1 as a map from Um+1 ⊂ Rk⊕Em+1 into Rk′
⊕

Fm. Its derivative dΦ(r, e) : Rk⊕Em+1 → Rk′
⊕Fm has an extension to

the continuous linear operator DΦ(r, e) : Rk ⊕ Em → Rk′
⊕ Em. Since

Φ is a sc-diffeomorphism the extension DΦ(r, e) : Rk ⊕Em → Rk′
⊕Em

is a bijection. Thus, since δe ∈ E∞,

Φ(pτ ) = Φ(p0) + τ · dΦ(p0)[δr, δe] + om(τ)

= q0 + τ · DΦ(p0)[δr, δe] + om(τ)
(2.22)

where om(τ) is a function taking values in Rk′
⊕ Fm and satisfying

1
τ
om(τ) → 0 as τ → 0. Introduce the sc-continuous linear functionals

λj : Rk × F → R by
λj(s, h) = sj

where j ∈ J ′. Then
λj ◦ Φ(pτ ) ≥ 0

for |τ | < δ0. Applying λj to both sides of (2.22) we conclude for τ > 0

0 ≤
1

τ
· λj

[
Φ(pτ )

]
=

1

τ
· λj

[
Φ(p0) + τ · dΦ(p0)[δr, δe] + om(τ)

]
= λj

[
DΦ(p0)[δr, δe]

]
+ λj

(om(τ)

τ

)
.

Passing to the limit τ → 0+ we find

0 ≤ λj(DΦ(r, e)[δr, δe])

and replacing (δr, δe) by (−δr,−δe) we obtain the equality sign. Con-
sequently,

(2.23) λj(DΨ(r, e)[δr, δe]) = 0, j ∈ J ′

for all [δr, δe] ∈ Rk ⊕ E∞ satisfying πr(e) + Dr(πr(e))[δr] = δe and
(δr)i = 0 for all i ∈ J . Introduce the codimension �r subspace L of the
tangent splicing core KTS ⊂ Rk ⊕ E∞, defined as

L = {(δr, δr) ∈ Rk ⊕ E∞| πr(δe) + Dr(πr(e))[δr] = δe

and (δr)i = 0 for all i ∈ J }.

Then, in view of (2.23),

DΦ(r, e)L ⊂ {[δr′, δe′] ∈ KTS′

| (δe′)j = 0 for all j ∈ J ′}.
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Because the subspace on the right hand side has codimension �r′ in
KTS′

and since DΦ(r, e), being a bijection, maps L onto a codimension
�r subspace of KTS′

, it follows that �r′ ≤ �r, as claimed.
Next we shall prove the general case. For this we take p0 = (r, e) in

U0, so that the image point (r′, e′) = Φ(r, e) belongs to U ′
0. Arguing by

contradiction we may assume without loss of generality that �r > �r′,
otherwise we replace Φ by Φ−1. Since U∞ is dense in U0 we find a
sequence (r, en) ∈ U∞ satisfying πr(en) = en and (r, en) → (r, e) in U0.
By the previous discussion �r = �r′n where (r′n, e′n) = Φ(r, en). Since Φ
is sc-smooth, we have (r′n, e

′
n) → (r′, e′) in U ′

0 and π′
r′(e

′) = e′. From
this convergence we deduce �r′ ≥ �r′n so that �r′ ≥ �r contradicting our
assumption. The proof of Proposition 2.16 is complete. �

To finish the proof of Theorem 2.15 it remains to show that the func-
tion d is lower semicontinuous. Arguing indirectly assume that there
exists a sequence of points xk converging to x so that d(xk) > d(x).
Since ϕ is continuous, we have the convergence ϕ1(xk) = (rk

1 , · · · , rk
n) →

ϕ1(x) = (r1, · · · , rn). If for a given coordinate index j the coordinate
rk
j = 0 for all but finitely many k, then rj = 0, and if rk

j > 0 for all but
finitely many k, then rj ≥ 0. Hence d(xk) ≤ d(x) contradicting our
assumption. The proof of Theorem 2.15 is complete. �

The results about corner recognition remain true if the projections
in a splicing are parameterized by open subsets of a partial cone. Re-
call that a partial cone P in a finite-dimensional vector space is a
closed subset which by a linear isomorphism to some Rn is mapped
onto [0,∞)k × Rn−k. In that case the degeneracy index counts the
vanishing of the first k coordinates. These types of parameter sets will
arise in SFT. In fact there we will have [0,∞)k × Cl, where the first k
coordinates will be related to the corner structure arising from breaking
of trajectories, whereas the other arise from bubbling-off of spheres.

Let us observe that the result about corner recognition allows us
to define a degeneracy index d : X → N as follows. Take for a point
x ∈ X a local chart

ϕ : U → KS ⊂ ([0,∞)k × Rn−k) ⊕ E.

Then define d(x) to be the number of the first k coordinates of ϕ(x)
which are vanishing. This definition is independent of the choices in-
volved. We call d = dX the degeneracy index.

Assume that X × Y is a product of two M-polyfolds. It follows
immediately from the definition of the product structure that

dX×Y (x, y) = dX(x) + dY (y).
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If A a subpolyfold of the M-polyfold X then A has an induced degener-
acy index dA since it carries an induced M-polyfold structure. Clearly
dA ≤ dX |A.

2.6. Appendix II

In this appendix we will prove the important technical Lemma 2.6,
which we have used in showing the smoothness of the splicing. For the
reader’s convenience we recall the statement of the lemma, which we
formulate here as a technical theorem.

Theorem 2.17. Let E = H2(R, Rn) be equipped with the sc-structure
where level m consists of regularity (m + 2, δm)-maps. Using the expo-
nential gluing profile ϕ let R = ϕ(r). Then the following three maps

Γi : [0, 1) ⊕ E → E, i = 1, 2, 3

are sc-smooth.

(a) Let f1 : R → R be a smooth map which is constant outside
of a compact interval so that f1(+∞) = 0. Define Γ1(0, h)(s) =
f1(−∞)h(s) and Γ1(r, h)(s) = f1(s −

R
2
)h(s).

(b) Let f2 : R → R be a smooth map which is constant outside of
a compact interval so that f2(−∞) = 0. Define Γ2(0, h) = 0 and
Γ2(r, h)(s) = f2(s −

R
2
)h(s).

(c) Let f3 : R → R be a compactly supported smooth map and define
Γ3(0, h) = 0 and Γ3(r, h)(s) = f3(s −

R
2
)h(s − R).

We first observe that the statements (a) and (b) of the theorem are
equivalent. Indeed, assuming (a) holds true let f2 be a function as
in (b). Define the linear sc-operator L : E → E by h → f2(+∞)h.
Clearly, L is sc-smooth. The function f1(s) = f2(s)− f2(+∞) satisfies
the hypothesis of (a) giving the sc-smooth map Γ1. Since

Γ2(r, h) = Γ1(r, h) + L(h),

(a) implies (b). Similar argument shows that (b) implies (a) proving
our claim.

In the following we will prove statements (b) and (c). In the first
step we verify sc0-continuity.

Lemma 2.18. The maps Γ2 and Γ3 are of class sc0.
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Proof. We begin with Γ2 and consider the induced map [0, 1) ⊕
Em → Em. The only difficulty arising could be at r = 0. The
compactly supported smooth functions are dense in Em. If h0 is a
compactly supported smooth function and r > 0 is close to 0, then
Γ3(r, h0) = 0. Now our assertion follows from the observation that the
norm of Γ3(r, ·) : Em → Em is uniformly bounded in r,

‖Γ3(r, h)‖m ≤ C · sup
0≤k≤m

‖fk‖C0 · ‖h‖m,

where C is a constant independent of r and u.
Next consider the map Γ3. Again the difficulty is at r = 0. For

a compactly supported smooth function h0 and r close to 0 we have
Γ3(r, h0) = 0. Using the density of smooth compactly supported func-
tions in Em it suffices to show as before a uniform bound for the op-
erator norm of Γ3(r, .) : Em → Em. Assuming supp f2 ⊂ [−a, a] we
take R so large that the interval IR = [−a − R

2
, a − R

2
] is contained in

(−∞, 0]. Denoting by C a generic constant independent of r and u we
estimate

‖Γ3(r, h)‖m ≤ C · ‖h(· − R)eδm·‖Hm(I−R)

≤ C · ‖h · eδm(·+R)‖Hm(IR)

≤ C · eδm
R
2 · ‖h‖Hm(I−R)

≤ C · ‖h‖m.

The proof of Lemma 2.18 is complete. �

Here are some additional observations which are used in the proof
of the theorem.

Lemma 2.19. Let f2 and f3 be as described in the theorem. If
m, k ≥ 0, we set dm+k,m = 1

2
[δm+k − δm] > 0. Then there exists a

constant C = C(m, k) > 0 independent of u and r so that the following
estimates hold true.

‖Γ2(r, u)‖m ≤ C · e−dm+k,m·R · ‖u‖m+k

‖Γ3(r, u)‖m ≤ C · e−dm+k,mR · ‖u‖m+k

for all u ∈ Em+k, where R = ϕ(r).

Proof. We start with the map Γ3. Since supp f3 ⊂ [−a, a], the
support of the function s �→ f3(s − R

2
)u(s − R) is contained in the

interval I−R = [−a + R
2
, a + R

2
]. Denoting by C a generic constant we
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estimate

‖f3(· −
R
2
)u(· − R)‖m ≤ C · ‖f2(· −

R
2
)u(· − R)eδms‖Hm(I−R)

= C · ‖u · eδm(s+R)‖Hm(IR) = C · ‖u · e−δm+kse(δm+δm+k)s+δmR‖Hm+k(IR)

≤ C · e−dm+k,mR · ‖u‖m+k.

To prove the estimate for Γ1 let v ∈ Em+k and assume that the
support of the function f2 is contained in [−a,∞). Then the support
of the function s → f2(s−

R
2
)v(s) is contained in [R

2
−a,∞). Then one

estimates

‖f2(· −
R
2
)v‖m ≤ C · e−dm+k,m·R · ‖u‖m+k.

The proof of the lemma is complete. �

The following result follows from the sc-smoothness of the R-action.

Lemma 2.20. The maps

R ⊕ E → E

defined by (R, u) → f2(· −
R
2
)u and (R, v) → f3(· −

R
2
)v(· − R) are

sc-smooth.

Proof. For the first map this is obvious. To see that the second
map is sc-smooth observe that it can be viewed as the composition of
the following maps

(R, v) → (R, −R
2

∗ v) → (R, f2 · (
−R
2

∗ v)) → (−R
2
) ∗ (f2 · (

−R
2

∗ v)).

Since each of the above maps is sc-smooth and the composition of sc-
smooth maps is sc-smooth the lemma follows. �

We need some estimates for the derivatives of the function

R(r) = e
1
r − e

which agrees with the gluing profile introduced in (2.6). The next
lemma can be proved by induction.

Lemma 2.21. For every k ≥ 0 there exists a constant Ck > 0 such
that ∣∣∣∣dkR

dxk
(r)

∣∣∣∣ ≤ Ck · R(r) · [ln R(r)]2k

for all r ∈ (0, 1
2
).

Now given two positive integers m and n satisfying m ≥ n consider
the sc-Banach spaces Em = (Em+i)i≥0 and En = (En+i)i≥0. Let f :
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R → R be a compactly supported smooth function and let k ≥ 0 be
an integer. Then we introduce the map

(2.24) A : [0, 1
2
) × Rn × Em → En

by setting A(r, y, u) = 0 if r = 0. If r > 0 we set

A(r, y, u)(s) = y1 · y2 · · · yn · R̂(r) · Djf(s − R(r)
2

) · Diu(s − R(r))

where (y1, . . . , yn) = y ∈ Rn, and

R̂(r) = Dk1R(r) · Dk2R(r) · · ·DknR(r).

The indices satisfy the conditions m ≥ i + n and k1 + · · ·+ km = k. If

k = 0, we set R̂(r) = 1. Abbreviating

αk(r) = [R(r)]k · [ln R(r)]2k

one derives from Lemma 2.21 the estimate

(2.25) |R̂(r)| ≤ C · αk(r).

If k ≥ 0 and d > 0, then clearly,

αk(r) · e
−d·R(r) → 0 as r → 0.

The proof of Theorem 2.17 will follow from the next lemma.

Lemma 2.22. The map A viewed as a map from [0, 1
2
)⊕Rn ⊕Em+1

into En is of class C1. At every point (r, y, u) ∈ [0, 1
2
) ⊕ Rn ⊕ Em+1,

the derivative dA(r, y, u) : R ⊕ Rn ⊕ Em+1 → En has an extension to
the bounded linear map DA(r, y, u) : R ⊕ Rn ⊕ Em → En. Moreover,
the sc-map A : [0, 1

2
) ⊕ Rn ⊕ Em → En is of class sc1. In particular,

the tangent map TA : TEm → TEn,

TA(r, y, u, r̂, ŷ, û) = (A(r, y, u), DA(r, y, u)[r̂, ŷ, û])

is of class sc0.

Proof. Since R = ϕ(r) is smooth for r > 0 it follows that A,
viewed as a map from [0, 1

2
) ⊕ Rn ⊕ Em+1 into En, is continuously

differentiable on the set (0, 1
2
) ⊕ R ⊕ Em+1. We will show that A is

differentiable at every point (0, y, u) and its derivative dA(0, y, u) is
equal to 0. In the following we write dm,n = 1

2
[δm−δn] which is positive

when m > n.
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If (r̂, ŷ, û) ∈ (0,∞)⊕Rn ⊕Em+1, then we derive from Lemma 2.19
and (2.25) the following estimate

‖A(r̂, y + ŷ, u + û)‖n

= |y1 + ŷ1| · · · |yn + ŷn| · |R̂(r̂)| · ‖Djf(· − R
2
) · Diu(· − R)‖n

≤ Cαk(r̂) · e
−dm,k+1·R(r) · |y1 + ŷ1| · · · |yn + ŷn| · ‖u + û‖m+1.

Dividing both sides by |r̂| + |ŷ| + ‖û‖m+1 and noticing that 1
br
· αk(r̂) ·

e−dm,k+1·R(br) → 0 as r̂ → 0 we conclude that

1

|r̂| + |ŷ| + ‖û‖m+1
· ‖A(r̂, y + ŷ, u + û)‖n → 0

as (r̂, ŷ, û) → 0 in (0,∞) ⊕ Rn ⊕ Em+1. Recalling that A(0, y, u) = 0
our claim follows.

At any other point (r, y, u) with r > 0 the derivative dA(r, y, u) :
R⊕Rn ⊕Em+1 → En evaluated at [r̂, ŷ, û] ∈ R⊕Rn ⊕Em+1 is a linear
combination of the following terms

(1) y1 · · · ŷl · · · yn · R̂(r) · Djf(s − R
2
) · Diu(s − R)

(2) r̂ · y1 · · · yn · DR̂(r) · Djf(s − R
2
) · Dui(s − R)

(3) r̂ · y1 · · · yn · R̂(r) · DR(r) · Dj+1(s − R
2
) · Diu(s − R)

(4) r̂ · y1 · · · yn · R̂(r) · DR(r) · Djf(s − R
2
) · Di+1u(s − R)

(5) y1 · · · yn · R̂(r) · Djf(s − R
2
) · Diû(s − R).

Assuming |r̂|+ |ŷ|+ ‖û‖m+1 ≤ 1 and recalling our notation R̂(r) =
Dk1R(r)·Dk2R(r) · · ·DknR(r) with k1+· · ·+kn = k and the assumption
m ≥ i+n we use Lemma 2.19 and Lemma 2.21 to estimate each of the
above terms and arrive at the following bound,

‖dA(r, y, u)[r̂, ŷ, û]‖n ≤ C · |R̂(r)|k+1 · e−dm+1,n·R(r)

· (1 + ‖u‖m+1) ·
∑

1≤l≤n

|y1 · y2 · · · yl−1 · (1 + yl) · yl+1 · · · yn|.

In particular, the operator norm of dA(r, y, u) satisfies

‖dA(r, y, u)‖ → 0

as (r, y, u) → (0, z, v) in [0, 1
2
)⊕Rn⊕Em+1. Consequently, the derivative

dA(r, y, u) depends continuously on (r, y, u) ∈ [0, 1
2
) ⊕ Rn ⊕ Em+1 so

that A : [0, 1
2
) ⊕ Rn ⊕ Em+1 → En is of class C1 as claimed.

Next we claim the derivative dA(r, y, u) : R ⊕ Rn ⊕ Em+1 → En at
the point (r, y, u) ∈ [0, 1

2
)⊕Rn⊕Em+1 has an extension to a continuous

linear map DA(r, y, u) : R ⊕ Rn ⊕ Em → En. If r = 0, then we set
DA(0, y, u) = 0. If r > 0 inspecting the terms (1)-(5) we see that we
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only have to consider term (5). By Lemma 2.19 and the assumption
m ≥ i + n, term (5) with û ∈ Em can be estimated as follows

‖y1 · y2 · · · yn · R̂(r) · Djf(· − R
2
) · Diû(· − R)‖n

≤ |y1| · · · |yn| · |R̂(r)| · ‖Djf(· − R
2
) · Diû(· − R)‖n

≤ C · αm(r) · e−[δm−δn]·
R(r)

2 · |y1| · · · |yn| · ‖û‖m.

(2.26)

Thus term (5) defines a bounded linear operator in û from Em into En

and so it is also a bounded linear operator from R⊕Rn ⊕Em into En.
Therefore, the derivative dA(r, y, u) : R ⊕ Rn ⊕ Em+1 → En has an
extension to a continuous linear map DA(r, y, u) : R⊕Rn ⊕Em → En.

In addition, if m > n so that δm − δn > 0, the left hand side of
(2.26) converges to 0 as (r, y, û) → (0, z, û0) in [0, 1

2
)⊕Rn ⊕Em. In the

case m = n so that i = 0, term (5) has, in view of our convention that

in this case R̂(r) = 1, the form y1 · · ·yn ·D
jf(s− R(r)

2
) · û(s−R). Thus

the continuity of the map

(r, y, û) �→ y1 · · · yn · Djf(s − R(r)
2

) · û(s − R)

from Rn ⊕ Em → En follows from Lemma 2.18. Since

[0, 1
2
) ⊕ Rn ⊕ Em+1 ⊕ R ⊕ Rn ⊕ Em → En

(r, y, u, r̂, ŷ, û) �→ DA(r, y, u)[r̂, ŷ, û]

is a linear combination of maps of the form (1)-(5), it is continuous.
Taking l ≥ 1 and (r, y, u, r̂, ŷ, û) ∈ [0, 1

2
) ⊕ Rn ⊕ Em+l+1 ⊕ R ⊕ Rn ⊕

Em+l we observe that DA(r, y, u)[r̂, ŷ, û] ∈ En+l and it follows from the
estimates in Lemma 2.18 and Lemma 2.19 that the evaluation map

[0, 1
2
) ⊕ Rn ⊕ Em+1 ⊕ R ⊕ Rn ⊕ Em → En

(r, y, u, r̂, ŷ, û) �→ DA(r, y, u)[r̂, ŷ, û]

is continuous. We have verified that the sc-continuous map A : [0, 1
2
)⊕

Rn⊕Em → En is of class sc1. The finishes the proof of the lemma. �

We are ready to prove Theorem 2.17. We only prove part (c) since the
proofs of the two other cases are similar. We drop the subscripts in f3

and Γ3 and simply write f and Γ so that

Γ(r, u)(s) = f(s − R(r)
2

) · u(s − R(r)).

We prove the theorem by proving by induction that the following
assertion holds for all positive integers k.
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(k) The map Γ : [0, 1
2
)⊕E → E is of class sck and the iterated tangent

map T kΓ : T k([0, 1
2
) ⊕ E) → T kE has the following property. Choose

any factor En of the tangent space T kE and let π be the projection of
T kE onto En. Let (r, y, u) ∈ (T k([0, 1

2
) ⊕ E))0 where r ∈ [0, 1

2
), y =

(y1, y2, . . . , y2k) ∈ R2k

and u = (u1, u2, . . . u2k) ∈ Em1⊕Em2⊕· · ·⊕Em
2k

.

If r = 0, then T kΓ(0, y, u) = 0 and if r > 0, then the composition
π ◦ T kΓ(r, y, u) is a linear combination of maps having the form

(2.27) yl1 · yl2 · · · yln · R̂(r) · Djf(s − R(r)
2

) · Diul(s − R(r))

where ul ∈ Eml
and R̂(r) = Dk1R(r) · Dk2R(r) · · ·DknR(r) and where

the indices satisfy k1 + · · ·+ kn ≤ k and ml ≥ i + n.

We begin with k = 1. We view Γ as a map from [0, 1
2
)⊕E1 into E0.

The map is of class C1 on (0, 1
2
)⊕E1. At the point (r, u) ∈ (0, 1

2
)⊕E1

the derivative dΓ(r, u) : R ⊕ E1 → E0 is equal to

dΓ(r, u)[y1, û](s) = −1
2
· y1 · Df(s − R(r)

2
) · u(s − R(r))

− y1 · f(s − R(r)
2

) · Du(s − R(r))

+ f(s − R(r)
2

) · û(s − R(r)).

(2.28)

Notice that each of the three summands has the form of the operator
A in Lemma 2.22. By the proof of Lemma 2.22 we have dΓ(0, u) = 0
and the derivative dΓ(r, u) : R⊕E1 → E0 extends to a bounded linear
operator DΓ(r, u) : R ⊕ E0 → E0. In addition, the evaluation map

[0, 1
2
) ⊕ E1 ⊕ R ⊕ E0 → E0

(r, u, y1, û) �→ DΓ(r, u)[y1, û]

is continuous. The same holds true if we consider DΓ(r, u)[y1, û] ∈ El

with (r, u, y1, û) ∈ [0, 1
2
) ⊕ El+1 ⊕ R ⊕ El for every l ≥ 0. Thus, Γ is of

class sc1. The tangent map TΓ : [0, 1
2
) ⊕ E1 ⊕ R ⊕ E → E1 ⊕ E is the

map

TΓ(r, u, y1, û) = (Γ(r, u), DΓ(r, u)[y1, û]).

Taking a projection π of the tangent TE = E1 ⊕ E onto either factor,
the composition π◦TΓ(r, u, y1, û) is a linear combination of terms (2.27)
in the assertion (k) with k=1. Thus the statement is proved for k = 1.

Next, assuming that the statement (k) with k ≥ 1 holds true, we
will show that the statement (k + 1) also holds true. We start by
showing that the tangent map T kΓ : T k([0, 1

2
) ⊕ E) → T kE is of class

sc1. Choose a factor En of the tangent space T kE and let π be the
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projection of T kE onto En. At a point (r, y, u) ∈ (T k([0, 1
2
) ⊕ E))0 we

have T kΓ(r, y, u) = 0 if r = 0 and otherwise T kΓ(r, y, u) is a linear
combination of maps of the form,

(2.29) yi1 · yl2 · · · yln · R̂(r) · Djf(s − R(r)
2

) · Diul(s − R(r))

where ul ∈ Eml
and R̂(r) = Dk1R(r) · Dk2R(r) · · ·DknR(r) and where

the indices satisfy k1 + · · · + kn ≤ k and ml ≥ i + n. Abbrevi-
ate u = ul, y1 = yl1, . . . , yn = yln and ml = m. Then, denoting
by A(r, y, u) the map defined by (2.29), we conclude from Lemma
(2.22) that A is sc1 from the sc-space [0, 1

2
) ⊕ Rn ⊕ Eml with the sc-

structure [0, 1
2
)⊕Rn ⊕Eml+α for all integers α ≥ 0 into the sc-Banach

space En equipped with the sc-structure En+α, α ≥ 0. Moreover,
DA(0, y, u) = 0. Taking (r, y, u) ∈ (0, 1

2
) ⊕ Rn ⊕ Em+1 and evalu-

ating the linear operator DA(r, y, u) : [0, 1
2
) ⊕ Rn ⊕ Em → En at

(r̂, ŷ, û) ∈ R ⊕ Rn ⊕ Em we see that it is a linear combination of
the terms (1)-(5) in the proof of Lemma 2.22. Since u ∈ Em+1 and
û ∈ Em, the indices in the terms (1)-(3) and (4) satisfy the condition
m+1 > i+n. In the term (5) we have m+1 ≥ (i+1)+n because, by
assumption, m ≥ i + n. Since T kΓ is a linear combination of terms of
the form (2.29) we conclude that T k+1Γ satisfies the conditions of the
statement (k+1). Thus, the statement (k+1) holds true and the proof
of Theorem 2.17 is complete. �





CHAPTER 3

The space of curves as an M-Polyfold

For two different points a and b in Rn we have introduced in Sec-
tion 1.5 the metric space X̂(a, b) of parametrized curves u : R → Rn

connecting the point a at −∞ with the point b at +∞. The met-

ric is denoted by d̂(u, v) = ‖u − v‖. Quotienting out the R-action of
translation we have obtained the space

X(a, b) = X̂(a, b)/ ∼

of equivalence classes [u]. Its quotient topology is determined by the
complete metric d. The space of curves X(a, b) is equipped with an
sc-manifold structure.

We now consider three different points a, b and c in Rn and study
the set of curves

(3.1) X = X(a, c) ∪ [X(a, b) × X(b, c)].

We are going to define a second countable paracompact topology on X
which induces the previously constructed topology on X(a, c) and on
X(a, b) × X(b, c) so that X(a, c) is open and dense in X. After this
we shall equip the space X with an M-polyfold structure for which the
degeneracy function d introduced in Section 2.5 takes on the values
d = 0 on X(a, c) and d = 1 on X(a, b) × X(b, c). The polyfold struc-
ture on the open subset X(a, c) of X will be induced by the previously
constructed sc-manifold structure. Since this particular case explains
all major technical issues we will formulate at the end a situation fre-
quently arising in Morse theory.

3.1. The Topology on X

We first introduce some notation. We fix a smooth cut-off function
β : R → [0, 1] having the properties listed in (2.5), and define for R ≥ 0
the cut-off function

τR(s) = β(s − R
2
).

We shall associate with a pair of parametrized curves (u, v) ∈ X̂(a, b)×

X̂(b, c) the glued parametrized curve ⊕R(u, v) ∈ X̂(a, c) by defining

79
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(3.2) ⊕R(u, v)(s) = τR(s) · u(s) + (1 − τR(s)) · v(s − R)

where 0 ≤ R < ∞. If R = ∞ we define

⊕∞(u, v) = (u, v) ∈ X̂(a, b) × X̂(b, c).

We have chosen the half line (−∞, 0] as the negative region of R and
[0,∞) as the positive region of R for both of our two curves u, v :
R → Rn. The gluing is the following procedure. We identify the
intervals [0, R] of the positive part [0,∞) of u with interval [−R, 0] of
the negative part (−∞, 0] of v by s ∈ [0, R] ∼ s′ ∈ [−R, 0] if and only
if −R + s = s′.

u

v

0

s

s′−R

R

Figure 3.1

From the properties of the cut-off function τR(s) = β(s − R
2
) one

reads off that

⊕R(u, v)(s) =

{
u(s) s ≤ R

2 1

v(s − R) s ≥ R
2

+ 1.

We point out the limits as R → ∞,

lim
R→∞

⊕R(u, v)(s) = u(s)

lim
R→∞

⊕R(u, v)(s + R) = v(s)

for all s ∈ R.
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a

b

c

a

b

c

u v

u v

u(0)

u(R) v(−R)

v(0)

⊕R(u, v)

Figure 3.2

We shall use the following notation

[⊕∞(u, v)] := ([u], [v]) ∈ X(a, b) × X(b, c)

where the bracket [u] stands for the equivalence class containing the
representative u. We use the same formula (3.1) in order to glue the
two vector fields

s �→ h(s) ∈ Tu(s)R
n = Rn

s′ �→ k(s′) ∈ Tv(s′)R
n = Rn

along the curves u and v, where s ∈ R and s′ ∈ R. We define the vector
field ⊕R(h, k) along the glued curve ⊕R(u, v) by

⊕R(h, k)(s) = τR(s) · h(s) + (1 − τR(s)) · k(s − R)

for all s ∈ R, where τ(s) = β(s − R
2
). The identification for the gluing

is as above.
In order to keep the information about the vector fields h(s) and

k(s′) also beyond the gluing intervals for s ≥ R and s′ ≤ −R we
introduce the anti-gluing of the vector fields h and k by the formula
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h

k

0

s

s′−R

R

0

Figure 3.3

a

b

c

u v0 0

R
2

−R
2

−RR

Figure 3.4

(3.3) �R(u, v)(s) = −(1 − τR(s)) · u(s) + τR(s) · v(s − R)

for all s ∈ R. Here we use the following identification.
In view of properties of the cut-off function β,

⊕R(h, k)(s) =

{
h(s) s ≤ R

2
− 1

k(s − R) s ≥ R
2

+ 1

�R(h, k)(s) =

{
k(s − R) s ≤ R

2
− 1

−h(s) s ≥ R
2

+ 1
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−hkR

s

s′0

0−R

Figure 3.5

a

b

c

u

v

⊕R(u, v)

Figure 3.6

Next we define the topology of X by defining its basis B. We shall
distinguish between sets of type 1 and sets of type 2 in B. In order to

define a type 1 set we take a path w0 ∈ X̂(a, c) and a number δ > 0
and define the set of curves connecting the point a with the point c by

(3.4) O(w0, δ) = {[w] |w ∈ X̂(a, c) and d(w0, w) < δ}.



84 3. THE SPACE OF CURVES AS AN M-POLYFOLD

Our notation indicates that we take the representative w0 of [w0]. In

order to define a type 2 set of B we take a pair (u0, v0) ∈ X̂(a, b) ×

X̂(b, c) of curves as well as real numbers δ > 0 and R0 > 1 and define
the neighborhood of broken curves (they are broken at R = ∞) as the
set

O(u0, v0, R0, δ0) = {[⊕R(u, v)] |(u, v) ∈ X̂(a, b) × X̂(b, c)

with d̂(u0, u) < δ, d̂(v0, v) < δ and R0 < R ≤ ∞}.

(3.5)

The aim of this section is the proof of the following theorem.

Theorem 3.1. The collection B consisting of sets of type 1 and
type 2 is the basis for a second countable Hausdorff topology for X. It
induces on the subsets X(a, c) and X(a, b)×X(b, c) the given topology.
The subset X(a, c) is open and dense in X.

We start the proof with the following observation.

Lemma 3.2. Fix real numbers t0, t1 and a pair of curves (u, v) ∈

X̂(a, b) × X̂(b, c). Then

d̂(t0 ∗ ⊕R(u, v),⊕R+t1−t0(t0 ∗ u, t1 ∗ v)) → 0

as R → ∞. Moreover,

d([⊕R(u, v)], [⊕R+t1−t0(t0 ∗ u, t1 ∗ v)]) → 0

as R → ∞.

Proof. Abbreviating a = 1
2
[t0 + t1] and R = R′ + (t0 − t1) we

compute

(t0 ∗ ⊕R(u, v))(s) = ⊕R(u, v)(t0 + s)

= τR(t0 + s) · u(t0 + s) + (1 − τR(t0 + s)) · v(t0 + s − R)

= τR′(a + s) · (t0 ∗ u)(s) + (1 − τR′(a + s)) · (t1 ∗ v)(s − R′)

= ⊕R′(t0 ∗ u, t1 ∗ v) + [τR′(a + s) − τR′(s)] · (t0 ∗ u)(s)

− [τR′(a + s) − τR′(s)] · (t1 ∗ v)(s − R′)

=: ⊕R′(t0 ∗ u, t1 ∗ v)(s) + δ(R)(s).

The compact supports of the functions s �→ [τR′(a+s)−τR′ (s)] move to
∞ as R → ∞ so that if u and v are fixed, then δ(R) → 0 in H2(R, Rn)
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as R → ∞. Therefore,

d̂(t0 ∗ ⊕R(u, v),⊕R′(t0 ∗ u, t1 ∗ v)) → 0

as R → ∞. The second assertion now follows from the inequality

d(α, β) ≤ d̂(u, v) for any two equivalence classes α, β ∈ X and repre-
sentatives u ∈ α, v ∈ β. The proof of the lemma is complete. �

We need the following technical lemmata in which ‖·‖ denotes the
norm on E = H2(R, Rn), and Bδ(0) denotes the open δ-ball around 0
in E.

Lemma 3.3. Given ε > 0 there exists δ > 0 so that for every R ≥ 2,

Bδ(0) ⊂ {⊕R(h, k)| ‖h‖, ‖k‖ < ε}.

Proof. Fix u ∈ E and consider the system of equations

⊕R(h, k) = u

�R(h, k) = 0.

The system can be written in the following matrix form[
τ(s) 1 − τ(s)

τ(s) − 1 τ(s)

]
·

[
h(s)

k(s − R)

]
=

[
u(s)
0

]
.

Multiplying by the inverse matrix we obtain

h(s) =
τ(s)

α(s)
· u(s)

k(s − R) =
1 − τ(s)

α(s)
· u(s).

Setting s′ = s − R the last formula takes the form

k(s′) =
τ(−s′)

α(−s′)
· u(s′ + R).

Using the translation invariance of the norm, we find a constant
C > 0 independent of R ≥ 2, depending only on bounds up to the
second derivatives of the cut off function β, so that ‖h‖+‖k‖ ≤ C ·‖u‖.
Consequently, for given ε we may take δ = ε

2C
and our assertion is

proved. �

Lemma 3.4. Given ε > 0 there exists δ > 0 so that for all R ≥ 2,

{⊕R(h, k)| ‖h‖, ‖k‖ < δ} ⊂ Bε(0).

Proof. This follows from a straightforward estimate. �



86 3. THE SPACE OF CURVES AS AN M-POLYFOLD

Next we prove three lemmata which will imply Theorem 3.1

Lemma 3.5. The collection of sets B is the basis for a topology. The
induced topologies on X(a, c) and X(a, b) × X(b, c) are the previously
defined ones.

Proof. Assume [w0] ∈ O1 ∩ O′
1 where O1, O

′
1 are sets of type 1.

Since the type 1 sets are a basis for the topology on X(a, c) we find
a set O′′

1 of type 1 so that [w0] ∈ O′′
1 ⊂ O1 ∩ O′

1. Next assume that
[w0] ∈ O1 ∩ O2, where Oi is of type i. By Lemma 3.3, there exists
O′

1 with [w0] ∈ O′
1 ⊂ O1 ∩ O2. This also implies that the topology

induced on X(a, c) is the previously defined one. If [w0] belongs to
O2∩O′

2 we can pick O1 of type 1 containing [w0] and apply the previous
consideration to O1 ∩O2 and O1 ∩O′

2 in order to find a type 1 set with
[w0] ∈ O′

1 ⊂ O2 ∩ O′
2. Finally assume that ([u0], [v0]) ∈ O2 ∩ O′

2. We
may assume without loss of generality that

O2 = O(u0, v0, R0, δ) and O′
2 = O(t0 ∗ u0, t1 ∗ v0, R0, δ).

It suffices to show for a suitable S0 >> 0 and a suitable σ > 0 that

O(u0, v0, S0, σ) ⊂ O(t0 ∗ u0, t1 ∗ v0, R0, δ).

Arguing indirectly we find sequences Sk → ∞, uk → u0 and vk → v0

so that

(3.6) [⊕Sk
(uk, vk)] �∈ O(t0 ∗ u0, t1 ∗ v0, R0, δ).

We estimate

d̂(t0 ∗ ⊕Sk
(uk, vk),⊕Sk+t1−t0(t0 ∗ uk, t1 ∗ vk))

≤ d̂(t0 ∗ ⊕Sk
(uk, vk), t0 ∗ ⊕Sk

(u0, v0))

+ d̂(t0 ∗ ⊕Sk
(u0, v0),⊕Sk+t1−t0(t0 ∗ u0, t1 ∗ v0))

+ d̂(⊕Sk+t1−t0(t0 ∗ u0, t1 ∗ v0),⊕Sk+t1−t0(t0 ∗ uk, t1 ∗ vk))

= ‖t0 ∗ ⊕Sk
(uk − u0, vk − v0)‖

+ ‖⊕Sk+t1−t0(t0 ∗ (uk − u0), t1 ∗ (vk − v0))‖

+ d̂(t0 ∗ ⊕Sk
(u0, v0),⊕Sk+t1−t0(t0 ∗ u0, t1 ∗ v0))

=: Ik + IIk + IIIk.

Using the invariance of the norm under the R-action and Lemma 3.4
one sees that Ik → 0. Lemma 3.4 also implies IIk → 0 and from
Lemma 3.2 one deduces IIIk → 0. Therefore,

d̂(t0 ∗ ⊕Sk
(uk, vk),⊕Sk+t1−t0(t0 ∗ uk, t1 ∗ vk)) → 0



3.1. THE TOPOLOGY ON X 87

as k → ∞. Using Lemma 3.3 we find σ > 0 so that

Bσ(0) ⊂ ⊕R(Bδ/2(0), Bδ/2(0))

for all R ≥ 2. For large k the element t0 ∗ ⊕Sk
(uk, vk) belongs to

⊕Sk+t1−t0(t0∗uk, t1∗vk)+Bσ(0) which in turn belongs to ⊕Sk+t1−t0(Bδ(t0∗
u0), Bδ(t1 ∗ v0)). Now passing to equivalence classes we conclude

[⊕Sk
(uk, vk)] ∈ O(t0 ∗ u0, t1 ∗ v0, R0, δ),

contradicting (3.6). This shows that B is a basis for a topology. From
the form of the sets of type 2 in (3.5) one reads off immediately that
the induced topology on X(a, b)×X(b, c) is the previously defined one.
The proof of Lemma 3.5 is complete. �

Lemma 3.6. The topology generated by B is Hausdorff.

Proof. Arguing by contradiction we assume the points ([u0], [v0])
and ([a0], [b0]) in X(a, b)×X(b, c) do not have disjoint neighborhoods.
Then there are sequences Sk and Rk → ∞, tk ∈ R and (uk, vk) →
(u0, v0) and (ak, bk) → (a0, b0) such that

tk ∗ ⊕Rk
(uk, vk) = ⊕Sk

(ak, bk).

of Lemma 3.4 this implies that

(3.7) tk ∗ ⊕Rk
(u0, v0) −⊕Sk

(a0, b0) → 0

in E = H2(R, Rn). From Sk → ∞ we deduce ⊕Sk
(a0, b0)(s) → a0(s) as

k → ∞ for every s ∈ R. We claim that the sequence tk is bounded. If
not we assume first that tk → −∞. Then for every fixed s,

tk ∗ ⊕Rk
(u0, v0)(s) = u0(s + tk) → a

as k → ∞. Hence a = a0(s) for all s, contradicting a0(s) → b �= a as
s → ∞. If tk → ∞, then at s − tk with k large,

tk ∗ ⊕Rk
(u0, v0)(s − tk) = u0(s)

while
⊕Sk

(a0, b0)(s − tk) = a0(s − tk) → a.

This implies u0(s) = a for all s ∈ R contradicting u0(s) → b �= a
as s → ∞. Thus the sequence tk is bounded and we may assume
tk → t0. We next claim that the sequence Rk −Sk is bounded. Indeed,
if Rk − Sk → ∞, then for fixed s as k → ∞

tk ⊕Rk
(u0, v0)(s + Rk) = u0(s + tk + Rk) → b

while
⊕Sk

(a0, b0)(s + Rk) = b0(s + (Rk − Sk)) → c �= b,
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contradicting (3.7). If Rk − Sk → −∞, then

tk ⊕Rk
(u0, v0)(s + Sk) = v0(s + tk + (Sk − Rk)) → c

while
⊕Sk

(a0, b0)(s + Sk) = b0(s).

Hence b0(s) = c. But this contradicts b0(s) → b �= c as s → ∞.
Thus the sequence Rk − Sk is bounded and we may assume that it
converges to τ . Then evaluating tk ⊕Rk

(u0, v0) and ⊕Sk
(a0, b0) at s

and passing to the limit as k → ∞ we find t0 ∗ u0 = a0. Evaluating
both sequences at s + Rk we conclude

tk ⊕Rk
(u0, v0)(s + Rk) = v0(s + tk) → t0 ∗ v0(s)

and
⊕Sk

(a0, b0)(s + Rk) = b0(s + (Rk − Sk)) → τ ∗ b0(s).

Hence ([u0], [v0]) = ([a0], [b0]) contradicting our assumption that these
points are different.

If we have two different points [w0] �= [w′
0] in X(a, c), the existence

of separating open neighborhoods is immediate. The remaining case
where the points [w0] ∈ X(a, c) and ([u0], [v0]) ∈ X(a, b) × X(b, c) can
be separated by open sets is left to the reader. �

Lemma 3.7. The topology generated by B on X is second countable.

Proof. Recall from Section 1.5 that X(a, c) is second countable.
Take a countable basis for its topology, say Wi for i ≥ 1. We also know

that X̂(a, b) and X̂(b, c) are second countable. Take a countable basis
Ui for the first and a countable basis Vj for the second space. Define
the subsets Oi,j,k of X by

Oi,j,k = {[⊕R(u, v)] | u ∈ Ui v ∈ Vj , R ∈ (k,∞]}.

This collection of sets is a countable basis on X. �

In view of Lemmata 3.5, 3.6 and 3.7 the proof of Theorem 3.1 is
complete. �

We would like to point out that the definition of B does not depend on
the choice of the cut-off function β used in all our constructions.

3.2. M-Polyfold Charts on X

In this section we will construct a M-polyfold structure on X. For
points in X(a, c) we can take the sc-charts with domains disjoint from
X(a, b)×X(b, c) which we constructed in Section 1.5. Clearly sc-charts
are also M-polyfold charts the splicing being defined by V = {0} and
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π0 = Id so that the splicing core is {0} ⊕ E = E. Before constructing
M-polyfold charts for points in X(a, b)×X(b, c) we have to recall some
facts from Section 1.5.

If a pair ([u′], [v′]) ∈ X(a, b)×X(b, c) is given, then there are positive
numbers ε and ε1 and a pair ([u], [v]) ∈ X(a, b)×X(b, c) having smooth

representatives (u, v) ∈ X̂(a, b) × X̂(b, c) and satisfying

(3.8)
‖u − u′‖C0(R) < ε1 and ‖u − u′‖C1([−ε,ε]) < ε2

‖v − v′‖C0(R) < ε1 and ‖v − v′‖C1([−ε,ε]) < ε2.

In addition, there are affine hyperplanes Σu and Σv in Rn so that u
intersects Σu and v intersects Σv transversally at the parameter value
s = 0. Moreover, considering parametrized paths nearby we take h, k ∈
E satisfying the estimates

(3.9) ‖h‖C1([−ε,ε]) < ε2 and ‖k‖C1([−ε,ε]) < ε2.

Then the paths u +h ∈ X̂(a, b) resp. v + k ∈ X̂(b, c) intersect Σu resp.
Σv transversally at unique points parametrized by s satisfying |s| < ε.
In addition, there exist positive numbers α and ε2 such that if

‖h‖C0(R), ‖h′‖C0(R), ‖k‖C0(R), ‖k‖C0(R) < ε2

and

(3.10) u + h = t ∗ (u + h′) and v + k = t′ ∗ (v + k′)

on [−α, α] for some t, t′ ∈ R, then necessarily |t|, |t′| < ε. Recall fur-
thermore the following construction of an sc-chart at [u] ∈ X(a, b).
Introduce the closed subspace Fu ⊂ E consisting of functions h satis-
fying h(0) ∈ Σu − u(0). Define the open subset U of Fu by

(3.11) U = {h ∈ Fu | ‖h‖C0(R) < ε1 and ‖h‖C1([−ε,ε]) < ε2}.

Then the map

U → X(a, b)

h �→ [u + h]

defines an sc-chart. It should be recalled that E is the Banach space
E = H2(R, Rn) equipped with the sc-smooth structure introduced in
Section 1.5.

Similarly, an sc chart at [v] ∈ X(b, c) is defined by the map

V → X(b, c)

k �→ [v + k]

from the open subset V ⊆ Fv defined by
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(3.12) V = {h ∈ Fv | ‖k‖C0(R) < ε1 and ‖k‖C1([−ε,ε]) < ε2}

where the subspace Fv consists of functions k in E satisfying k(0) ∈
Σv − v(0).

Lemma 3.8. Let the data be as just described. Then there exists a
real number R0 > 2 so that for R, R′ ≥ R0, for h, h′ ∈ U and k, k′ ∈ V
and t ∈ R, the equality

(3.13) ⊕R(u + h, v + k) = t ∗ ⊕R′(u + h′, v + k′)

implies t = 0 and R = R′.

Proof. We choose R0 = 2α + 2 with α as in (3.10) . Pick R, R′ ≥
R0 and assume

⊕R(u + h, v + k) = t ∗ ⊕R′(u + h′, v + k′)

for some r ∈ R. We may assume t ≤ 0, interchanging if necessary the
roles of (h, k) and (h′, k′). In view of the choice of R0 and since the
function τR is equal to 1 for s ≤ R

2
− 1, it follows from (3.13) that

(u + h)(s) = (u + h′)(t + s) = (t ∗ (u + h′))(s)

for all s ∈ [−α, α]. Thus (3.10) implies |t| < ε. Setting s = 0 and
recalling that h ∈ Fu − u(0) we obtain u(0) + h(0) = u(t) + h′(t) ∈ Σu.
Since h′ ∈ Fu we also know u(0) + h′(0) ∈ Σu and conclude t = 0 from
the uniqueness of the intersection under assumption (3.9). Hence

⊕R(u + h, v + k) = ⊕R′(u + h′, v + k′)

and we will show that R = R′. We may assume R ≥ R′. Evaluating
the above paths at s + R with s ∈ [−α, α] we find

(v + h)(s) = (v + h′)(s − R′ + R) = (R − R′) ∗ (v + h′)(s)

if s ∈ [−α, α]. Again applying 3.10 we conclude R = R′. The proof is
complete. �

Choose R0 = 2α+2 as in Lemma 3.8. If r0 ∈ (0, 1) satisfies ϕ(r0) > R0,

where ϕ is the gluing profile ϕ(r) = e
1
r − e, we define the gluing map

(3.14) A : [0, r0) ⊕ U ⊕ V → X

for r = 0 by

A(0, h, k) = ([u + h], [v + k])
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and if r ∈ (0, r0), we put

A(r, h, k) = [⊕R(u + h, v + k)]

where R = ϕ(r). By construction, the map A is continuous.

Lemma 3.9. If

A(r, h, k) = A(r′, h′, k′)

and �R(h, k) = 0 and �R′(h′, k′) = 0 where R = ϕ(r) and R′ = ϕ(r′),
then (r, h, k) = (r′, h′, k′).

Proof. If A(r, h, k) = A(r′, h′, k′) and one of the two numbers r, r′

vanishes, then the other vanishes as well. If r = r′ = 0, then

([u + h], [v + k]) = ([u + h′], [v + k′])

for h, h′ ∈ U and k, k′ ∈ V , implying h = h′ and k = k′ because the data
define charts for X(a, b) and X(b, c). Now assume r, r′ ∈ (0, r0). From
A(r, h, k) = A(r′, h′, k′) we conclude the existence of t ∈ R satisfying

(3.15) ⊕R(u + h, v + k) = t ∗ ⊕R′(u + h′, v + k′).

Here R = ϕ(r), R′ = ϕ(r′) and, by construction, R > R0 and R′ > R0.
Hence t = 0 and R = R′ in view of Lemma 3.8, so that

⊕R(u + h, v + k) = ⊕R(u + h′, v + k′)

implying

⊕R(h, k) = ⊕R(h′, k′).

This together with �R(h, k) = �R(h′, k′) = 0 imply (h, k) = (h′, k′).
The proof of the lemma is complete. �

Define the splicing

S = (π, Fu ⊕ Fv, [0, r0))

as in Section 2.2 by the formulae in (2.8) replacing E+ by Fu and E−

by Fv. The formulae (2.8) holds true this time for all s ∈ R and all

s′ ∈ R. Hence, if (h, k) ∈ Fu ⊕ Fv, then πr(h, k) = (ĥ, k̂) ∈ Fu ⊕ Fv is
defined by the formulae

ĥ(s) =
τ(s)

α(s)

[
τ(s) · h(s) + (1 − τ(s)) · k(s − R)

]
k̂(s′) =

τ(−s′)

α(−s′)

[
(1 − τ(−s′)) · h(s′ + R) + τ(−s′) · k(s′)

]
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for all s ∈ R and s′ ∈ R. Near 0 the functions are not changed,

(3.16)

ĥ(s) =

{
h(s) 0 ≤ s ≤ R

2
− 1

0 s ≥ R
2

+ 1

k̂(s′) =

{
0 s′ ≤ −R

2
− 1

k(s′) s′ ≥ −R
2

+ 1.

The associated splicing core KS is characterized as the collection of
points (r, h, k) ∈ [0, r0) ⊕ Fu ⊕ Fv satisfying �R(h, k) = 0 where R =
ϕ(r). Take the open set O of the splicing core KS defined by

O = ([0, r0) ⊕ U ⊕ V ) ∩ KS

with U and V according to (3.11) and (3.12). In view of Lemma 3.9,
the map

(3.17) A : O → X

is injective.

Lemma 3.10. The map A : O → X is a homeomorphism onto some
open subset of X.

Proof. We already know that A is continuous and injective. It
remains to show that A is open. Take an open subset O′ of O. We will
show that every point of A(O′) is an interior point of A(O). Assume
first that for (r, h, k) ∈ O′, the image point A(r, h, k) belongs to X(a, c).
Taking the representative w of A(r, h, k) we have the path

(3.18) ⊕R(u + h, v + k) = w ∈ X̂(a, c).

Here R = ϕ(r) with r ∈ (0, r0) and the pair (h, k) ∈ U ⊕ V satisfies
πr(h, k) = (h, k) or equivalently �R(h, k) = 0. Evaluating both sides
of (3.18) at 0 and R we conclude from the definition of the sets U and
V that

w(0) = (u + h)(0) ∈ Σu and w(R) = (v + k)(0) ∈ Σv.

It follows from the implicit function theorem, arguing as in Lemma
(1.30), that if g ∈ E is close to 0 in E, then there exists a unique time
t0(g) so that (w + g)(t0(g)) ∈ Σu. The map g �→ t0(g) is sc-smooth and
t0(0) = 0. Similarly, there exists a sc-smooth map g �→ t1(g) satisfying
t1(0) = R and (w + g)(t1(g)) ∈ Σv. Set R′ = t1(g)− t0(g) and define r′

via R′ = ϕ(r′).
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We look for the pair (h′, k′) ∈ U × V solving the following two
equations for given g ∈ E close to 0

⊕R′(h′, k′) = t0(g) ∗ (w + g) −⊕R′(u, v) and �R′ (h′, k′) = 0.

Abbreviating the functions τ ′ = β(· − R′

2
) and α′ = (τ ′)2 + (1 − τ ′)2,

the solution (h′, k′) can be written explicitly as

[
h′(s)

k′(s − R′)

]
=

1

α′

[
τ ′ −(1 − τ ′)

1 − τ ′ τ ′

]
·

[
t0(g) ∗ (w + g) −⊕R′(u, v)

0

]
.

It follows immediately that if g ∈ E is close to 0 in E then (r′, h′, k′)
is close to (r, h, k) in R⊕E ⊕E. The condition �R′(h′, k′) = 0 implies
(h′, k′) ∈ KS . Substituting s = 0 and then s = R in the above equation
we find

h′(0) = (w + g)(t0(g)) − u(0) ∈ Σu − u(0) = Fu

k′(0) = (w + g)(t1(g)) − v(0) ∈ Σv − v(0) = Fv.

Summing up, we have proved for every g ∈ E near 0 in E that there
exists (r′, h′, k′) ∈ O′ satisfying A(r′, h′, k′) = [w + g]. Thus A(r, h, k)
is an interior point of A(O′).

Next we consider the case ([u0], [v0]) ∈ A(O′). In view of the defi-
nition of A we have A(0, h0, k0) = ([u0], [v0]) for some (h0, k0) ∈ U ⊕V .
Taking representatives we may assume u0 = u+h0 and v0 = v+k0. Re-
call that by construction of the topology on X, an open neighborhood
of ([u0], [v0]) consists of the set of equivalence classes [⊕R(u0+h, v0+k)]
where R is large including +∞ and h and k are close to 0 in E. Us-
ing the implicit function theorem as above we find sc-smooth functions
h �→ t0(h) and k �→ t1(k) defined for h and k close to 0 in E such that
t0(0) = 0 and t1(0) = 0 and

(u0 + h)(t0(h)) ∈ Σu and (v0 + k)(t1(k)) ∈ Σv.

Introduce the path

w := t0(h) ∗ ⊕R(u0 + h, v0 + k) ∈ X̂(a, c).

Obviously, [w] = [⊕R(u0 + h, v0 + k)]. Taking R large and setting
R′ = R + [t1(k) − t0(h)] we deduce from the definition of w that

w(0) = (u0 + h)(t0(h)) ∈ Σu and w(R′) = (v0 + k)(t1(k)) ∈ Σv.

Now we look for solutions (h′, k′) of the equations

⊕R′(h′, k′) = w −⊕R′(u, v) and �R′ (h′, k′) = 0.
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Explicitly, the solution (h′, k′) is given by[
h′(s)

k′(s − R′)

]
=

1

α′

[
τ ′ −(1 − τ ′)

1 − τ ′ τ ′

]
·

[
w −⊕R′(u, v)

0

]
where as before τ ′ = β(· − R′

2
) and α′ = (τ ′)2 + (1 − τ ′)2. It follows

for R large and hence for R′ large that the resulting solution (h′, k′) is
close to (h0, k0) in E⊕E. Moreover, (h′, k′) ∈ KS since �R′(h′, k′) = 0.
Furthermore, substituting s = 0 and s = R′ into the the above equation
we find

h′(0) = w(0) − u(0) ∈ Σu − u(0) = Fu

and k′(0) ∈ Fv. Hence taking R large and defining r′ via R′ = ϕ(r′) we
conclude (r′, h′, k′) ∈ O′ and A(r′, h′, k′) = [⊕R′(u + h′, v + k′)] = [w]
showing that ([u0], [v0]) is an interior point of A(O′). Thus the map A
is open and the proof of the lemma is complete. �

This implies the following result.

Lemma 3.11. The topological space X is a second countable metriz-
able space.

Proof. We already know from Theorem 3.1 that the space X is
second countable and Hausdorff. Since by Lemma 3.10 X is locally
homeomorphic to open sets in splicing cores, we know that it is com-
pletely regular which implies also assertion by Proposition 1.25. �

In view of Lemma 3.10, the map A : O → X defined by (3.17) is
a homeomorphism onto an open subset A(O) of the topological space
X. Abbreviating this open set by

U = A(O) ⊂ X

we denote by

Φ := A−1 : U → O

the inverse of the map A. Then the collection of all charts (U, Φ) or
more precisely (U, Φ, (O,S)), as well as the previously constructed sc-
charts for X(a, c), have the property that the union of their domains
covers X. Our main result in this section is the following theorem.

Theorem 3.12. The atlas consisting of all sc-charts for X(a, c)
and all charts (U, Φ, (O,S)) around smooth points in X(a, b)×X(b, c)
covers X and the transition maps are sc-smooth. In other words the
atlas defines a sc-smooth M-polyfold structure.
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Proof. Recall that we distinguish between the charts of type 1
which are inherited from X(a, c) and charts of type 2 which involve the
gluing construction. We already have proved in Lemma 1.33 that the
transition maps between two charts of type 1 are sc-smooth.

We now consider the transition maps from charts of type 1 to charts
of type 2. Take a chart Φ1 : U1 → O1 of type 1 and a chart Φ2 : U2 → O2

of type 2. Then A1 = Φ−1
1 : O1 → U1 and A2 = Φ−1

2 : O2 → U2.
Assuming that the domain of A−2

2 ◦ A1 is nonempty we will show that
it is sc-smooth. Assume A1(f0) = A(r0, h0, k0) for some f0 ∈ O1 and

(r0, h0, k0) ∈ O2 ⊂ KS . Then there are curves u ∈ X̂(a, b) and v ∈

X̂(b, c) and w ∈ X̂(a, c) and real numbers R0 ≥ 2 and t0 ∈ R satisfying

⊕R0(u + h0, v + k0) = t0 ∗ (w + f0)

where R0 = ϕ(r0). In addition, �R0(h0, k0) = 0 since (h0, k0) ∈ KS .
In view of the definition of O2 the functions h0 and k0 belong to the

spaces Fu and Fv, respectively, from which we conclude after evaluating
the above equation at 0 and R0 that (u + h0)(0) = (w + f0)(t0) ∈ Σu

and (v + k0)(0) = (w + f0)(R0 + t0) ∈ Σv. Using the implicit function
theorem we find two sc-smooth functions f �→ t0(f) and f �→ t1(f)
defined for f close to f0 in E satisfying

(w + f)(t0(f)) ∈ Σu and (w + f)(R0 + t1(f)) ∈ Σv,

moreover, t0(f0) = t0 and t1(f0) = t0. Define the positive number
R(f) = R0 + [t1(f) − t0(f)]. Then the curve t0(f) ∗ (w + f) intersects
Σu and Σv at the times 0 and R(f). We define r(f) via the formula

(3.19) R(f) = ϕ(r(f)).

We look for a pair (h, k) solving the following two equations

⊕R(f)(h, k) = t0(f) ∗ (w + f) −⊕R(f)(u, v) and �R(f) (h, k) = 0.

Introducing ŵR(f) := t0(f) ∗ (w + f) − ⊕R(f)(u, v), the solution pair
(h, k) can be represented explicitly as[

h(s)
k(s − R(f))

]
=

1

α(f)

[
τ(f) −(1 − τ(f))

(1 − τ(f)) τ(f)

]
·

[
ŵR(f)

0

]
where we have abbreviated τ(f) = β(·− R(f)

2
) and α(f) = τ(f)2 +(1−

τ(f))2. We denote the solution as (h(f), k(f)). We only consider h(f)
since the results for k(f) are proved in a similar way. We set

γ(f) =
τ(f)

α(f)
.
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and define the map

(3.20) f �→ h(f) = γ(f) ·
[
t0(f) ∗ (w + f) −⊕R(f)(u, v)

]
from E into E.

Lemma 3.13. The map (3.20) is sc-smooth.

Proof. The curves u ∈ X̂(a, b), v ∈ X̂(b, c) and w ∈ X̂(a, c) have
the form u = φ+h′

0, v = ψ+k′
0 and w = η+g′

0 where h′
0, k

′
0 and g′

0 ∈ E
and φ, ψ and η are smooth functions which are constant outside the
interval [−1, 1]. We represent the map under consideration as a sum,

γ(f) ·
[
t0(f) ∗ (w + f) −⊕R(u, v)

]
= γ(f) · t0(f) ∗ f

+ γ(f) · t0(f) ∗ g′
0 − γ(f) · ⊕R(f)(h

′
0, k

′
0)

+ γ(f) · [t0(f) ∗ η −⊕R(f)(φ, ψ)].

(3.21)

The sc-smoothness of the first two maps follows from the sc-smoothness
of the R-action together with Theorem 2.17. The third map is equal
to

γ(f) · τR(f)h
′
0 + γ(f) · (1 − τR(f)) · k

′
0(· − R(f)).

Sc-smoothness follows by applying Theorem 2.17 to each of the above
summands. Finally, the last term can be represented as

γ(f) · [t0(f) ∗ η −⊕R(f)(φ, ψ)]

= γ(f) · τR(f) · [t0(f) ∗ η(s) − φ(s)]

+ γ(f) · (1 − τR(f)) · [t0(f) ∗ η(s) − ψ(s − R(f))].

(3.22)

The maps f �→ t0(f) and f �→ t1(f) are bounded, hence, R(f) =
R0 + [t1(f) − t0(f)] is also bounded. Since φ(s) = η(s) = a for s ≤ −1
and φ(s) = b and η(s) = c for s ≥ 1, the first map on the right hand
side can be written as

γ(f) · τR(f) · [t0(f) ∗ η − φ] = γ(f) · τR(f) · β(· − C) · [t0(f) ∗ η − φ]

where C is a large positive constant.
Let δ : R → E be the map defined by δ(x) = β(·−C)·[η(·−x)−φ(·)].

Since δ is sc-smooth, the composition f �→ δ(t0(f)) from E into E is
also sc-smooth. Define the function γ by

(3.23) γ(s) =
β(s)

β(s)2 + (1 − β(s))2
,

where β is the cut-off function from (2.5). With the function γ̂ = γ · β
having its support in (−∞, 1], the map Γ(r, g) = γ̂(· − R

2
) · g for g ∈ E
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is sc-smooth by Theorem 2.17. Thus, the composition

f −−→ (R(f), t0(f))
(ϕ−1,δ)

−−−−−→ (r(f), δ(t0(f))
Γ

−−→ Γ(r(f), δ(t0(f)))

is sc-smooth. The first term on the right hand side of (3.22) is precisely
this composition and so it defines an sc-smooth map.

In view of the boundedness of the maps f �→ t0(f) and f �→ t1(f),
and hence also of R(f) = R0 +[t1(f)− t0(f)], the second term from on
the right hand side of (3.22) can be written as

γ(f)·(1 − τR(f)) · [t0(f) ∗ η(s) − ψ(s − R(f))]

= γ(f) · (1 − τR(f)) · β(s − C) · [t0(f) ∗ η(s) − ψ(s − R(f))]

where C is a large positive constant C.
The map ξ from R2 to E defined by ξ(x, y) = β(· −C) · [η(·+ x)−

ψ(· − y) is sc-smooth implying that f �→ ξ(t0(f), R(f)) is also of class
sc∞.

The function γ̂ = γ · (1−β) has a compact support so that, in view
of Theorem 2.17, the map Γ1(r, g) := γ̂(· − R

2
) · g is sc-smooth. Thus,

the composition,

f −−→ (R(f), t0(f))
(ϕ−1,ξ)

−−−−−→(r(f), ξ(R(f), t0(f))

Γ1−−−→ Γ1[r(f), ξ(R(f), t0(f))]

is sc-smooth. The second term of (3.22) is precisely the above compo-
sition and so the proof of the lemma is complete. �

The lemma holds also true for the map f �→ k(f). Since the tran-
sition map A−2

2 ◦ A1 is given by f �→ (h(f), k(f)) we conclude that
A−2

2 ◦ A1 is sc-smooth.

We next consider the transition map A−1
1 ◦ A2. Assume that A1(f0) =

A2(r0, h0, k0) for some f0 ∈ O1 and for (r0, h0, k0) ∈ O2 ⊂ KS with

r0 > 0. Then there are curves u ∈ X̂(a, b) and v ∈ X̂(b, c) and

w ∈ X̂(a, c) and a real number t0 satisfying

(3.24) t0 ∗ ⊕R0(u + h0, v + k0) = w + f0

where R0 = ϕ(r0). Evaluating both sides at time s = 0 we find

⊕R0(u + h0, v + k0)(t0) = (w + f0)(0) ∈ Σw.
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Lemma 3.14. There exists an sc-smooth map (R, h, k) �→ t(R, h, k)
defined for R, h and k close to R0, h0 and k0 respectively so that at
the parameter value t(R, h, k) the curve ⊕R(u + h, v + k) intersects Σw

transversally and satisfies, in addition, t(R0, h0, k0) = t0.

Proof. To see this we proceed as in Lemma 1.30 and represent
Σ := Σw as Σ = {x ∈ Rn| λ(x) = c} for some linear map λ : Rn → R
and some constant c ∈ R, and define the map F : R⊕(0,∞)⊕E⊕E →
R by setting

F (t, R, h, k) = λ(⊕R(u + h, v + k)(t + t0)) − c.(3.25)

At the point (0, R0, h0, k0) we have F (0, R0, h0, k0) = 0. Because of the
Sobolev embedding E ⊂ C1(R) the map F is of class C1. From (3.24)
we conclude that the derivative of F with respect to t at the point
(0, R0, h0, k0) is equal to

dtF (0, R0, h0, k0)[δt] = λ(w′(0) + f ′
0(0)) · [δt]

for all δt ∈ R. Since the curve w + f0 intersects Σ transversally at
the parameter value 0, the derivative λ(w′(0) + f ′

0(0)) does not vanish.
So, dtF (0, R0, h0, k0) : R → R is invertible. Applying the implicit
function theorem, there exist ε > 0 and, for every (R, h, k) ∈ (0,∞) ⊕
E ⊕ E satisfying |R − R0| < ε and ‖h − h0‖, ‖k − k0‖ < ε, a unique
time t(R, h, k) ∈ R solving the equation F (t(R, h, k), R, h, k) = 0. In
addition, the map (R, h, k) �→ t(R, h, k) is of class C1 and satisfies
t(R0, h0, k0) = t0. Thus, ⊕R(u + h, v + k) intersects Σ transversally
at the unique parameter values t(R, h, k) if |R − R0| < ε and ‖h −
h0‖, ‖k − k0‖ < ε. To see that the mapping (R, h, k) �→ t(R, h, k)
is sc-smooth we define an open subset V of (0,∞) ⊕ E ⊕ E by V =
{(R, h, k)| |R−R0|, ‖h−h0‖, ‖k−k0‖ < ε}, which is filtrated by Vm :=
V ∩ (R ⊕ Em ⊕ Em) for all m ≥ 0. The function (R, h, k) �→ t(R, h, k)
viewed as a function from Vm to R is of class C1. In view of the Sobolev
embedding theorem, Fm ⊂ Cm+1. and hence the map F in (3.25)
viewed as a map from R ⊕ (0,∞) ⊕ Em ⊕ Em into R is of class Cm+1.
Then the implicit function theorem shows that (R, h, k) �→ t(R, h, k)
from Vm into R is of class Cm+1. Consequently, Proposition 1.10 implies
the sc-smoothness of (R, h, k) �→ t(R, h, k) from V into R.

�

If (R, h, k) ∈ V , we define the map f by

(3.26) f(R, h, k) = t(R, h, k) ∗ ⊕R(u + h, v + k) − w.
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Then f(R0, h0, k0) = f0, in view of Lemma 3.14. Abbreviating
f(s) = f(R, h, k)(s),

(w + f)(0) = t(R, h, k) ∗ ⊕R(u + h, v + k)(0)

= ⊕R(u + h, v + k)(t(R, h, k)) ∈ Σw.

It follows f(0) ∈ Σw − w(0) and so f belongs to Fw.

Lemma 3.15. The map (3.26) is sc-smooth.

Proof. The curves u ∈ X̂(a, b), v ∈ X̂(b, c) and w ∈ X̂(a, c) have
the form u = φ+h0, v = ψ+k0 and w = η+g0 where h0, k0 and g0 ∈ E
and φ, ψ and η are smooth functions which are constant outside the
interval [−1, 1]. Using this we represent the map as

t(R, h, k) ∗ ⊕R(u + h, v + k) − w = t(R, h, k) ∗ ⊕R(h, k)

+ [t(R, h, k) ∗ ⊕R(h0, k0) − g0] + [t(R, h, k) ∗ ⊕R(φ, ψ) − η].

Since the R-action by translation is sc-smooth and the composition of
two sc-smooth maps is again sc-smooth, we verify, by applying Proposi-
tion 2.17, that the first two maps on the right-hand side are sc-smooth.
In order to see that the third term also defines an sc-map we write

t ∗ ⊕R(φ, ψ) − η = t ∗ [⊕R(φ, ψ) − (−t) ∗ η].

Thus it suffices to show that (r, h, k) �→ ⊕R(φ, ψ)− (−t(R, h, k)) ∗ η is
sc-smooth. We write

⊕R(φ, ψ)(s) − (−t) ∗ η(s) = τR(s) · [φ(s) − η(s − t)]

+ (1 − τR(s)) · [ψ(s − R) − η(s − t)].
(3.27)

Since the map (r, h, k) �→ t(R, h, k) is bounded and R is close to R0

and since φ(s) = η(s) = a for s ≤ −1 and φ(s) = b and η(s) = c for
s ≥ 1, the first summand in (3.27) can be written as

τR(s) · [φ(s) − η(s − t)] = τR(s) · β(s − C) · [φ(s) − η(s − t)].

The map δ defined by x �→ β(· − C) · [φ(·) − η(· − x)] from R into
E is sc-smooth so that (r, h, k) �→ δ(t(R, h, k)) is also sc-smooth as a
composition of sc-smooth maps. With the sc-smooth map Γ defined by
Γ(r, g) = τR · g, the composition

(r, h, k)
(Id,t◦(ϕ,Id))
−−−−−−−→ (r, t(R, h, k))

(Id,δ)
−−−→(r, δ(t(R, h, k))0

Γ
−−−−→ Γ(r, δ(t(R, h, k)))

is of class sc∞. Thus the first summand on the right hand side in (3.27)
is sc-smooth.
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Due to the boundedness of (r, h, k) �→ t(R, h, k) and in view of the
properties of the functions ψ and η, and since we consider only R close
to R0, the second map in (3.27) can be represented as

(1 − τR(s)) · [ψ(s − R) − η(s − t)]

= (1 − τR(s)) · τR(s − C) · (1 − β(s + C)) · [ψ(s − R) − η(s − t)]

with some positive constant C. The map ξ from R2 to E defined by
ξ(x, y) = (1 − β(· + C)) · [ψ(· − x) − η(· − y) is sc-smooth implying
that (r, h, k) �→ ξ(R, t(R, h, k)) is of class sc∞. The function γ1 =
(1−β) ·β(·−C) has a compact support so that, in view of Proposition
2.17, the map Γ1(r, g) := γ1(· −

R
2
) · g is sc-smooth. Consquently, the

composition

(r, h, k)
(Id,t◦(ϕ,Id))
−−−−−−−→ (r, t(R, h, k))

(Id,ξ)
−−−→(r, ξ(R, t(R, h, k)))

Γ1−−−−−→ Γ1(r, ξ(R, t(R, h, k)))

is sc-smooth. Since this composition is precisely the second summand
in (3.27), the proof of the lemma is complete. �

Note that with R = ϕ(r) the transition map A−1
1 ◦A2 near (R0, h0, k0)

is precisely the map (3.26). Consequently, it is sc-smooth.

Continuing with the proof of Theorem 3.12 we study finally the
transition map between two charts of type 2. We only need to study
the transition at an element of the form ([u0], [v0]) ∈ X(a, b)×X(b, c).

Indeed, if the element has the form [w] with w ∈ X̂(a, c), we can
introduce an auxiliary chart of type 1 and represent the transition as
the composition of a 2 to 1 with a 1 to 2 transition which we already
know to be sc-smooth.

We consider two charts Φ : U → O and Ψ : U ′ → O′ of type 2 such
that U ∩U ′ �= ∅. The maps A = Φ−1 : O → U and B = Ψ−1 : O′ → U ′

are given by

A(r, h, k) = [⊕R(u+h, v+k)] and B(r′, h′, k′) = [⊕R′(u′+h′, v′+k′)]

where R = ϕ(r) and R′ = ϕ(r′). We have to show that the composition
B−1 ◦A is sc-smooth. As already pointed out we only have to consider
the special case in which (0, h0, k0) is in the domain of the transition
map, so that

A(0, h0, k0) = ([u0], [v0]) = B(0, h′
0, k

′
0)

with (u0, v0) ∈ X̂(a, b) × X̂(b, c). Therefore,
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(3.28) u′ + h′
0 = t0 ∗ (u + h0) and v′ + k′

0 = t1 ∗ (v + k0)

for uniquely determined real numbers t0 and t1. Evaluating (3.28) at
the parameter value s = 0 we find

(u′+h′
0)(0) = (u+h0)(t0) ∈ Σu′ and (v′+k′

0)(0) = (v+k0)(t1) ∈ Σv′ .

Hence applying the implicit function theorem together with the Sobolev
embedding theorem as in Lemma 1.30 we find two sc-smooth maps
h �→ t0(h) and k �→ t1(k) defined for h, k close to 0 in E having the
following properties. At t0(h) and t1(k) the curves u + h and v + k
intersect Σu′ and Σv′ ,

(u + h)(t0(h)) ∈ Σu′ and (v + k)(t1(k)) ∈ Σv′ .

In addition, t0(h0) = t0 and t1(k0) = t1. For large R we define

(3.29) R′ = R′(r, h, k) = R + [t1(k) − t0(h)]

where R = ϕ(r). Notice that t0(h) ∗ ⊕R(u + h, v + k)(0) = (u +
h)(t0(h)) ∈ Σu′ and t0(h)∗⊕R(u+h, v+k)(R′(r, h, k)) = (v+k)(t1(k)) ∈
Σv′ . We also define r′(r, h, k) via R′(r, h, k) = ϕ(r′(r, h, k)) so that

r′(r, h, k) = ϕ−1(R′(r, h, k)) = ϕ−1(ϕ(r) + [t1(k) − t0(h)]).

Since the map (h, k) �→ t1(k) − t0(h) is sc-smooth, it follows from
Lemma 3.17 below, that

(r, h, k) �→ r′(r, h, k)

is sc-smooth. Taking (h, k) close to (h0, k0) in E ⊕ E we now consider
the system of equations for (h′, k′),

⊕R′(h′, k′) = t0(h)∗⊕R(u+h, v+k)−⊕R′(u′, v′) and �R′ (h′, k′) = 0

which has the solution[
h′(s)

k′(s − R′)

]
=

1

α′

[
τ ′ −(1 − τ ′)

(1 − τ ′) τ ′)

]
·

[
w
0

]
where we abbreviated w = t0(h) ∗ ⊕R(u + h, v + k) − ⊕R′(u′, v′) and
τ ′ = β(· − R′

2
) and α′ = (τ ′)2 + (1 − τ ′)2.

The solutions h′ = h′(r, h, k) and k′ = k′(r, h, k) belong to Fu′ and
Fv′ , respectively. Indeed, evaluating h′ at t = 0 we get h′(0) = (u +
h)(t0(h)) ∈ Σu′ and evaluating k′ at t = 0 we get k′(0) = k′(R′ −R′) =
t0(h) ∗ (v + k)(R′ −R) = (v + k)(t1(k)) ∈ Σv′ . From �R′(h′, k′) = 0 we
conclude (h′, k′) ∈ KS . Moreover, if (h, k) is close to (h0, k0) in E ⊕E,
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then (h′, k′) is close to (h′
0, k

′
0) ∈ E ⊕E. Summing up, if (h, k) belongs

to O and is close to (h0, k0), then (h′, g′) belongs to O′ and is close to
(h′

0, k
′
0). It remains to show that the transition map

(r, h, k) �→ (r′(r, h, k), h′, k′)

is sc-smooth. Since we already know that (r, h, k) �→ r′(r, h, k) is sc-
smooth, it suffices to show that (r, h, k) �→ h′(r, h, k) and (r, h, k) �→
k′(r, h, k) are sc-smooth. By symmetry we only have to consider the
first map. The solution h′ = h′(r, h, k) is given by the formula

(3.30) h′ =
τ ′

α′

[
t0(h) ∗ ⊕R(h, k) + t0(h) ∗ ⊕R(u, v) −⊕R′(u′, v′)

]
.

The map h′ is the sum of three summands and we start with the first
summand, namely

(r, h, k) �→
τ ′

α′
·
[
t0(h) ∗ ⊕R(h, k)].

The R-action is sc-smooth (Theorem 1.38) and h �→ t0(h) is sc-smooth
(Lemma 1.30), so it suffices to show that the map

(r, h, k) �→ (−t0(h)) ∗

[
τ ′

α′
·

(
t0(h) ∗ ⊕R(h, k)

)]
is sc-smooth. Recalling the function γ from (3.23), the right hand side
above can be written as

(3.31) γ(s− t0(h)− R′

2
) ·

[
β(s− R

2
) · h(s) + (1− β(s− R

2
)) · k(s−R)

]
.

Define the map Γ1 into E by

(3.32) Γ1(r, h) = β(· − R
2
) · h.

Because β has a support contained in (−∞, 1] we may apply Theorem
2.17 to conclude that Γ1 is an sc-smooth map. Applying Theorem 2.17
again, the map

(3.33) Γ̂1(r, g) = γ(· − R
2
) · g for g ∈ E

is also sc-smooth since γ has its support in (−∞, 1]. The function σ
defined by

σ(r, h, k) = ϕ−1(ϕ(r) + t1(k) + t0(h))

= ϕ−1(R + t1(k) + t0(h)) = ϕ−1(R′ + 2t0(h))
(3.34)

is sc-smooth by Lemma 3.17 so that the map

(r, h, k) �→ (σ(r, h, k), Γ1(r, h))
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is also sc-smooth. Consequently, the first part of the map in (3.31) is
sc-smooth since it can be written as a composition of two sc-smooth
maps, namely

(r, h, k) �→ Γ̂1(σ(r, h, k), Γ1(r, h)).

Next we turn to the second part of the map (3.31), namely to

(3.35) (r, h, k) �→ γ(· − t0(h) − R′

2
) · (1 − β(· − R

2
) · k(· − R).

Since γ has the support contained in (−∞, 1] and since t0(h) + 1
2
R′ =

1
2
[R + t1(k) + t0(h)] and since the maps h �→ t0(h) and k �→ t1(k) are

bounded, the support of the function s �→ γ(s−t0(h)− R′

2
) is contained

in (−∞, R
2

+ C + 1] for some constant C > 1. Because we also have

that β(s − R
2
− 2C) = 1 for all s ≤ R

2
+ 2C, the map in (3.35) can be

rewritten as

(3.36) s �→ γ(s− t0(h)− R′

2
) · β(s− R

2
− 2C) · (1−β(s− R

2
) · k(s−R).

Introduce the function g(s) := β(s − 2C) · (1 − β(s)). It has compact
support so that, in view of Theorem 2.17, the map

Γ2 : (r, k) �→ g(· − R
2
) · k(· − R)

is sc-smooth. Recalling the sc-maps (r, h, k) �→ σ(r, h, k) and (r, h) �→

Γ̂1(r, h) from (3.34) and (3.32) we see that

(r, h, k) �→ Γ̂1(σ(r, h, k), Γ2(r, k))

is sc-smooth as a composition of sc-smooth maps. But this map is pre-
cisely the one in (3.35). Consequently, the map in (3.31) is sc-smooth.
Finally, we consider the two other summands in (3.30), namely,

(3.37) (r, h, k) �→
τ ′

α′
· [t0(h) ∗ ⊕R(u, v) −⊕R′(u′, v′)

]
.

To see that this map is also sc-smooth we recall that u, v, u′, v′ are
in E∞ and are of the form u = φ + h0, v = ψ + k0, u′ = φ + h′

0

and v′ = ψ + k′
0 with the smooth path φ connecting a with b and the

smooth path ψ connecting b with c. Both φ and ψ are constant outside
of compact subsets of R.

The previous discussion shows that

(3.38) (r, h, k) �→
τ ′

α′
· [t0(h) ∗ ⊕R(h0, k0) −⊕R′(h′

0, k
′
0)

]
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for fixed h0, h
′
0, k0, and k′

0 is an sc- smooth map. Next we consider the
map

(3.39) (r, h, k) �→
τ ′

α′
· [t0(h) ∗ ⊕R(φ, ψ) −⊕R′(φ, ψ)

]
.

Lemma 3.16. The map (3.39) is sc-smooth.

Proof. The map is sc-smooth for r away from 0. So, we only
consider the case when r is close 0, i.e, when R is large. Recalling that
τR(s) = β(s − R

2
) and τ ′ = τR′ where R′ = R + [t1(k) − t0(h)], and

abbreviating t0 = t0(h) and t1 = t1(k), we compute

[t0∗ ⊕R (φ, ψ) −⊕R′(φ, ψ)](s)

= τR(s + t0) · φ(s + t0) + (1 − τR(s + t0)) · ψ(s + t0 − R)

− τR′(s)φ(s) − (1 − τR′(s)) · ψ(s − R′)

= τR(s + t0) · [φ(s + t0) − φ(s)]

+ (1 − τR(s + t0)) · [ψ(s + t0 − R) − ψ(s − R′)]

+ [τR(s + t0) − τR′(s)] · [φ(s) − ψ(s − R′)]

(3.40)

Since the maps h �→ t0(h) and k �→ t1(k) are bounded, the support of
the function s �→ τR(s+ t0(h))−τR′(s) = β(s+ t0(h)− R

2
)−β(s− 1

2
[R+

t1(k)−t0(h)]) is contained in the interval [−R
2
−C−1, R

2
+C+1] for some

positive constant C. If s belongs to this interval, then φ(s)−ψ(s−R′) =
0 because φ(s) = b for s ≥ 1 and ψ(s) = b for s ≤ −1. Thus the last
line of (3.40) is equal to 0 and the map under consideration is the sum
of two maps, namely

γR′(s) · [t0 ∗ ⊕R(φ, ψ)(s) −⊕R(φ, ψ)(s)]

= γR′(s) · τR(s + t0) · [φ(s + t0) − φ(s)]

+ γR′(s) · (1 − τR(s + t0)) · [ψ(s + t0 − R) − ψ(s − R)],

(3.41)

where we have set γR′(s) = γ(s − R′

2
) = τ ′(s)

α′(s)
. We consider the first

summand and shall represent it as a composition of sc-smooth maps.
Define δ : E → E by

δ(h)(s) = φ(s + t0(h)) − φ(s).

Then δ : E → E is sc-smooth. In view of Lemma 3.17, the function

(3.42) σ1(r, h) := ϕ−1(ϕ(r) − 2t0(h))
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where R = ϕ(r) is the gluing profile, is sc-smooth. Recalling the sc-map
map Γ1 defined in (3.32), the composition

Γ1(σ1(r, h), δ(h))(s) = β
(
s −

ϕ(σ1(r, h))

2

)
· δ(h)(s)

= β(s + t0(h) − R
2
) · [φ(s + t0(h)) − φ(s)]

(3.43)

is sc-smooth. With the function

σ2(r, h, k) = ϕ−1(ϕ(r) + t1(k) − t0(h))

= ϕ−1(R + t1(k) − t0(h)) = ϕ−1(R′)
(3.44)

which is sc-smooth by Lemma 3.17 and with the map Γ̂1 defined in
(3.33), the composition

Γ̂1(σ2(r, h, k), Γ1(σ1(r, h), δ(h)))(s)

= γ
(
s − ϕ(σ2(r, h, k))) · Γ1(σ1(r, h), δ(h))(s)

= γ(s − R′

2
) · Γ1(σ1(r, h), δ(h))(s)

= γR′(s) · τR(s + t0(h)) · [φ(s + t0(h)) − φ(s)].

(3.45)

is also sc-smooth. This composition is precisely the first summand in
(3.41).

To see that the second summand in (3.41) also defines an sc-smooth
map we define ξ : E ⊕ E → E by

ξ(h, k)(s) = ψ(s − t0(h)) − ψ(s − t0(h) − t1(k)).

The map ξ is sc-smooth. The support of γ is contained in the interval
(−∞, 1]. Since h �→ t0(h) and k �→ t1(k) are bounded, γR′(s) = γ(s −
R′

2
) = γ(s− 1

2
[R+ t1(k)−t0(h)]) has a support contained in the interval

(−∞, R
2

+ C + 1] for some constant C > 1. The function τR(s +

t0(h) − 3C) = β(s + t0(h) − R
2
− 3C) is equal to 1 for all s ≤ R

2
+ 3C.

Thus setting g(s) = (1 − β(s)) · β(s − 3C) so that g(s + t0(h) − R
2
) =

(1 − τR(s + t0(h)) · τR(s + t0(h)) we obtain

γR′(s) · (1 − τR(s + t0(h))) · [ψ(s + t0(h) − R) − ψ(s − R′)]

= γR′(s) · g(s + t0(h) − R
2
) · [ψ(s + t0(h) − R) − ψ(s − R′)].

Because the function g(s) = (1−β(s)) ·β(s−3C) has compact support,
the map

Γ3(r, k) = g(· − R
2
) · k(· − R)

is sc-smooth. With the sc-smooth function σ1 from (3.42),
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ξ(h, k)(s − ϕ(σ1(h, k))) = ψ(s + t0(h) − R) − ψ(s + t0(h) − t1(k))

= ψ(s + t0(h) − R) − ψ(s − R′),

recalling R′ = R + t1(k) − t0(h). So, the composition

Γ3(σ1(r, h, k),ξ(h, k))(s)

= g(s − 1
2
ϕ(σ1(r, h, k))) · ξ(h, k)(s − ϕ(σ1(r, h, k))

= g(s + t0(h) − R
2
) · [ψ(s + t0(h) − R) − ψ(s − R′)]

is sc-smooth. Recalling the map Γ̂1 from (3.33) and σ2 from (3.44), the
second summand in (3.41) is precisely the composition

Γ̂1(σ2(r, h, k), Γ3(σ1(r, h), ξ(h, k)))

and so it is sc-smooth. The proof of the lemma is complete. �

Since the map in (3.37) is the sum of the sc-smooth maps (3.38) and
(3.39), the map (3.37) is sc-smooth. We have proved that the transition
map between two charts of type 2 is sc-smooth. Up to Lemma 3.17
this completes the proof of Theorem 3.12. �

It remains to prove the following calculus lemma used in Theorem 3.12.

Lemma 3.17. Consider the gluing profile

ϕ(x) = e
1
x − e, x ∈ (0, 1].

Define the function B : [0, r′)× [−C, C] → R for some 0 < r′ < 1 small
by

B(x, c) =

{
ϕ−1[ϕ(x) + c] if x ∈ (0, r′)

0 if x = 0.

Then B is smooth and
DxB(0, c) = 1

DαB(0, c) = 0

for all multi-indices α = (α1, α2) with α1 ≥ 2 and α2 ≥ 0.

Proof. The function ϕ : (0, 1] → [0,∞) is a diffeomorphism. Its
inverse ϕ−1 : [0,∞) → (0, 1] is the function

ϕ−1(y) =
1

ln[e + y]
.
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With B as defined above,

B(x, c) =
1

ln[e1/x + c]
if x > 0.

To prove our claim we have to show that

(3.46)
B(x, c) → 0

DxB(x, c) → 1 and Dn,mB(x, c) → 0

as x → 0 uniformly in c, for all n ≥ 2. Writing

ln[e1/x + c] = ln
[
e1/x ·

(
1 + c · e−1/x

)]
=

1

x
+ ln

[
1 + c · e−1/x

]
,

we obtain

B(x, c) = x ·
1

1 + x ln
[
1 + c · e−1/x

] = x · f(x, c)

where

f(x, c) =
1

1 + x ln
[
1 + c · e−1/x

] .

Clearly, f(x, c) → 1 as x → 0, uniformly in c. Defining the function g
by

f(x, c) =
1

1 + g(x, c)
,

we see that it suffices to show that Dαg(x, c) → 0 for |α| ≥ 1 uniformly
in c as x → 0. Explicitly, g(x, c) = x ln[1 + ce−1/x]. In order to prove
the required properties of g, it suffices to show that the function h
defined by

h(x, c) = ce−1/x

satisfies Dαh(x, c) → 0, uniformly in c, as x → 0. This latter assertion,
however, is trivial.

In order to prove the second assertion for B, observe that a deriv-
ative of order n of e1/x is a product of e1/x with a polynomial in the
variable 1/x. From this we deduce the desired conclusion. The proof
of Lemma 3.17 is complete. �

3.3. The level-k curves as an M-Polyfold

To be revised later on
So far we have considered level-1 curves connecting two different points
and broken level-2 connecting three different points. We shall now
generalize our previous construction to arbitrary level-k curves. We do
this first in Rn since in case of a manifold M dealt with later on the
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gluing constructions are carried out in local coordinate charts in which
the same formulas are used.

Assume that we are given a countable collection P of distinct points
in Rn so that very compact subset of Rn contains only finitely many
of them. For every point a ∈ P we choose an increasing sequence
of weights δa

m, m ≥ 0, starting at m = 0 with δa
0 = 0. We denote by

X(a, b) for a, b ∈ P the collection of equivalence classes [u] of H2-curves
u : R → Rn connecting the point a at −∞ with the point b ∈ Rn at ∞.
The level m consists of the equivalence classes [u] which are represented
by elements u in H2+m

loc and which are of class (m+2, δa
m) near −∞ and

of class (m + 2, δb
m) near ∞. For a finite sequence â = (a0, a1, . . . , ak)

of mutually distinct points aj ∈ P we introduce the space

X(â) = X(a0, a1) × X(a1, a2) × · · · × X(ak−1, ak)

consisting of level-k curves connecting a0 with ak.

u

u2

u3

u4

a0

a1 a2

a3

a4

Figure 3.7. Level-4 curve

Let P̂ be the collection of all such finite sequences of lenght k ≥ 1.
Take the disjoint union over k ≥ 1,

X =
∐
ba∈ bP

X(â).

For our general gluing procedure it is helpful to first reconsider the
procedure for level-2 curves again.

We choose representatives u : L → Rn and v : N → Rm of curves
connecting a with b and b with c, where L = R and N = R. For each
line we have chosen two half lines, a negative one and a positive one.
So far our choice was always (−∞, 0] and [0,∞). But we can make
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u

v

a

b

c

Figure 3.8

([u], [v]) ∈ X(a, b) × X(b, c)

different choices and define the negative resp. positive regions of L and
N by pairs of real numbers s0 ≤ t0 and s1 ≤ t1 as follows.

• − region on L: (−∞, s0]

• + region on L: [t0,∞)

• − region on N : (−∞, s1]

• + region on N : [t1,∞).

In order to reduce the gluing later to the old gluing corresponding to
the choice s0 = t0 = 0 and s1 = t1 = 0 we introduce the coordinates

(3.47)
ϕ : [0,∞) → [t0,∞), s �→ s + t0

ψ : (−∞, 0] → (−∞, s1], s′ �→ s′ + s1

for the + region of L and the −region of N . If R is the gluing parameter
we define the gluing line

L ⊕R N =
(
(−∞, t0 + R]

∐
[s1 − R,∞)

)
/ϕ(s)∼ψ(s′).

with the equivalence relation ϕ(s) ∼ ψ(s′) if s ∈ [0, R] and −R+s = s′.
See Figure 3.9.

Hence t0 + s ∼ s1 + s′ if and only if s ∈ [0, R] and −R + s = s′.
The manifold L⊕R N is diffeomorphic to R and we choose the special
global coordinates

R → L ⊕R N, s �→ [s]

induced by

s �→

{
s ∈ (−∞, t0 + R] s ≤ t0 + R

s1 − R + s − t0 ∈ [s1 − R,∞) s ≥ t0.
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u

v t1

t0 + R

s1s1 + s′s1 − R

t0 + st0

s0

Figure 3.9

Define the glued curve connecting a with c by

(u⊕R v)([s]) = β(s−t0−
R
2
) ·u(s)+(1−β(s−t0−

R
2
)) ·v(s1−R+s−t0)

for all s ∈ R, where the cut-off function β is defined in (2.6). Identifying
L ⊕R N with R is such a way that L ⊂ R is the inclusion, the glued
curve is, in the global coordinates, given by the formula,

(u ⊕R v)(s) = β(s − t0 −
R
2
) · u(s)

+ (1 − β(s − t0 −
R
2
)) · v(s1 − R + s − t0)

(3.48)

for all s ∈ R. The negative and positive regions of the glued curve
u ⊕R v become

• − region of u ⊕R v: (−∞, s0]

• + region u ⊕R v: [t0 + R + t1 − s1,∞)

From the properties of the cuf-off function β read off,

(u ⊕R v)(s) =

{
u(s) s ≥ t0 + R

2 1

v(s1 − R + s − t0) s ≥ t0 + R
2

+ 1.

Denote our old gluing defined in (3.1) by ⊕0
R. It is based on the

negative regions (−∞, 0] and the positive regions [0,∞). Introducing
the elements in E+ and E−

u ◦ ϕ : [0,∞) → Rn

v ◦ ψ : (−∞, 0] → Rn

we observe that

(3.49) (u ⊕R v)(ϕ(s)) = ⊕0
R(u ◦ ϕ, v ◦ ψ)(s)
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a

b

c

a

b

c

u
v

u v

t0

t0

t0 −
R
2

t0 + R
s1 − R

s1 −
R
2

s1

s1

t0 −
R
2

s1 −
R
2

⊕R(u, v)

Figure 3.10

as the following argument shows,

⊕0
R(u ◦ ϕ, v ◦ ψ)(s)

= β(s − R
2
) · u ◦ ϕ(s) + (1 − β(s − R

2
)) · v ◦ ψ(s − R)

= β(s − R
2
) · u(s + t0) + (1 − β(s − R

2
)) · v(s + s1 − R)

= (u ⊕R v)(ϕ(s)).

Next we consider a level-3 curve.
The negative and postive regions of u, v and w are characterized

by the pairs s0 ≤ t0, s1 ≤ t1 and s2 ≤ t2. Recall that the negative
and positive regions of the glued curve u ⊕R v connecting a with c is
characterized by the pair s0 ≤ τ , where

(3.50) τ = t0 + R + t1 − s1.

Lemma 3.18. For gluing parameters R, R′ ≥ 2

(u ⊕R v) ⊕R′ w = u ⊕R (v ⊕R′ w).
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u

v

w

a

b
c

d

Figure 3.11

Proof. We first verify the associativity of the gluing by a compu-
tation and give afterwards argument which such computations super-
fluous. Recall that the cut-off function β satisfies β(s) = 0 for s ≥ 1
and β(s) = 1 for s ≤ −1. Therefore, if R and R′ ≥ 2,

β(s − τ − R′

2
) · β(s − t0 −

R
2
) = β(s − t0 −

R
2
)

and hence

(1 − β(s − t0 −
R
2
)) · (1 − β(s − τ − R′

2
)) = 1 − β(s − τ − R′

2
),

where τ = t0 + R + t1 − s1. Using this we compute applying the gluing
formula (3.48) twice, (

(u ⊕R v) ⊕R′ w
)
(s)

= β(s − τ − R′

2
)(u ⊕R v)(s) + (1 − β(s − τ − R′

2
)) · w(s + s2 − τ − R′)

= β(s − τ − R′

2
) · β(s − t0 −

R
2
) · u(s)

+ β(s − τ − R′

2
)) · (1 − β(s − t0 −

R
2
)) · v(s + s1 − t0 − R)

+ (1 − β(s − τ − R′

2
)) · w(s + s2 − τ − R′)

= β(s − t0 −
R
2
) · u(s) + (1 − β(s − t0 −

R
2
)) ·

[
β(s − τ − R′

2
) · v(s + s1 − t0 − R)

+(1 − β(s − τ − R′

2
)) · w(s + s2 − τ − R′)

]
= β(s − t0 −

R
2
)u(s) + (1 − β(s − t0 −

R
2
)) · (v ⊕R w)(s + s1 − t0 − R)

=
(
u ⊕R (v ⊕R′ w)

)
(s).

�

Actually, the associativity of the gluing follows without any com-
putations immediately from the following schematics procedure
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v

w
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s0

R

s1

t1 t1 + R′

s2 t2

R R′
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v

w

a
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c

d

Figure 3.12

Using our earlier notation and replacing the gluing parameter R by
r related by the gluing profile

R = e
1
r − e

we shall in the following often write u ⊕r v instead of u ⊕R v and
introduce the notation

⊕(r1,r2)(u, v, w) = (u ⊕r1 v) ⊕r2 w = u ⊕r2 (v ⊕r2 w).

Consequently, for a level-k curve

([u1], . . . , [uk]) ∈ X(a0, a1) × · · · × X(ak−1, ak)
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we define the successively by
(3.51)
⊕(r1,...,rk)(u1, . . . , uk) =

(
. . .

(
((u1 ⊕r1 u)2) ⊕r2 u3) ⊕r3 u4) . . .) ⊕rk

uk.

u1

u2

u3

u4

a1

a2a3

a4

Figure 3.13

In view of the above scheme the gluing is obviously associative and
the following general formula holds

⊕(r1,...,rk)(u1, . . . , uk)

=
[
⊕(r1,...,ri−1)(u1, . . . , ui)

]
⊕ri

[
⊕(ri+1,...,rk−1)(ui, . . . , uk)

]
.

In order to define the gluing of vector fields along curves we take
u ∈ X̂(a, b) and v ∈ X̂(b, c) whose ± regions are characterized by the
pairs s0 ≤ t0 and s1 ≤ t1. Take a vector field h along u and a vector
field k along v,

h(s) ∈ Tu(s)R
n − Rn

k(s′) ∈ Tv(s)R
n = Rn

for all s ∈ R and s′ ∈ R. In order to define the gluing and anti-gluing
near the corner b we take the coordinates ϕ and ψ in (3.47), so that
u ◦ ϕ : R+ → Rn and v ◦ ψ : R− → Rn, and consider the vector fields

h+(s) = h ◦ ϕ(s) ∈ Tu◦ϕ(s) = Rn

k−(s′) = k ◦ ψ(s′) ∈ Tv◦ψ(s′) = Rn

.

Denoting by ⊕0
R(h+, k−) the old gluing formula from Section 3.3 we

define the gluing of vector fields h and k by

(h ⊕R k)(ϕ(s)) := ⊕0
R(h ◦ ϕ, k ◦ ψ)(s)
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which leads to the formula

(h ⊕R k)(ϕ(s)) := β(s − t0 −
R
2
) · h(s)

+ (1 − β(s − t0 −
R
2
) · k(s1 − R + s − t0)

(3.52)

for all s ∈ R. The gluing intervals are chosen as in Figure 3.14

h

k

t0 t0 + R

s1 − R s1

Figure 3.14

From the properties of the cut-off function β one reads off,

(h ⊕R k)(ϕ(s)) :=

{
h(s) s ≤ t0 + R

2
− 1

k(s1 − R + s − t0) s ≥ t0 + R
2

+ 1.

After the gluing, the information about h(s) for s ≥ t0 + R
2
− 1 and

k(s′) for s′ ≤ s1 −
R
2
− 1 has disappeared. It will be recovered by the

anti-gluing formula for vector fields h and k, defined by

�R(h, k)(ϕ(s)) = ⊕0
R(h ◦ ϕ, k ◦ ψ)(s)

for all s ∈ R, which leads to the formula

�R(h, k)(s) = −(1 − β(s − t0 −
R
2
) · h(s)

+ β(s − t0 −
R
2
) · k(s1 + R + s − t0)

(3.53)

for all s ∈ R. This time we have glued as in Figure 3.15.
From (3.53) we read off

(h �R k)(ϕ(s)) :=

{
k(s1 − R + s − t0) s ≤ t0 + R

2
− 1

−h(s) s ≥ t0 + R
2

+ 1.

Hence the anti-gluing contains the informations about the vector
fields outside of the gluing intervals towards the corner b. In coordinates
in which b = 0, the situation is illustrated by Figure 3.16.
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−h

k

t0 t0 + R

s1 − R s1

Figure 3.15

u
v

b = 0

−h
k

t0

t0 + R
2

s1 −
R
2

s1

Figure 3.16

Denoting by exp the exponential map associated with the Euclidean
matric on Rn we can define curves near u and b by

expu(h)(s) = expu(s)(h(s)) = u(s) + h(s)

expv(k)(s′) = expv(s′)(k(s′)) = v(s′) + k(s′)

for all s ∈ R and s′ ∈ R. From the gluing formul (3.48) fro curves and
(3.53) for vector fields we read off the following results.

Lemma 3.19. If h and k are sections along the curves u ∈ X̂(a, b)

and v ∈ X̂(b, c), then

expu(h) ⊕R expv(k) = expu⊕Rv(h ⊕R k).

The effect of the anti-gluing is illustrated by the next statement.



3.3. THE LEVEL-k CURVES AS AN M -POLYFOLD 117

Proposition 3.20. Let (u, v) ∈ X̂(a, b) × X̂(b, c). If w ∈ X̂(a, c)
is sufficiently close to u ⊕R v, then there exist unique vector fields h
along u and k along v, so that

exp⊕r(u,v)(⊕r(h, k))(s) = w(s)

⊕r(h, k)(s) = 0

The two vector fields h and k are solutions of the two equations,

⊕R(u, v)(s) + ⊕R(h, k)(s) = w(s)

�R(h, k)(s) = 0

Consequently, by the gluing formulas (3.48), (3.52), and (3.53), abbre-
viating τ(s) = β(s − t0 −

R
2
) and α = τ 2 + (1 − τ)2,[

τ 1 − τ
τ − 1 τ

]
·

[
h(s)

k(s1 − R + s − t0)

]
=

[
w(s) −⊕R(u, v)(s)

0

]
The matrix is invertible. Hence[

h(s)
k(s1 − R + s − t0)

]
= R

α
·

[
τ τ − 1

1 − τ τ

]
·

[
w(s) −⊕R(u, v)(s)

0

]
,

so that the required solution is equal to

h(s) = τ
α
· [w(s) −⊕R(u, v)(s)]

k(s1 − R + s − t0) = 1−τ
α

· [w(s) −⊕R(u, v)(s)].

Proof. We observe that the vector fields h along u and v along v
satisfy, in particular,

h(s) =

{
w(s) −⊕R(u, v)(s) s ≤ t0 + R

2
− 1

0 s ≥ t0 + R
2

+ 1

k(s′) =

{
0 s′ ≤ −R

2
− 1

w(s′) −⊕R(u, v)(s′) s′ ≥ −R
2

+ 1

Using the gluing construction one defines as in Section 3.1 a second
countable topology on the set X which induces the original topology
on its corresponding parts.

In order to define a polyfold structure on the space X we look at a
smooth representative

(u1, . . . , uk) ∈ X̂(a0, a1) × · · · × X̂(ak−1, ak)

of a level-k curve connecting a0 with ak. For every curve uj ∈ X̂(aj−1, aj)
we fix a distinguished negative region (−∞, sj] and the positive region
[tj,∞) so that uj(sj) is close to aj−1 and uj(tj) is close to aj . Since
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aj−1 �= aj we find τj ∈ (sj , tj) such that the tangent vector u̇j(τj) does
not vanish. Following the Recipe 1.37 we now find an sc-Banach space
Fuj

of vector fields along the smooth curve uj and an open neighbor-
hood Ouj

⊂ Fuj
of the origin, such that the map

Auj
:Ouj

→ X(aj−1, aj)

h �→ [expuj
(h)]

defines a homeomorphism onto some open neighborhood Uj of [uj] in
the quotient space X(aj−1, aj). Next we shall define the sc-smooth
splicing projection πr on the sc-smooth Banach space

(3.54) E = Fu1 ⊕ Fu2 ⊕ · · · ⊕ Fuk

for the gluing parameter r = (r1, . . . , rk−1) ∈ [0, 1)k−1. For simplicity
we look at a level-3 curve again.

�

u

v

w

a

b c

d

Figure 3.17

Associated with u, v and w we have the positive regions defined by
the pairs s0 ≤ t0, s1 ≤ t1 and s2 ≤ t2. We first focus in a neighborhood
of the point b. If h is vector field along h and k a vector field along v
we consider, in coordinates ϕ and ψ from (3.47), the vector fields

h ◦ ϕ : [0,∞) → Rn

k ◦ ψ : (−∞, 0] → Rn.

In the notation of Section 2.2 we have h ◦ ϕ ∈ E+ and k ◦ ψ ∈ E−.
We denote the old splicing from (2.8) by

π0
r(h ◦ ϕ, k ◦ ψ) = (ĥ ◦ ϕ, k̂ ◦ ψ).
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Then the splicing for the two vector fields h and k along the curves

u and v are the two vector fields ĥ and k̂ along u and v defined by

(3.55) πr(h, k) = (ĥ, k̂)

where (ĥ, k̂) is given by

(ĥ ◦ ϕ, k̂ ◦ ψ) = π0
r(h ◦ ϕ, k ◦ ψ).

Therefore, explicitly, with β denoting the cut-off function and α =
β2 + (1 − β)2,

ĥ(s) =
β(s − t0 −

R
2
)

α(s − t0 −
R
2
)
·
[
β(s − t0 −

R
2
) · h(s)

+ (1 − β(s − t0 −
R
2
)) · k(s − R + s1 − t2)

]
k̂(′s) =

β(−s′ + s − R
2
)

α(−s′ + s − R
2
)
·
[
(1 − β(−s′ + s − R

2
)) · h(s′ + s1 −

R
2
)

+ β(−s′ + s − R
2
· k(s′)

]
for all s, s′ ∈ R.

In view of the properties of the cuf-off function β we obtain, in
particular,

ĥ(s) =

{
h(s) s ≤ t0 + R

2
− 1

0 s ≥ t0 + R
2

+ 1

k̂(s′) =

{
0 s′ ≤ s0 −

R
2
− 1

k(s′) s′ ≥ s1 −
R
2

+ 1

We see that outside of the gluing intervals the vector fields vanish
towards the corner b but remain unchanged towards the other side.

This defines ĥ completely. For k, however, there is second condition
comming from the other end of the curve v, namely, form the point c.
Denoting by p a vector field along the curve w, we apply the definition
(3.55) to the vector fields k and p along the curves v and w and obtain

(3.56) πr′(k, p) = (k̂, p̂),

where

k̂(s′) =
β(s′ − t1 −

R′

2
)

α(s′ − t1 −
R′

2
)
·
[
β(s′ − t1 −

R′

2
) · k(s′)

+ (1 − βs′ − t1 −
R′

2
) · p(s′ − R′ + s2 − t1)

]
.
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In particular,

k̂(s′) =

{
k(s′) s′ ≤ t1 + R′

2
− 1

0 s′ ≥ t1 + R′

2
+ 1.

Summarizing, the vector field k̂ along the curve v connecting two points
where gluing takes place is determined by the two conditions πr(h, k) =

(ĥ, k̂) and πr′(k, p) = (k̂, p̂), and satisfies, in particular,

k̂(s′) =

⎧⎪⎨⎪⎩
0 s′ ≤ s1 −

R
2
− 1

k(s) s1 −
R
2

+ 1 ≤ s′ ≤ t1 + R′

2
− 1

0 t1 + R′

2
+ 1 ≤ s′.

The situation is illustrated by Figure 3.18.

a

b

c

d

t0

t0 + R
s1

s1 − R
t1 t1 + R′

s2 − R′

s2

Figure 3.18

Iterating this construction we obtain the sc-smooth projection map
πr : E → E satisfying πr ◦ πr = πr. One finds r0 ∈ (0, 1) such that for
r = (r1, . . . , rk−1) ∈ [0, 1)k−1 the map

[0,∞)−k−1 ⊕ U1 ⊕ U1 ⊕ · · · ⊕ Uk → X

(r, h1, · · · , hk) �→ [⊕r(u1 + h1, . . . , uk + hk)]

if restricted to the splicing core, i.e., to the open set

O := ([o, r0)
k−1 ⊕ U1 ⊕ · · · ⊕ Uk) ∩ KS ,

is a homeomorphism onto the open neighborhood U of ([u1], . . . , [uk]) in
X. The inverse of the map defines a polyfold chart for X. The transi-
tion maps between these charts are sc-smooth and we have constructed
a polyfold structure for X.
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3.3.0.1. The Manifold Version. Assume that we are given a mani-
fold M together with a countable collection of distinct points, say P ,
so that every compact subset of M only contains finitely many. For
every a ∈ P fix a sequence if weights δa

m starting at 0 and which is
increasing. We denote by X(a, b) the collection of equivalence classes
of H2-curves R → M , connecting at −∞ the point a with the point
b at +∞. We define the level m to consist of equivalence class [u]
represented by elements u which are in H2+m

loc and which are near −∞
of class (m + 2, δa

m) and of class (m + 2, δb
m) near +∞. For a finite

sequence â of mutually different points â = (a0, a1, .., ak) in P consider

X(â) = X(a0, a1) × .. × X(ak1 , ak).

We call k the length. Let P̂ the collection of all such sequence of finite
length k ≥ 1. Define

X =
∐
a∈ bP

X(â).

If we consider a smooth level-k-map represented by (u1, ..., uk) we fix
for every ui a distinguished negative interval (−∞, ti] (if i > 0) and
a distinguished positive interval [s,∞) (if i < k)). Let us denote the
sequence of asymptotic limits by a0, ..., ak so that [ui] ∈ X(ai−1, ai).
Fix a chart ϕi for i = 1, .., k − 1 around ai so that ϕi(ai) = 0. We
assume that the closures of their domains are disjoint and that their
images contain the closed 2-balls around 0 ∈ Rn. We may assume
that the image of (−∞, si] under ϕi−1 ◦ ui−1 is contained in the 1

2
-ball

and that the same holds for [ti,∞) under the map ϕi ◦ ui. Since the
image of the ui connects two different points we can find a number
τi ∈ (si, ti) where u̇i(τi) �= 0. Here we put s0 = −∞ and tk = +∞.
We can pick charts around the ti mapping τi to 0 and having disjoint
domains from the other charts so that the image again contains the
closed 2-ball around 0. Pull-back the standard Riemannian metric on
the 2-ball. Then we obtain a partially defined flat metric on M which
we can extend smoothly. Following Recipe 1.37 we can define charts
around the individual ui of the form

hi → [expui
(hi)],

where hi(τi) ∈ Hi ⊂ Tui(τi)M is the constrained transversal to the
derivative of ui at that point. Here hi lies in some Oui

. We assume
that all the properties hold as stated in Recipe 1.37.

Let us restrict for simplicity of notation to the case of a level-2-
curve. The following procedure can be carried at every ai with 0 < i <
k. Let u = ui, v = ui+1 and ψ = φi. The (nonlinear) gluing is defined
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as follows:

ψ(⊕R(u′, v′)) = ⊕0
R(ψ ◦ u′, ψ ◦ v′)

for u′ close to u and v′ close to v. Here ⊕0
R denotes the Rn-gluing, i.e.

the model gluing. Since the exponential map comes from a metric flat
near a = ai the following holds. Take H2 sections h and k along u and
v which are sufficiently small so that the following formula make sense.
Denoting by dψ the map pr2 ◦ Tψ, i.e. the principal part we see

ψ(⊕R(expu(h), expv(k))

= ⊕R(ψ(expu(h)), ψ(expv(k)))

= ⊕0
R(ψ(u), ψ(v)) + ⊕0

R(dψ(h), dψ(v)k)

= ψ(⊕R(u, v)) + ⊕0
R(dψ(u)h, dψ(v)k)

= exp0
ψ(⊕R(u,v))(⊕

0
R(dψ(u)h, dψ(v)k))

= ψ(exp⊕R(u,v)(Tψ(⊕R(u, v)))−1(⊕0
R(dψ(u)h, dψ(v)k))).

Let us define linear gluing as follows

⊕R(h, k) = Tψ(⊕R(u, v)))−1(⊕0
R(dψ(u)h, dψ(v)k)).

Then ⊕R(h, k) is a section along ⊕R(u, v). Using these definitions we
have the following nice formula

Lemma 3.21. For h and k being sufficiently small sections along u
and v we have

⊕r(expu(h), expv(k)) = exp⊕r(u,v)(⊕r(h, k)).(3.57)

Let us define next the anti-gluing �R(h, k). This will be a map

R → TaM

defined by

�R(h, k) := Tψ(a)−1(�0
R(dψ(u)h, dψ(v)k)).

Lemma 3.22. Assume that u and v are as described above. Con-
sider ⊕r(u, v) and assume that w is sufficiently close. Then there exists
a unique pair of sections (h, k) of u∗TM and v∗TM so that

⊕r(h, k) = 0 and exp⊕r(u,v)(⊕r(h, k)) = 0.

Proof. This is a system of two equations. Using the definitions it
is equivalent to

�0
R(dψ(u)h, dψ(u)k) = 0

⊕0
R(dψ(u)h, dψ(u)k) = ψ(w) − Ψ(⊕r(u, v))
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By the properties of the Rn-gluing and anti-gluing we see that dψ(u)h
and dψ(v)k are uniquely determined. Hence the same is true for (h, k).

�

Next we have a look at the construction of charts. We have a
suitable neighborhood Ou around zero in Fu and similarly Ov around
0 ∈ Fv. The data is assumed to have the properties described by Recipe
1.37. Then define for a sufficiently small r0 > 0

A : [0, r0) ⊕ Ou ⊕ Ov → X

by

A(r, h, k) = [⊕r(expu(h), expv(k))].

Observe that if A(r, h, k) = A(r′, h′, k′) then there exists t with

⊕r′(expu(h
′), expv(k

′)) = t ∗ ⊕r(expu(h), expv(k)).

By the properties of the charts for X(a, b) and X(b, c) given by the
Recipe, we see that t = 0 and R = R′ as before. If we know in addition
that �r(h, k) = �r(h

′, k′) it follows that the two pairs are equal. Let
us define the associated splicing projection πr via the already studied
model splicing which we denote by π0

r . The obvious definition is given
by

πr(h, k) = (ĥ, k̂),

with (h, k), (ĥ, k̂) ∈ Fu ⊕ Fv, where (ĥ, k̂) are defined by

(dψ(h)ĥ, dψ(v)k̂) = πr(dψ(u)h, dψ(v)k).

From this we deduce that

ĥ(s) =
τ(s)2

α(s)
h(s) +

τ(s)(1 − τ(s))

α(s)
dψ(u(s)−1dψ(v(s − R))k(s − R).

There is a similar formula for k̂. It follows immediately from the defi-
nition that πr is sc-smooth. In fact, the map

Fu ⊕ Fv → E : (h, k) → (dψ(u)h, dψ(v)k)

is a linear sc-isomorphism and therefore sc-smooth. Then π0
r is a sc-

smooth splicing projection on E. Then this is followed by the inverse
of the linear sc-operator. Hence (πr, Fu ⊕ Fv, [0, r0)) is a sc-smooth
splicing. Then the restriction to the splicing core gives a chart and all
these charts are smoothly compatible. Hence we have proved:
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Theorem 3.23. The space of level-k-curves X in the manifold M
has for given sequence δa = (δa

m) for every a ∈ P a natural M-polyfold
structure where the charts have the form

(r1, .., rk−1, h1, .., hk) → [exp⊕(r1,..,rk−1)(u1,..,uk)(⊕(r1,..,rk−1)(h1, ..., hk))].



CHAPTER 4

M-Polyfold Bundles

4.1. Local Strong sc-Bundles

Prompted by constructions of pull back bundles later on we continue
with the conceptual framework and consider two Banach spaces E and
F equipped with the sc-smooth structures defined by the filtrations
Em, resp. Fm for m ≥ 0. Their �-product

E � F

is the Banach space E ⊕ F equipped with the double filtration

(E � F )m,k = Em ⊕ Fk

where m ≥ 0 and 0 ≤ k ≤ m + 1.
Similarly, if U ⊂ E is an open subset, then U � F is the open set

U ⊕ F equipped with the double filtration

(U � F )m,k = Um ⊕ Fk

for all m ≥ 0 and 0 ≤ k ≤ m + 1. Here Um = U ∩ Em, as introduced
in Section 1.1. With the canonical projection map

U � F → U

we obtain a bundle, called a local strong sc-bundle . The �−tangent
bundle of the product U � F is defined as

T
(U � F ) = (TU) � (TF ).

Recalling the tangent bundle from Section 1.1, the �-tangent bundle is
equipped with the double filtration,

T
(U � F )m,k = (TU)m ⊕ (TF )k

= (Um+1 ⊕ Em) ⊕ (Fk+1 ⊕ Fk).

for all m ≥ 0 and 0 ≤ k ≤ m + 1.
Recall the notation F0 = F . Associated with the product U �F one

has the derived sc-spaces

Un ⊕ F and Un ⊕ F 1

125
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for every n ≥ 0. They are equipped with the standard (simple) filtra-
tions

(Un ⊕ F )m = Un+m ⊕ Fm, m ≥ 0

(Un ⊕ F 1)m = Un+m ⊕ Fm+1, m ≥ 0.

Definition 4.1. If U �F → U and V �G → V are two local strong
sc-bundles, then a sc0

�−map is a map

f : U � F → V � G

of the form

f(u, h) = (a(u), b(u, h))

which induces C0-maps

Um ⊕ Fk → Vm ⊕ Fk

for all m ≥ 0 and 0 ≤ k ≤ m + 1.

Recalling Definition 1.3 of a sc0-map we note that the map f of
class sc0


 induces sc0-maps between the derived sc-spaces

Un ⊕ F i → V n ⊕ Gi

for every n ≥ 0 and i = 0, 1. Recalling Definition 1.6 of an sc1-map we
introduce the next smoothness concept.

Definition 4.2. The sc0

-map f : U � F → V � G is called of

class sc1

� if it induces sc1-maps between the derived spaces

Un ⊕ F i → V n ⊕ Gi

for every n ≥ 0 and i = 0, 1.

The tangent map associated with the sc1

-map f is the sc0


-map

T
f : T
(U � F ) → T
(V � G)

defined by

(T
f)(u, h, v, k) = (a(u), Da(u)h, b(u, v), Db(u, v)[h, k])

where (u, h, v, k) ∈ Um+1 ⊕ Em ⊕ Fk+1 ⊕ Fk with 0 ≤ k ≤ m + 1.
From the chain rule for sc1-maps (Theorem 1.13) one easily deduces
the following chain rule for sc1


-maps.

Theorem 4.3. Assume the maps f : U � F → R � G and g :
V � G → W � H are of class sc1


, where U ⊂ E and V ⊂ R are
open subsets equipped with the induced sc-structures. Assume also that
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g(U �F ) ⊂ (V �G). Then the composition g ◦ f is also of class sc1

 and

the tangent maps satisfy

T
(g ◦ f) = (T
g) ◦ (T
f).

Moreover, T
(g ◦ f) is sc0

.

An sck
�−vector bundle map is an sck


-map Φ : U � E → V � F of
the form

Φ(x, h) = (a(x), b(x, h))

which is linear in h. The map Φ is called an sc
-vector bundle isomor-
phism, if it is sc
-smooth and if the same also holds for the inverse
map.

We distinguish between two different classes of sc-smooth sections
of the local strong sc-bundle U � F → U .

Definition 4.4. An sc−smooth section f is a map of the form

u → (u, f(u)) ∈ U ⊕ F

so that the principal part f : U → F is sc-smooth. An sc-section
f is called an sc+

− smooth section if its principal part induces an
sc-smooth map f : U → F 1.

The tangent map Tf of a sc+-section f is a sc+-section of the �-
tangent bundle TU � TF → TU . Let us denote the space of sc-smooth
sections by Γ(U � F ) and that of sc+-sections by Γ+(U � F ). Assume
that Φ : U �F → V �G is an sc
-vector bundle isomorphism. Then the
pull back maps induce linear isomorphisms

Γ(V � G) → Γ(U � G)

and

Γ+(V � G) → Γ+(U � G).

The same, of course, holds true for the push-forward.

4.2. Strong sc-Vector Bundles

We use the discussion in Section 4.1 to define a useful class of sc-
bundles over an sc-manifold. We consider two sc-manifolds X and Y
sc-manifolds together with a surjective sc-smooth map

p : Y → X.
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We assume that every fiber p−1(x) ⊂ Y has the structure of a Banach
space. To define an additional structure we now assume that we can
cover Y with sc
-charts. An sc� − chart is a tuple

(p−1(O), Φ, U � F )

where O ⊂ X is an open subset and

Φ : p−1(O) → U ⊕ F

is a homeomorphism which is fiber-wise linear and covers an sc-smooth
chart

ϕ : O → U

so that pr1 ◦Φ = ϕ◦p. In addition, we assume that all transition maps
between our sc
-charts

Ψ ◦ Φ−1 : ϕ(O ∩ O′) � F → ψ(O ∩ O′) � G

are sc
-smooth vector bundle isomorphisms. Recall that this requires
the following. The transition map Γ = Ψ◦Φ−1 necessarily has the form

Γ(u, h) = (ψ ◦ ϕ−1(u), b(u, h))

and is linear in h. In addition,

Γ : ϕ(O ∩ O′)n ⊕ F i → ψ(O ∩ O′)n ⊕ Gi

is sc-smooth for all the derived spaces with n ≥ 0 and i = 0, 1. Sum-
marizing, we have constructed a strong sc-vector bundle structure for
p : Y → X according to the following definition.

Definition 4.5. A strong sc-vector bundle structure for a
surjective sc-smooth map p : Y → X between sc-manifolds consists of
the following data. Every fiber has the structure of a Banach space.
There is a maximal atlas of smoothly sc
-compatible sc
 charts.

We point out that the postulated compatible sc
-charts define a
double filtration Ym,k on Y where m ≥ 0 and 0 ≤ k ≤ m + 1. The
map p : Y → X maps Ym,k onto Xm. An element x ∈ X contained in
Xm is called of regularity m. The points y ∈ p−1(x) ⊂ Ym,k have fiber
regularity k, where k is restricted to 0 ≤ k ≤ m + 1.

We remark that the tangent bundle p : TX → X1 is in general not!
a strong sc-vector bundle for its natural structure (at least not in a
natural way).

Clearly p is sc-smooth and surjective and the fibers have a Banach
space structure. The transition maps for sc-charts Tϕ and Tψ have
the form

T (ψ ◦ φ−1) : φ(O ∩ O′)1 ⊕ E → ψ(O ∩ O′)1 ⊕ F.
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Let us write this for convenience shortly as

Γ : W 1 ⊕ E → V 1 ⊕ F.

It is straightforward to verify that the sc-smoothness implies that the
induced maps

Γ : W 1+n ⊕ E → V 1+n ⊕ F

are sc-smooth. In general the maps do not induce sc-smooth maps

Γ : W 1+n ⊕ E1 → V 1+n ⊕ F 1.

In fact this will, in general, not even be the case for n = 0. However, if
we restrict the tangent bundle TX to X2, then TX|X2 → X2 admits
a natural sc
-structure.

4.3. Example of a Strong Bundle over X(a, b)

Let X(a, b) be the sc-manifold consisting of the equivalence classes
of maps R → M connecting the points a and b as introduced in Section
1.5. We will construct a strong sc-vector bundle Y (a, b) over X(a, b).
Choose [u] ∈ X(a, b). Then take a representative u and consider the
pull back bundle u∗TM → R. If u is on level m, that is of class
Hm+2,δm, it makes sense to talk about Hm+2

loc -sections along u. By
using trivialisations near a and b coming from charts we can define
for every ε ≥ 0 sections which in local coordinates near the ends have
weak derivatives up to order m which if weighted by eε|s| belong to
L2. If 0 ≤ k ≤ m + 1, the space Hk+1,δk(u∗TM) is well-defined. Now
consider pairs (u, h) of level (m, k) which by definition consist of a path

u ∈ X̂(a, b) of class m and h ∈ Hk+1,δk(u∗TM). Two such pairs are
equivalent if they lie in the same orbit of the obvious R-action. Let
us denote the whole collection by Y (a, b). Clearly we have a canonical
map

Y (a, b) → X(a, b).

Also observe that at this point we have the double filtration Y (a, b)m,k →
X(a, b)m with 0 ≤ k ≤ m + 1. Let us define next strong sc-vector bun-
dle charts. They will be constructed out of our charts in the way as
we are familiar from the usual constructions of manifold of maps, see
[12]. We give the inverses of the charts

(h, �) → [(expu(h),∇2 expu(h)�)].

Here h belongs to the usual neighborhoods of 0 ∈ Fu and � ∈ H1. The
transition maps are clearly sc-smooth.
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4.4. Strong M-Polyfold Bundles

4.4.1. Spliced Fibered Scales. Next we introduce a spliced ver-
sion of our fibered scales. We take an open subset V of a partial
cone and two sc-smooth Banach spaces E and H , and consider two
sc-smooth splicings S0 = (π, E, V ) and S1 = (σ, H, V ) as defined in
Section 2.1. The parameter set V is the same for both splicings.

In the following we denote by

[k, m]

a pair of integers satisfying 0 ≤ k ≤ m + 1.

Definition 4.6. A spliced sc-fibered Banach scale is the triplet

S
 = (Π, E � H, V )

where Πv = (πv, σv) : E � H → E � H is the family of projections
parametrized by v ∈ V .

Taking two splicing cores K0 = KS0 = {(v, e) ∈ V ⊕ E| πv(e) = e}
and K1 = KS1 = {(v, h) ∈ V ⊕ H| σv(h) = h} we can construct their
�-product

KS� := K0 �V K1

having the double filtration defined by

(K0 �V K1)[k,m] = {(v, e, h) ∈ V ⊕ Em ⊕ Hk | πv(e) = e and σv(h) = h} .

The canonical projection

(V ⊕ E) � H → V ⊕ E

induces the natural sc-smooth projection

pr1 : KS� → KS0.

As before we can define a tangent splicing TS
 and the associated
splicing core KTS� , so that T pr1 induces the projection

T pr1 : TKS� → TKS0 .

We are interested in pairs (KS�|O,S
), where S
 is a spliced sc-fibered
Banach scale (Π, E � H, V ) and where

KS�|O

stands for the the preimage under the canonical projection

KS� → KS0
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of an open subset O of KS0 ⊂ V ⊕ E. A smooth morphism

(KS�|O,S
) → (KS′
�|O′,S ′


)

is an sc-smooth map

KS�|O → KS′
�|O′

of the form

(v, e, h) �→ (ϕ(v, πv(e)), Φ(v, πv(e), σv(h)))

where (v, e, h) ∈ Ô ⊕ H and ϕ(v, πv(e)) ∈ O′ ⊂ V ′ ⊕ E ′ and where
Φ(v, πv(e), σv(e)) ∈ H ′. Moreover, the fiber map Φ is linear in the

last argument. Recall from Section 2.3 that the subset Ô is open in
V ⊕ E and defined by Ô = {(v, e) ∈ V ⊕ E | (v, πv(e)) ∈ O}. Simi-
larly we can define the sc-sections and sc+-sections Γ(S
, K

S�|O) and
Γ+(S
, K

S�|O). In future, if irrelevant, we might suppress the S
 in
the notation and simply write for example Γ(KS�|O). We also consider
sc
-smooth vector bundle morphisms which are linear on the fibers.

4.4.2. M-Polyfold Bundles. Let Y and X be M-polyfolds and
p : Y → X a surjective sc-smooth map so that the preimage of every
point carries the structure of a Banach space.

Definition 4.7. A M-polybundle chart for p : Y → X is a
triple (U, Φ, (KS�|O,S
)), where U is an open set in X and Φ is a
homeomorphism

Φ : p−1(U) → KS�|O

which is linear on the fibers and is covering a homeomorphism

ϕ : U → O ⊂ KS0

so that pr1◦Φ = ϕ◦p. Moreover, Φ and ϕ are smoothly compatible with
the M-polyfold structures on Y and X. Two M-polybundle charts are
called sc� − compatible provided the transition maps are sc
-smooth
local polyfold-bundle morphisms. A M-polybundle atlas consists of
a family of M-polybundle charts so that the underlying open sets U
cover X and so that the transition maps are sc
-smooth. A maximal
smooth atlas of M-polybundle charts is called a M-polyfold bundle
structure.

The situation of an M-polyfold bundle chart is illustrated by the
following diagram.



132 4. M-POLYFOLD BUNDLES

Y ⊃ p−1(U)
Φ

−−−→ KS�|O ⊂ KS�⏐⏐�p

⏐⏐�pr1

X ⊃ U −−−→
ϕ

O ⊂ KS0

Here O is an open subset of the splicing core

KS0 = {(v, e) ∈ V ⊕ E | πe(v) = e},

where V is a partial cone in a finite dimensional vector space W and
E is an sc-Banach space.

KS�|O = {(v, e, f) ∈ V ⊕ E ⊕ F | (v, e) ∈ O and σv(f) = f},

where F is an sc-Banach space. The fiber over (v, e) ∈ O is the Banach
space

pr−1
1 (v, e) = (v, e) × {f ∈ F | σv(f) = f}.

4.4.3. A Strong M-Polyfold Bundle over X. We have previ-
ously introduced the strong sc-vector bundle Y (a, b) → X(a, b). Let us
first study the case where the underlying manifold is Rn and consider
the M-polyfold of level-k-curves. We define Y → X in the obvious
way and will show that it carries the structure of a strong M-polyfold
bundle.The local coordinates are constructed using a splicing core as-
sociated to the strong local bundle

(Fu1 ⊕ .. ⊕ Fuk
) � (H1(u∗

1TM) ⊕ .. ⊕ H1(u∗
�TM) → Fu1 ⊕ .. ⊕ Fuk

with sc
-structure given by quality ((m + 2, δm), (k + 1, δk)). In local
coordinates the splicing projections for fiber and basis are given by
the same formulas as before. If this splicing is denoted by S
 with
underlying splicing S0 we see that the inverse of charts have the form

(r1, .., rk−1, h1, .., hk, b1, .., bk) → [⊕r(∇2 expu1
(h1)b1, ..,∇2 expuk

(hk)bk)],

where the data ranges in KS�|O and O is ithe mage of the chart in KS� ,
and where ∇2 denotes the fiber derivative of the exponential map.



CHAPTER 5

Local sc-Fredholm Theory

We begin with a version of the implicit function theorem in our
“sc-context”.

5.1. An Infinitesimal sc-Implicit Function Theorem

In order to study the local behavior of functions near a point we
make use of the concept of germs. If E is a Banach space with the
sc-smooth structure

E = E0 ⊃ E1 ⊃ E2 ⊃ · · · ⊃ Em ⊃ · · ·

we denote by O(E, 0) an sc-germ of neighborhoods of 0 consisting of a
decreasing sequence

U0 ⊃ U1 ⊃ U2 ⊃ · · · ⊃ Um ⊃ · · ·

where Um is an open neighborhood of 0 in Em for every m ≥ 0. We
point out that in contrast to the notation in Chapter 1, it is not required
that Um is induced from U0 as Um = U0 ∩ Em.

If F is a second Banach space with the sc-structure F = F0 ⊃ F1 ⊃
F2 ⊃ · · · ⊃ Fm ⊃ · · · , then an sc0- germ

f : O(E, 0) → (F, 0)

is a continuous map f : U0 → F0 satisfying f(0) = 0 such that

f : Um → Fm

is continuous for every m ≥ 0. The sc-tangent germ O(E, 0) associ-
ated with the neighborhoods Um belonging to O(E, 0) consists of the
decreasing sequence

Um+1 ⊕ Em, m ≥ 0

of open subsets of Em+1 ⊕ Em. An sc1- germ F : O(E, 0) → (F, 0) is
an sc0-germ which, in addition, is of class sc1 in the sense of Definition
1.6 or Proposition 1.7, however, this time with respect to the nested
sequence Um of the sc-neighborhood germ O(E, 0).

133
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Definition 5.1. Consider a finite dimensional space V and an sc-
Banach space E. Then an sc0-germ f : O(V ×E, 0) → (E, 0) is called
an sc0

− contraction germ if it has the form

f(v, u) = u − B(v, u)

so that the following holds. For every m ≥ 0 there is a constant 0 <
ρm < 1 such that

‖B(v, u) − B(v, u′)‖m ≤ ρm · ‖u − u′‖m

for (v, u) and (v, u′) close to 0 in V × Em. Here the notion of close
depends on m.

We start with the following trivial consequence of a parameter de-
pendent version of Banach’s fixed point theorem.

Theorem 5.2. Let f : O(V ⊕E, 0) → (E, 0) be an sc0-contraction
germ. Then there exists a uniquely determined sc0-germ δ : O(V, 0) →
(E, 0) so that the associated graph germ gr(δ) : V → V ⊕ E, v �→
(v, δ(v)) satisfies

f ◦ gr(δ) = 0.

Our main concern now is the regularity of the solution δ.

Theorem 5.3. If the sc0-contraction germ f : O(V ⊕E, 0) → (E, 0)
is of class sc1, then the solution germ δ : O(V, 0) → (E, 0) in Theorem
5.2 is also of class sc1.

Proof. We fix m ≥ 0 and show first that the set

(5.1)
1

|b|
‖δ(v + b) − δ(v)‖m

is bounded for v and b �= 0 belonging to a small ball around zero in V
whose radius depends on m. Since the map B is of class sc1, there exists
at (v, u) ∈ Um+1 a bounded linear map DB(u, v) ∈ L(V ⊕ Em, Fm),
and we introduce the following notation,

DB(v, u)[v̂, û] = DB(v, u)[v̂, 0] + DB(v, u)[0, û]

= D1B(v, u)[v̂] + D2B(v, u)[û].

Since v �→ δ(v) is a continuous map into Em+1 and since the map B is
of class C1 as a map from an open neighborhood of 0 in V ⊕Em+1 into
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Em, we have the identity

B(v + b, δ(v + b)) −B(v, δ(v + b)) =

[∫ 1

0

D1B(v + sb, δ(v + b))ds

]
[b].

As a consequence,

1

|b|
‖B(v + b, δ(v + b)) − B(v, δ(v + b))‖m

≤

∫ 1

0

‖D1B(v + sb, δ(v + b))‖ds ≤ Cm.

(5.2)

Recalling δ(v) = B(v, δ(v)) and δ(v + b) = B(v + b, δ(v + b)) we have
the identity,

δ(v + b) − δ(v) − [B(v, δ(v + b)) − B(v, δ(v))]

= B(v + b, δ(v + b)) − B(v, δ(v + b)).
(5.3)

From the contraction property of B in the second variable one concludes

(5.4) ‖B(v, δ(v + b)) − B(v, δ(v))‖m ≤ ρm‖δ(v + b) − δ(v)‖m.

Now, using 0 < ρm < 1 one derives from (5.3) using (5.2) and (5.4) the
estimate

1
|b|
‖δ(v + b) − δ(v)‖m

≤
1

1 − ρm
·

1

|b|
‖B(v + b, δ(v + b)) − B(v, δ(v + b))‖m

≤
1

1 − ρm

· Cm

as claimed in (5.1). Since B is of class C1 from V ⊕Em+1 into Em and
since ‖δ(v + b) − δ(v)‖m ≤ C ′

m · |b| by (5.1), the estimate

(5.5) δ(v + b) − δ(v) − DB(v, δ(v)) · [b, δ(v + b) − δ(v)] = om(b)

holds true, where om(b) ∈ Em is a function satisfying 1
|b|

om(b) → 0 in

Em as b → 0 in V . We next prove

(5.6) ‖D2B(v, δ(v))h‖m ≤ ρm · ‖h‖m

for all h ∈ Em+1. Fixing h ∈ Em+1, we can estimate
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‖D2B(v, δ(v))h‖m

≤
1

|t|
· ‖B(v, δ(v) + th) − B(v, δ(v)) − D2B(v, δ(v))[th]‖m

+
1

|t|
· ‖B(v, δ(v) + th) − B(v, δ(v))‖m.

In view of the postulated contraction property of B, the second term is
bounded by ρm · ‖h‖m, while the first term tends to 0 as t → 0 because
B is of class C1. Hence the claim (5.6) follows. Using (5.6) and the fact
that Em+1 is dense in Em, we derive for the continuous linear operator
D2B(v, δ(v)) : Em → Em the bound

(5.7) ‖D2B(v, δ(v))h‖m ≤ ρm · ‖h‖m

for all h ∈ Em. Thus, in view of ρm < 1, the continuous linear map

L(v) : Em → Em

L(v) := Id − D2B(v, δ(v))

is an isomorphism and we conclude from (5.5) the estimate in Em,

δ(v + b) − δ(v) − L(v)−1D1B(v, δ(v))b = om(b).

Therefore, the map v �→ δ(v) into Em is differentiable and its derivative
δ′(v) ∈ L(V, Em) is given by the formula

(5.8) δ′(v) = L(v)−1D1B(v, δ(v)).

It remains to show that v �→ δ′(v) ∈ L(V, Em) is continuous. To
see this we define the map F : (V ⊕ V ) ⊕ Em → Em by setting

F (v, b, h) = D1B(v, δ(v))[b] + D2B(v, δ(v))[h].

The map F is continuous and, in view of (5.7), it is a contraction in
h. Applying a parameter dependent version of Banach’s fixed point
theorem to F we find a continuous function (v, b) �→ h(v, b) from a
small neighborhood of 0 in V ⊕ V into Em satisfying F (v, b, h(v, b)) =
h(v, b). Since we also have F (v, b, δ′(v)b) = δ′(v)b, it follows from the
uniqueness that h(v, b) = δ′(v)b and so the map (v, b) �→ δ′(v)b is
continuous. Using now the fact that V is a finite dimensional space we
conclude that v �→ δ′(v) ∈ L(V, Em) is a continuous map. The proof of
the theorem is complete. �

Theorem 5.3 shows that the sc0-contraction germ f which is also of
class sc1 has a solution germ δ satisfying f(v, δ(v)) = 0 which is also of
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class sc1. We shall show next, that if f is of class sc2, then δ is also of
class sc2. To do so we define the sc0-germ f (1) by

f (1) : O(TV ⊕ TE, 0) → TE

f (1)(v, b, u, w) = (u − B(v, u), w − DB(v, δ(v))[b, w])

= (u, w) − B(1)(v, b, u, w),

where the last line defines the map B(1). For v small, the map B(1) has
the contraction property with respect to (u, w). Indeed, on the m-level
of (TE)m = Em+1 ⊕ Em, i.e., for (u, w) ∈ Em+1 ⊕ Em and for (v, b)
small we can estimate, using (5.6),

‖B(1)(v, b, u′, w′) − B(1)(v, b, u, w)‖m

= ‖B(v, u′) − B(v, u)‖m+1

+ ‖DB(v, δ(v))[b, w′] − DB(v, δ(v))[b, w]‖m

≤ ρm+1‖u
′ − u‖m+1 + ‖D2B(v, δ(v))[w′ − w]‖m

≤ max{ρm+1, ρm} ·
(
‖u′ − u‖m+1 + ‖w′ − w‖m

)
= max{ρm+1, ρm} · ‖(u

′, w′) − (u, w)‖m.

Consequently, the germ f (1) is an sc0-contraction germ. If now f is of
class sc2, then the germ f (1) is of class sc1, as one verifies by comparing
the tangent map Tf with the map f (1) and using the fact that the
solution δ is of class sc1. Hence we deduce from Theorem 5.3 that the
solution germ δ(1) of f (1) is of class sc1. It solves the equation

(5.9) f (1)(v, b, δ(1)(v, b)) = 0.

But also the tangent germ Tδ defined by Tδ(v, b) = (δ(v), δ′(v)b) is a
solution of (5.9). From the uniqueness we conclude δ(1) = Tδ so that
Tδ is of class sc1, and hence δ of class sc2, as claimed. Proceeding
inductively one verifes the following result.

Theorem 5.4. If f : O(V ⊕ E, 0) → (E, 0) is a contraction germ
which is, in addition, of class sck, then the solution germ

δ : O(V, 0) → (E, 0)

satisfying
f(v, δ(v)) = 0

is of class sck.

Proof. The proof is a consequence of the statements (k) below
which we prove by induction. In the following we denote by δj(v1) :
V ⊕ · · · ⊕ V → E the j-th derivative of δ : V → E at the point v1. It
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is a multilinear map (v2, · · · , vj+1) �→ δj(v1)[v2, · · · , vj+1]. Moreover,
D1,jB(x1, · · · , xj) denotes the linearization of the function B with re-
spect to the first variable x1 and the last variable xj . .

(k) Let f : O(V ⊕ E, 0) → (E, 0) be a contraction germ of class sck

and let δ : O(V, 0) → (E, 0) be a solution germ. Then δ is of class sck.
Set B(1) = B and define f (1)(v1, h) = h−B(1)(v1, h) for (v1, h) ∈ V ⊕E.
Then for every 2 ≤ j ≤ k there exists a map

(5.10) f (j) : V ⊕ V ⊕ · · · ⊕ V ⊕ E → E

of the form

(5.11) f (j)(v1, · · · , vj, h) = h − B(j)(v1, · · · , vj, h)

where

B(j)(v1, · · · , vj, h)

= D1,jB
(j−1)

(
v1, · · · , vj−1, δ

j−2(v1)[v2, · · · , vj−1]
)
[vj , h]

(5.12)

having the following properties. If 1 ≤ j ≤ k, the germ (v1, · · · , vj) �→
δj−1(v1)[v2, · · · , vj] solves the equation

(5.13) f (j)(v1, · · · , vj , δ
j−1(v1)[v2, · · · , vj ]) = 0.

Moreover, every map f (j) is multilinear with respect to (v2, v3, · · · , vj , h)
and is a contraction germ with respect to h.

The statement (k) for k = 1 is just the conclusion of Theorem
5.3. Now assume the statement to hold true for k ≥ 1. We shall
prove that it holds true also for k + 1. Let f be of class sck+1. By
assumption (k), the solution germ v → δ(v) from V to E is of class
sck. Since f is of class sck, the map B(k) is of class sc2 so that the
map (v1, · · · , vk+1, h1, h) �→ D1,k+1B

(k)(v1, · · · , vk, h1)[vk+1, h], where
(v1, · · · , vk+1, h1, h) ∈ V ⊕V · · ·V ⊕E1 ⊕E, is of class sc1. Composing
this map with the sc1-map

(v1, · · · , vk+1, h) �→ (v1, · · · , vk+1, δ
k−1(v1)[v2, · · · , vk], h)

we define the sc1-map

B(k+1)(v1, · · · , vk+1, h)

= D1,k+1B
(k)(v1, · · · , vk, δ

k−1(v1)[v2, · · · , vk])[vk+1, h]
(5.14)

and introduce

(5.15) f (k+1)(v1, · · · , vk, h) := h − B(k+1)(v1, · · · , vk+1, h).
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Abbreviating for the moment w = (v1, · · · , vk, δ
k−1(v1)[v2, · · · , vk])

and using the fact that B(k) is linear with respect to h we obtain for
the linearization in (5.14),

D1,k+1B
(k)(w)[vk+1, h] = D1B

(k)(w)[vk+1] + D2B
(k)(w)[h]

= D1B
(k)(w)[vk+1] + B(k)(v1, · · · , vk, h).

This shows that f (k+1) is a contraction germ because, by assumption,
B(k)(v1, · · · , vk, h) is a contraction with respect h. In addition, we
see that f (k+1) is linear with respect to the variables (v2, · · · , vk+1, h).
Applying Theorem 5.3 to the map f (k+1), we find a unique map

(v1, v2, · · · , vk+1) → h(v1, · · · , vk+1)

from V ⊕ V ⊕ · · · ⊕ V to E which is of class sc1, solves the equation

h(v1, · · · , vk+1) = B(k+1)(w, h(v1, · · · , vk+1)),

and satisfies h(0, · · · , 0) = 0. On the other hand, by assumption (k),

δk−1(v1)[v2, · · · , vk] = B(k)(v1, · · · , vk, δ
k−1(v1)[v2, · · · , vk])

for (v1, v2, · · · vk) ∈ V ⊕ V ⊕ · · · ⊕ V . Differentiating this identity with
respect to v1 we find

δk(v1)[v2, · · · , vk+1] = D1B
(k)(v1, · · · , vk, δ

k−1(v1)[v2, · · · , vk])[vk+1]

+ Dk+1B
(k)(v1, · · · , vk, δ

k−1(v1)[v2, · · · , vk])[δ
k(v1)[v2, · · · , vk+1]]

= B(k+1)(v1, · · · , vk+1, δ
k(v1)[v2, · · · , vk+1]).

Hence, by uniqueness, δk(v1)[v2, · · · , vk+1] = h(v1, · · · , vk+1). Since
(v1, · · · , vk+1) → h(v1, · · · , vk+1) is of class sc1, the map (v1, · · · , vk+1) →
δk(v1)[v2, · · · , vk+1] is also of class sc1. This implies that the map
v �→ δ(v) is of class sck+1 as claimed. The proof of the theorem is
complete.

�

5.2. sc-Fredholm Germs and Perturbations

After some preparation we shall introduce the crucial concept of a
germ of an sc-Fredholm section.

5.2.1. Linearized sc-Fredholm Germs. Consider two sc-smooth
Banach spaces E and F and a strong sc-bundle

b : U � F → U

where U is an open subset of E. If q is a smooth point, i.e., if

q ∈ U∞ = U ∩ U∞
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then we denote by [b, q] or [U � F, q] the germ of b around the point q.
Similarly, [f, q] denotes the germ of an sc- smooth section of the bundle
[b, q] around the point q. If

b′ : U ′ � F ′ → U ′

is a second strong sc-bundle with the open set U ′ of E ′, we also choose
a smooth point q′ ∈ U ′, take the germ [b′, q′] around the point q′ and
consider a germ of an sc-smooth section [g, q′] of the bundle [b′, q′].
Assume that

[Φ, q] : [b, q] → [b′, q′]

is a germ of a strong sc-vector bundle isomorphism covering the germ
[σ, q] of the sc-diffeomorphism satisfying σ(q) = q′. It is of the form

Φ(x, h) = (σ(x), ϕ(x)[h])

where our notation indicates that the fiber maps h → ϕ(x)[h] from
F to F ′ are linear sc-isomorphisms. Now define the germ [g, q′] of a
smooth sc-section of [b′, q′] as the push-forward of the germ [f, q] of
section of the bundle [b, q], as usual, by

g = Φ∗f := Φ ◦ f ◦ σ−1.

If f : U → F is the principal part of the section f and g : U ′ → F ′ the
principal part of the section g, then

g(x) = pr2 ◦ Φ ◦ f ◦ σ−1(x) =: ϕ(x)[f ◦ σ−1(x)].

Linearizing g at the smooth point q′ = σ(q) we obtain by the chain
rule the formula

Dg(q′)h = ϕ(q′)[Df(q) ◦ Dσ(q)−1h] + A(q′)[h],

where A(q′)[h] is the linearization of the map

(5.16) x → ϕ(x)[f(q)] ∈ (F ′)1

at the smooth point q′ in the direction h ∈ E1. Now, since Φ is a strong
sc-vector bundle map, and since q and hence also f(q) are smooth
points, the map (5.16) is an sc-smooth map U ′ → (F ′)1. Therefore,
the linear map A(q′) : E ′ → F ′ is an sc+-map in the sense of Definition
1.20. The linear map

h �→ ϕ(q′)[Df(q) ◦ Dσ(q)−1 · h]

from E ′ to F ′ is sc-Fredholm in the sense of Definition 1.18 if and only
if Df(q) : E → F is an sc-Fredholm map. If this is the case, then we
conclude from the stability of the Fredholm property in Proposition
1.21 that the linear map Dg(q′) : E ′ → F ′ is also an sc-Fredholm map.
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As a consequence we can define the following intrinsic property of the
germ [f, q].

Definition 5.5. If q is a smooth point, then an sc-smooth section
germ [f, q] of the strong sc-germ [b, q] is called linearized sc−Fredholm,
if the linearization Df(q) of its principal part at q is sc-Fredholm in
the sense of Definition 1.18.

In view of the above discussion, the property of being linearized sc-
Fredholm is invariant under (germs) of coordinate changes for strong
sc-bundles. We summarize this fact as a proposition.

Proposition 5.6. If q is a smooth point, and if [f, q] is an sc-
smooth germ of a section of a strong sc-vector bundle and [g, p] is the
push-forward by a strong sc-vector bundle isomorphism germ Φ, then
[f, q] is linearized sc-Fredholm if and only if this holds true for [g, p].

From the stability of the Fredholm property under perturbations,
formulated in Proposition 1.21, we deduce the following result.

Proposition 5.7. Let U be open in the sc-Banach space E and
U � F → U be a strong sc-vector bundle. Assume that q ∈ U is smooth
and [f, q] is a sc-smooth germ. Assume that [s, q] is a sc+-smooth germ.
If [f, q] is linearized sc-Fredholm, then so is [f + s, q].

Proof. Taking the principal parts f and s we know that Ds̄(q) is
an sc+-operator in the sense of Definition 1.20. Hence if Df̄(q) is an
sc-Fredholm operator so is Df̄(q) + Ds̄(q) by Proposition 1.21 . �

5.2.2. sc-Fredholm Germs. Given the strong sc-smooth bundle

b : U � F → U,

where U ⊂ E is open, and given the smooth point q ∈ U , we consider
the germ [f, q] of an sc-smooth section around q.

Definition 5.8. The sc-smooth germ [f, q] of the strong sc-bundle
germ [b, q] is an sc−Fredholm germ, if the following two properties
hold true.
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1) Regularizing property: for every m ≥ 0, there is a smooth open
neighborhood Om ⊂ Um of q so that if p ∈ Om and f(p) ∈
(U � F )m,m+1, then p ∈ Um+1.

2) Contraction property: there exists a partial cone V in Rn, an
sc-smooth Banach space W , and a germ of a strong sc-vector
bundle isomorphism

Ψ : O(U � F, q) → O((V ⊕ W ) � (RN ⊕ W ), 0)

which covers the sc-diffeomorphism germ σ : O(U, q) → (V ⊕
W, 0) satisfying σ(q) = 0 and which has the following property.
If pr2 : (V ⊕W )�(RN ⊕W ) → RN ⊕W and P : RN ⊕W → W
denote the canonical projections, then the sc-smooth germ

Ψ(f) : O(V ⊕ W, 0) → (W, 0)

Ψ(f)(v, w) := P ◦ pr2 ◦ [Ψ ◦ f ◦ σ−1(v, w) − Ψ(f(q))]

is an sc0-contraction germ in the sense of Definition 5.1.

Proposition 5.9. The sc-Fredholm germ [f, q] is a linearized sc-
Fredholm section in the sense of Definition 5.5.

Proof. By assumption, the sc-smooth germ Ψ(f) is of the form
Ψ(f)(v, w) = w − B(v, w). Linearizing at the point (v, w) = 0 we find

DΨ(f)(0)[v̂, ŵ] = ŵ − D2B(0)ŵ − D1B(0)v̂.

As in the proof of Theorem 5.3 one verifies that the linear opera-
tor D2B(0) : Wm → Wm is a contraction for every m ≥ 0, i.e.,
‖D2B(0)‖m < 1. Consequently,

Id − D2B(0) : W → W

is an sc-isomorphism. Since V is finite dimensional and since P projects
onto a subspace of finite codimension, it follows that the linearization
of the principal part of the push-forward of the section [f, q],

(v, w) → Ψ ◦ f ◦ σ−1(v, w),

at the point (0, 0) is an sc-Fredholm operator. From Proposition 5.6
we conclude that [f, q] is a linearized sc-Fredholm section, as claimed
in Proposition 5.9. �

Clearly, the property of being sc-Fredholm is also invariant under
coordinate changes of strong sc-bundles.

Proposition 5.10. Let f be an sc-smooth section of the bundle
U � F → U . Assume that Φ : O(U � F, q) → O(U ′ � F ′, p) is a germ
of an sc-smooth vector bundle isomorphism. Then the section [f, q]



5.3. FILLERS AND LOCAL M-POLYFOLD FREDHOLM GERMS 143

is an sc-Fredholm germ if and only if the push-foward [Φ∗f, p] is an
sc-Fredholm germ.

Finally, we are able to introduce sc-Fredholm sections.

Definition 5.11. An sc-smooth section f of the strong sc-vector
bundle U � F → F is called sc− Fredholm if at every smooth point
q ∈ U , the germ [f, q] is a an sc-Fredholm germ.

In view of the invariance under coordinate changes of strong sc-
bundles, the definition immediately generalizes to strong sc-bundles
over sc-manifolds.

5.3. Fillers and Local M-Polyfold Fredholm Germs

Recalling the cumulating notations first we consider the two splic-
ings S0 = (π, E, V ) and S1 = (σ, F, V ) having the same parameter set
V which is an open subset of a partial cone in Rn. The spaces E and
F are sc-smooth Banach spaces and

πv : E → E and σv : F → F

are the projections parametrized by v ∈ V as introduced in Section
2.1. For fixed v we shall abbreviate the image of the projection πv in
E by

K0,v = {e ∈ E| πv(e) = e}

and its complement in E by

Kc
0,v = {e ∈ E| (Id−πv)(e) = e}

so that for every v ∈ V

(5.17) E = K0,v ⊕ Kc
0,v.

Every e ∈ E splits accordingly to the splitting (5.17) into the sum

e = e1
v ⊕ e2

v.

Similarly, the projection σv : F → F defines the splitting

(5.18) F = K1,v ⊕ Kc
1,v.

Associated with the splicings S0 and S1 the spliced sc-fibered Ba-
nach scale

S
 = ((π, σ), E � F, V )

has been introduced in Section 4.4. The �-product E �F is the Banach
space E⊕F equipped with the double filtration (E⊕F )m,k = Em⊕Fk
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for m ≥ 0 and 0 ≤ k ≤ m + 1. The splicing cores associated with S0

and S1 are the image bundles of the projections,

K0 = KS0 = {(v, e) ∈ V ⊕ E| πv(e) = e}

K1 = KS1 = {(v, f) ∈ V ⊕ F | σv(f) = f}.

The total splicing core KS� is their �-product

KS� = K0 � K1

which as a set is equal to {(v, e, f) ∈ |(V ⊕E)�F | πv(e) = e and σv(f) =
f}. The projection

(V ⊕ E) � F → V ⊕ E

induces the sc-smooth projection

KS� → KS0.

If O ⊂ KS0 be open subset of the splicing core, we shall study the
bundle

(5.19) b : KS�|O → O

which is the local model for a strong M-polyfold bundle according to
Definition 4.7. A section

(5.20) f : O → KS�|O

is of the form
(v, e1

v) �→ ((v, e1
v), f(v, e1

v))

where f(v, e1
v) ∈ K1,v ⊂ F . We use the same letter for the section

and the principal part of the section. According to Definition 2.8, the
section f is called sc-smooth if the extension

(5.21)
f̄ : Ô ⊂ V ⊕ E → F

f̄(v, e) := f(v, πv(e))

is sc-smooth on the open subset Ô of V ⊕ E defined by Ô = {(v, e) ∈
V ⊕E| (v, πv(e)) ∈ O}. In the following we shall use the same letter f
also for the extended function f . An sc-smooth section germ [f, q] of
the bundle (b, q) consists of a smooth q ∈ O and an sc-smooth germ f
of section of the bundle b : KS�|O → O.

Definition 5.12. A filler for the sc-smooth section germ [f, q]
near a smooth point q ∈ V ⊕ E of the bundle (b, q) consists of an sc-

smooth section germ [f̂ , q] of the bundle (V ⊕ E) � F → V ⊕ E whose
principal part has the form

(5.22) f̂(v, e) = f(v, e) + f c(v, e).
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Moreover, f c is defined on an open neighborhood of q in V ⊕E, mapping
its points (v, e) into Kc

1,v in such a way that the mapping

(5.23)
Kc

0,v → Kc
1,v

e2
v �→ f c(v, e1

v ⊕ e2
v)

is a linear sc-isomorphism for every v and e1
v, where e = e1

v ⊕ e2
v is the

decomposition with respect to the splitting K0,v ⊕ Kc
0,v = E.

By definition, f(v, e) ∈ K1,v and f c(v, e) ∈ Kc
1,v. Hence one con-

cludes from

f(v, e) + f c(v, e) = 0

that f(v, e) = 0 and f c(v, e) = 0. Consequently, e2
v = 0 so that e =

πv(e) = e1
v and we see that the solution sets of the sections [f, q] and

[f̂ , q] are naturally the same.

Definition 5.13. The sc-smooth germ [f, q] of a section of the
local M-polyfold bundle (b, q) is called a polyfold Fredholm germ if

it possesses a filler f̂ having the property that [f̂ , p] is an sc-Fredholm
germ in the sense of Definition 5.8 at every smooth point p near q.

We point out that in dealing with germs around a smooth point
q we may always assume by means of a germ of an sc-diffeomorphism
that q = 0.

Setting q = 0 we consider the sc-smooth section germ f of the bun-
dle (b, 0) defined in (5.19) and assume that its principal part satisfies
f(0) = 0. At v = 0 we have the sc-smooth Banach spaces

K0,0 = {e ∈ E| π0(e) = e}

K1,0 = {f ∈ F | σ0(f) = f}.

Recalling the splitting E = K0,0 ⊕ Kc
0,0 and the corresponding de-

composition e = e1
0 + e2

0 we observe that f(0, e2
0) = 0 for all e2

0 ∈ Kc
0,0.

Therefore, the linearization of f at the point 0 = (v, e) is the sc-linear
map

Df(0) : T0V ⊕ E → K1,0

(v̂, e) �→ Df(0)[v̂, e1
0],

where T0V = Rn. Now assume that the section f possesses the filler

f̂ . Then the linearization of f̂ at the point 0 is the sc-linear mapping
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(5.24)
Df̂(0) : T0V ⊕ E → F

Df̂(0)[v̂, e)] = Df(0)[v̂, e] + f c(0, e2
0)

where again e = e1
0 + e2

0 corresponds to the splitting E = K0,0 ⊕ Kc
0,0.

Since f c(0, e2
0) ∈ Kc

1,0 we see that Df(0) is surjective if and only if the

linearized filler Df̂(0) is surjective. Because f c(0, e2
0) = 0 if and only if

e2
0 = 0, we conclude

ker Df̂(0) ⊂ T0V ⊕ K0,0

and

ker(Df(0)|T0V ⊕ K0,0) = kerDf̂(0).

5.4. Local solutions of polyfolds Fredholm germs

We shall demonstrate that the solution set of f = 0 of a polyfold
Fredholm germ near a transversal smooth point carries in a natural way
a smooth manifold structure. Using the infinitesimal implicit function
theorem from Section 5.1, we shall reduce the problem by means of a
Lyapuonov-Schmidt type construction to a finite dimensional problem.
We distinguish between the interior and boundary case.

5.4.1. Interior Case. We consider the polyfold Fredholm section
germ [f, 0] according to Definition 5.13. Its principal part

(5.25) f(v, e) = f(v, πv(e))

is sc-smooth in a neighborhood of 0 in V ⊕ E. We assume

f(0) = 0

and first study the special case in which the parameter set V of the
splicing is an open neighborhood of the origin in Rk. By the definition

of a polyfold Fredholm germ there exists a filler f̂ of f which is a
smooth section

f̂ : O(V ⊕ E, 0) → O((V ⊕ E) � F, 0)

whose principal part is of the form

f̂(v, e) = f(v, e1
v) + f c(v, e1

v + e2
v),

the sum e1
v + e2

v corresponding to the splitting E = K0,v ⊕ Kc
0,v intro-

duced in (5.17). We shall assume now that the point 0 = (v, e) is a
transversal point of the section f requiring the linearisation of f at 0,

Df(0) : T0V ⊕ E → F
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to be surjective. Note that T0V = Rk. Equivalently, the linearisation

of the filler f̂ at 0,

Df̂(0) : T0V ⊕ E → F

is surjective. Since [f̂ , 0] is, by assumption, an sc-Fredholm germ there
exists a germ of a strong sc-vector bundle diffeomorphism

Φ : O((V ⊕ E) � F, 0) → O((Rn ⊕ W ) � (RN ⊕ W ), 0)

so that the push forward section g = Φ∗f̂ , if composed with the
projection pr2 onto its principal part and the natural projection P :
RN ⊕ W → W , is a contraction germ according the Definition 5.1.
Hence, for (a, u) ∈ Rn ⊕ W near the origin,

(5.26) P ◦ pr2 ◦ g(a, u) = u − B(a, u).

Explicitly, if

(5.27) Φ(v, e, h) = (σ(v, e), ϕ(v, e) · h)

with a diffeomorphism germ σ : O(V ⊕E, 0) → O(Rn⊕W, 0) satisfying
σ(0) = 0, the section has the principal part g : O(Rn ⊕ W, 0) →
O(RN ⊕ W, 0) denoted by the same letter and defined by

g(a, u) = ϕ(σ−1(a, u)) · f̂(σ−1(a, u)).

It satisfies g(0) = 0. Abbreviating

ψ(a, u) = ϕ(σ−1(a, u))

τ(a, u) = σ−1(a, u),

the principal part becomes

(5.28) g(a, u) = ψ(a, u) · f̂(τ(a, u)).

Using f(0) = 0 the linerization of g at 0 = (a, u) is the sc-linear
mapping

Dg(0)[b, h] = ψ(0) · Df̂(0) ◦ Dτ(0)[b, h]

for (b, h) ∈ Rn ⊕ W . By the assumption of transversality, the linear

operator Df(0) and hence also Df̂(0) is surjective. Since Dτ(0) and
ψ(0) are linear isomorphisms, the map

Dg(0) : Rn ⊕ W → RN ⊕ W

is also surjective. The solution set for g solves the equation

g(a, u) = 0

or, equivalently, the two equations
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(5.29)
Pg(a, u) = 0

(Id − P )g(a, u) = 0.

Since Pg(a, u) = u − B(a, u), the solutions of the first equation near
0, are, in view of Theorem 5.3, represented as the graph of a function
δ : Rn → W so that

(5.30) Pg(a, δ(a)) = 0.

In fact these are all the solutions of the first equation locally near
0 = (a, u). The function δ satisfies δ(0) = 0 and possesses, in view
of Theorem 5.4, the following regularity properties. Given any level
m and any integer j ≥ 0, there exists an open neighborhood O =
O(m, j) ⊂ Rn of the origin so that if a ∈ O, then δ(a) ∈ Wm and the
map δ : O → Wm is of class Cj . It remains to solve the second equation
in (5.29) which becomes

(Id − P )g(a, δ(a)) = 0

and which is to be solved for a near the origin in Rn. We define the
mapping

G : Rn → RN

near 0 ∈ Rn by

(5.31) G(a) = (Id − P )g(a, δ(a)).

Given an integer j ≥ 1, there exists an open neighborhood O of the
origin in Rn on which G ∈ Cj(O, RN).

Lemma 5.14. The map DG(0) ∈ L(Rn, RN) is surjective.

Proof. The linearization of G at the point 0 is equal to

(5.32) DG(0)[b] = (Id − P )Dg(0) · [b, δ′(0)b]

for b ∈ Rn. Given (r, 0) ∈ RN ⊕ W we can solve the equation

(r, 0) = Dg(0)[b, h]

for (b, h) ∈ Rn ⊕W , in view of the surjectivity of Dg(0). Equivalently,
there exists (b, h) ∈ Rn ⊕ W solving the two equations

r = (Id − P )Dg(0)[b, h]

0 = PDg(0)[b, h].

Explicitly, the second equation is the following equation

(5.33) 0 = −D1B(0) · b + [Id − D2B(0)] · h



5.4. LOCAL SOLUTIONS OF POLYFOLDS FREDHOLM GERMS 149

Recalling the proof of Theorem 5.3, the operator Id−D2B(0) : W → W
is a linear isomorphism. Therefore, given b ∈ Rn the solution h of the
equation (5.33) is uniquely determined. On the other hand, linearizing
Pg(a, δ(a)) = 0 at the point a = 0 leads to PDg(0)[b, δ′(0)b] = 0 for
all b ∈ Rn. Hence, by uniqueness h = δ′(0)b, so that the linear map
DG(0) in (5.32) is indeed surjective. �

We denote the kernel of DG(0) by C and take its orthogonal com-
plement C⊥ in Rn, so that

C ⊕ C⊥ = Rn.

Then G : C⊕C⊥ → RN becomes a function of two variables, G(c1, c2) =
G(c1 + c2) for which D1G(0) = 0 while D2G(0) ∈ L(C⊥, RN) is an
isomorphism. By the implicit function theorem there exists a unique
map c : C �→ C⊥ solving

(5.34) G(r + c(r)) = 0

for r near 0 and satisfying

c(0) = 0, Dc(0) = 0.

Moreover, given any j ≥ 1, there is an open neighborhood U of the ori-
gin in C such that c ∈ Cj(U, C⊥). Summarizing we have demonstrated
so far that all solutions (a, u) ∈ Rn ⊕ W of g(a, u) = 0 near the origin
are represented by

g(r + c(r), δ(r + c(r))) = 0

for r in an open neighborhood of 0 in C = kerDG(0) ⊂ Rn. Con-
sequently, in view of formula (5.28), all solutions (v, e) ∈ V ⊕ E of

f̂(v, e) = 0 near the origin are represented by

f̂(β(r)) = 0

where β : C → Rk ⊕ E is defined near 0 by

β(r) = τ(r + c(r), δ(r + c(r))).

The function β satisfies β(0) = 0 and, of course, for every level m and
every integer j ≥ 1, there exists an open neighborhood U of 0 ∈ C such
that if r ∈ U , then β(r) ∈ Rk ⊕Em and β ∈ Cj(U, Rk ⊕Em). From the
definition of the filler it follows that β(r) ∈ K0. From the regularizing
property in Definition 5.8 of an sc-Fredhom germ we conclude β(r) ∈
Rk ⊕ E∞ so that

β(r) ∈ (Rk ⊕ E∞) ∩ K0.
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Since the solution set of the filler f̂ and of f are the same, all the
solutions (v, e) of f(v, e) = 0 near the origin are also represented by

f(β(r)) = 0

for r near 0 in C. In order to represent the solution set as a graph over
the kernel of the linearized equation at 0 we introduce

N : = kerDf̂(0)

= kerDf(0)|T0V ⊕ K0,0.
(5.35)

In view of Proposition 5.9, the linear operator Df̂(0) ∈ L(Rk ⊕
E, RN ⊕W ) is an sc-Fredholm operator in the sense of Definition 1.18.
Hence dim N < ∞ and N ⊂ Rk ⊕ E∞ and we have an sc-splitting

N ⊕ N c = Rk ⊕ E.

By construction, the image of the linearization Dβ(0) ∈ L(C, Rk⊕E) is

equal to the kernel of Df̂(0). Moreover, from Dβ(0)·r̂ = dτ(0)[r̂, δ′(0)r̂]
it follows that Dβ(0) is also injective, so that Dβ(0) : C → N is a linear
isomorphism. We define the map α : N → Rk ⊕ E near 0 ∈ N by

α(n) = β(Dβ(0)−1 · n).

The solution set is now parametrized by f(α(n)) = 0 for n near 0 ∈ N .
Let Q : N ⊕ N c → N be the natural projection and consider the
map Q ◦ α : N → N near 0. Since D(Q ◦ α)(0) = Id, it is a local
diffeomorphism leaving the origin fixed. We denote by γ the inverse
of this local diffeomorphism satisfying Q ◦ α(γ(n)) = n for all small n.
Then

α(γ(n)) = Q ◦ α(γ(n)) + (Id − Q)α(γ(n))

= n + (Id − Q)α(γ(n)).

The map

A : N → N c

near the origin in N is defined by A(n) = (Id −Q)α(γ(n)). It satisfies
A(0) = 0 and DA(0) = 0 and α(γ(n)) = n + A(n) so that

f(n + A(n)) = 0.

In addition, given any level m and any integer j there exists an open
neighborhood U of 0 in N such that if n ∈ U , then A(n) ∈ N c

m and A ∈
Cj(U, N c

m). We have demonstrated that the solution set of f(v, e) = 0
near the transversal point 0 is represented as a graph over the kernel
of the linearized map Df(0) of a function which is smooth at the point
0.
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Proposition 5.15. Let V ⊂ Rk be an open neighborhood of the
origin and let [f, 0] be a polyfold Fredholm section germ according to
Definition 5.13 satisfying f(0) = 0. Let N be the kernel of Df(0)|T0V ⊕
K0,0. Then dim N < ∞ and N ⊂ Rk ⊕ E∞ and there is an sc-
complement N c so that

N ⊕ N c = Rk ⊕ E.

If Df(0) is surjective, then there exists a germ A : O(N, 0) → O(N c, 0)
near 0 ∈ N satisfying A(0) = 0 and DA(0) = 0 such that for n near 0,

f(n + A(n)) = 0

n + A(n) ∈ (Rk ⊕ E∞) ∩ K0.

All solutions of f(v, e) = 0 in a sufficiently small neighborhood of the
origin in Rk ⊕ E are in the image of the map n �→ n + A(n). In
addition. given any level m and any integer r j, there exists an open
neighborhood U = U(m, j) ⊂ N of the origin on which A ∈ Cj(U, N c

m).

So far we have only used the fact that the filler f̂ induces an sc-

Fredholm germ [f̂ , 0] in the sense of Definition 5.8 at the point 0. We

next make use of the assumption that [f̂ , q] is an sc-Fredholm germ at
every smooth point q in an open neighborhood of 0 in order to show
that the map n �→ n+A(n) is smooth on an open neighborhood of the
origin in N . We fix a level m and a sufficiently small neighborhood
O of the origin in N on which the map A : O → N c

m is of class C1.
Choose a point n0 ∈ N near 0 and set

q0 = n0 + A(n0).

Then q0 is a smooth point and we shall apply Proposition 5.15 to the
point q0 replacing the point q = 0 in there. This is possible in view of
the next lemma.

Lemma 5.16. If n0 is small enough, the linearization Df̂(q0) :

Rk ⊕E → F is surjective and Fredholm. Moreover, dim [kerDf̂(q0)] =

dim [ker Df̂(0)] = dim N . Setting N ′ = kerDf̂(q0) the natural projec-
tion p : N⊕N c = Rk⊕E → N induces an isomorphism p|N ′ : N ′ → N .

Proof. We use the notation in the proof of Proposition 5.15 and
consider equivalently the section g(a, u) defined in (5.28) and its lin-
earization

(5.36) Dg(q0) : Rn ⊕ W → RN ⊕ W
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at the point q0 = (a, δ(a)). In order to prove surjectivity we consider
the equation Dg(q0)[h, b] = [w, r] which in matrix notation according
to the splitting in (5.36) becomes

(5.37)

[
A A1

A2 A3

]
·

[
h
b

]
=

[
w
r

]
with the linear operators

Ah = [Id − D2B(a, δ(a)] · h

A1b = D1B(a, δ(a)) · b

A2h = (Id − P )D2g(a, δ(a)) · h

A3b = (Id − P )D1g(a, δ(a)) · b

where (b, h) ∈ Rn ⊕ W and (r, w) ∈ RN ⊕ W . In view of the proof of
Theorem 5.3, the linear operator A : W → W is an sc-isomorphism.
Hence the equation (5.37) for (h, b) becomes

(5.38)
h = A−1w − A−1A1b

[A2A
−1A1 − A3]b = A2A

−1w + r.

We abbreviate the continuous family of matrices

M(a) := [A2A
−1A1 − A3] ∈ L(Rn, RN).

By assumption, Dg(0) is surjective. Therefore, if a = 0, then the
matrix M(0) is surjective. Consequently, for small a the matrix M(a)
is also surjective and so is the linear operator Dg(a, δ(a)). Choosing
w = 0 and r = 0 in (5.38), the kernel of Dg(q0) is determined by the
two equations

h = A−1A1b

[A2A
−1A1 − A3]b = 0.

Consequently, the kernel is determined by the kernel of the matrix
M(a). Setting K ′ = kerDg(q0) and K = kerDg(0) we conclude from
the surjectivity of M(a) for small a that dimK ′ = dimK. In addi-
tion, the natural projection p : K ⊕ Kc = Rk ⊕ E → K induces the
isomorphism p|K ′ : K ′ → K and the lemma follows. �

Introducing

N ′ = kerDf̂(q0)

we have dimN ′ = dimN and Proposition 5.15 guarantees a map n′ �→
n′ + A(n′) : N ′ → N ′ ⊕ (N ′)c defined for n′ near 0, satisfying A′(0) = 0
and DA′(0) = 0, and solving

f(q0 + n′ + A′(n′)) = 0.



5.4. LOCAL SOLUTIONS OF POLYFOLDS FREDHOLM GERMS 153

Moreover, given integers m and j there is an open neighborhood U of
the origin in N ′ on which A′ : U → (N ′)c

m is of class Cj. Denote by

p : N ⊕ N c → N

the natural sc-projection. Then p|N ′ : N ′ → N is an isomorphism if q0

is sufficiently close to 0, and we define the map α : N ′ → N near the
origin by

α(n′) = p[q0 + n′ + A′(n′)].

Then α(0) = n0 and, by the uniqueness of the solution set of f =
0 near the origin, we have α(n′) + A(α(n′)) = q0 + n′ + A′(n′). In
addition, Dα(0)h = p(h) for h ∈ N ′. Consequently, Dα(0) ∈ L(N ′, N)
is an isomorphism and hence the map α is a local diffeomorphism. In
addition, given any integer j there is an open neighborhood U of 0 ∈ N ′

on which α ∈ Cj(U, N). From the identity

n + A(n) = p[q0 + α−1(n) + A′(α−1(n))]

for n near n0 we conclude for given integers m and j that there is an
open neighborhood U(n0) of n0 ∈ N on which the map n �→ n + A(n)
belongs to Cj(U(n0), Rk ⊕ Em). In particular, at the point n0, the
map is smooth. The arguments apply to every n0 in a neighborhood of
the origin in N . Therefore, we have demonstrated the following result,
where in abuse of the notation we simply write

Df(0) = Df(0)|T0V ⊕ K0,0

and use the same letter f for the section and for its principal part.

Theorem 5.17. Let [f, 0] be a polyfold Fredholm germ as defined
in Definition 5.13. Assume f(0) = 0 and denote by N the kernel of the
linearization Df(0). Then dim N < ∞ and N ⊂ Rk ⊕ E∞ and there
exists an sc-smooth complement N c so that

N ⊕ N c = Rk ⊕ E.

If Df(0) is surjective, there exists an open neighborhood O of the origin
in N and a smooth map A : O → N c satisfying A(0) = 0 and DA(0) =
0 such that

f(n + A(n)) = 0

n + A(n) ∈ (Rk ⊕ E∞) ∩ K0

if n ∈ O. Moreover, A ∈ C∞(O, N c
m) for every integer m. All solutions

of f(v, e) = 0 in a sufficiently small neighborhood of the origin in Rk⊕E
are in the image of the map n �→ n + A(n).
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5.4.2. Boundary Case. So far, the parameter set V has been an
open neighborhood of the origin in Rn. In this subsection we consider
the case in which V is an open neighborhood of the origin in the partial
cone

C = [0,∞)k × Rn−k

in Rn. There are many possible concepts for a submanifold in the pres-
ence of boundaries or, more generally, of boundary with corners. Later
on we shall use a relatively strong concept called neat submanifolds.
It has the advantage of a high degree of compatibility with the corner
structure.

We consider the polyfold-Fredholm germ [f, 0] of the bundle O(K0�V

K1, 0) satisfying f(0) = 0, and abbreviate the linearization at 0 by

Df(0) = Df(0)|Rn ⊕ K0,0.

Note that Rn = T0V is the tangent space of the parameter set V at the
origin. The kernel

N = ker Df(0)

is a finite dimensional subspace of Rn ⊕ K0,0. We denote by

p : Rn ⊕ K0,0 → Rn

the canonical projection.

Definition 5.18. The polyfold-Fredholm germ [f, 0] is called neat,
if the kernel N of the linearization Df(0) has the property

Rk × {0} ⊂ p(N).

We note that the subspace Rk ×{0} is the tangent space at 0 of the
part of V containing the corner.

Definition 5.19. If [f, 0] is neat and N the kernel of Df(0) in
Rn ⊕ K0,0, then an sc-complement R of N ,

Rn ⊕ K0,0 = N ⊕ R,

is called neat, if
R ⊂ ({0} × Rn−k) ⊕ K0,0.

Such a neat sc-complement does always exist. Indeed, take a k-
dimensional subspace Z ⊂ N satisfying p(Z) = Rk × {0}. Then the
subspace Zc ⊂ N , determined by Zc = N ∩

((
{0} × Rn−k) ⊕ K0,0

)
has dimension dim N − k and satisfies Z ⊕ Zc = N . Let R be an
sc-complement of Zc satisfying Zc ⊕ R = ({0} × Rn−k) ⊕ K0,0. Then
Rn ⊕ K0,0 = N ⊕ R as claimed.
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Theorem 5.20. Let [f, 0] be a neat polyfold Fredholm section germ
of a strong local M-polyfold bundle satisfying f(0) = 0. If N is the
kernel of the linearization Df(0) in Rn ⊕ K0,0, then dim N < ∞ and
N ⊂ Rn ⊕ E∞ and there exists a neat sc-complement R such that

N ⊕ R = Rn ⊕ K0,0.

If Df(0) is surjective, then there exists an open neighborhood U of the
origin in N ∩ (C ⊕ K0,0) and an sc-smooth map

A : U → R

satisfying A(0) = 0 and DA(0) = 0 such that

f(n + A(n)) = 0

n + A(n) ∈ K0 ∩ (Rn ⊕ E∞)

for all n ∈ N . Moreover, A ∈ C∞(U, Rm) for every level m. All
solutions of f(v, e) = 0 in a small neighborhood of the origin in C ⊕E
are in the image of the map n �→ n + A(n).

Proof. In view of the neatness requirement and recalling the lin-
earization concept in the presence of corners from Remark ??, the proof
follows the lines of the proof of Theorem 5.17 with minor modifications.
We keep the same notation as in the proof Theorem 5.17. Since this
time we are interested in parametrizing solutions (v, e) ∈ V ⊕ E of
f(v, e) = 0 where (v, e) is near the corner 0, we have to make sure that
the maps defined in the proof of Theorem 5.17 are defined on open
neighborhoods of 0 whose projections onto Rk are open neighborhoods
of 0 in [0,∞)k. Then the partial derivatives of these maps in the direc-
tion of e1, · · · , ek of the standard basis for Rk are defined, and so these
maps have well-defined linerizations at 0.

This time the diffeomorphism germ τ : O(Rn ⊕W, 0) → (V ⊕E, 0)
which enters the definition of the sc-strong bundle diffeomorphism Φ
(5.27) and the definition of the map g in (5.28), is a map

τ : [0,∞)l × Rm−l ⊕ W → [0,∞)k × Rn−k ⊕ E

satisfying τ(0) = 0. Since τ is a diffeomorphism, it follows that k = l.
We abbreviate C = [0,∞)k × Rn−k and C0 = [0,∞)k × Rm−k. Setting
τ = (τ1, τ2, τ3) where τ1, τ2, and τ3 take their values in [0,∞)k, Rn−k

and E respectively, the derivative of the map τ1 : [0,∞)k × Rm−k ⊕
W satisfies D2τ1(0) = 0 and D3τ1(0) = 0. Moreover, the derivative
D1τ1(0) : Rk → Rk is an isomorphism. In addition, since τ1 ≥ 0, we
conclude that D1τ1(0)[0,∞)k = [0,∞)k so that

Dτ(0)(C0 ⊕ W ) = C ⊕ E.
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We are interested in solutions (a, u) of the equation g(a, u) = 0 for
(a, u) ∈ C ⊕ W close to 0. As before g(a, u) = 0 is equivalent to the
two equations

Pg(a, u) = 0

(1 − P )g(a, u) = 0

where P : RN ⊕ W → W is the canonical projection. In view of
Theorem 5.3, the solutions of the first equation are of the form (a, δ(a))
with δ : C0 → W . The map δ has, by Theorem 5.4, the following
smoothness property. For all integers m and j there is a neighborhood
O depending on j and the level m such that δ is of class Cj(O, Wm).

We introduce the map G : C0 = [0,∞)k × Rm−k → RN defined by

G(a) = (I − P )g(a, δ(a))

for a ∈ C0 and close to 0. As in the proof of Lemma 5.14 the linear
map DG(0) : Rk × Rm−k → RN is surjective. Its kernel K ⊂ Rm has
dimension equal to N − m and is isomorphic to the kernel N of the

linearization Df̂(0) : Rn⊕E → RN ⊕W . The isomorphism between K
and N is provided by the linear map h �→ Dτ(0)[h, δ′(0)h] for h ∈ K.
The linear map

DG(0) : Rk × Rm−k → RN

is a surjection and so there are N columns j1 < j2 < . . . , jN of DG(0)
which are linearly independent. The vectors D1τ1(0)e1, · · ·D1τ1(0)ek,
where {e1, · · · , ek} is the standard basis of Rk span Rk, and we con-
clude, in view of the neatness assumption, that j1 > k. Write the
set {1, . . . , m} as the disjoint union of J = {j1, . . . , jN} and I =
{i1, . . . im−N} with i1 < i2 < · · · < im−N . Since j1 > k, we have
i1 = 1, i2 = 2, · · · , ik = k. Define RI = A1 × · · · × Am and RJ =
B1 × · · ·Bm where Ai = R and Bi = {0} if i ∈ I and Ai = {0} and

Bi = R if i �∈ I. Consider the map Ĝ : (RI ∩ C0) × RJ → RN defined
by

Ĝ(c1, c2) = G(c1 + c2).

The linearization of G at the point (c1, c2) = (0, 0) with respect to the

variable c2, D2Ĝ(0) : RJ → RN , is given by DĜ(0)h = DG(0)[0, h])
for all h ∈ RJ , and so it is an isomorphism. Applying the implicit
function theorem, we find open sets U0 ⊂ RI ∩ C0 containing 0 and
V0 ⊂ RJ containing 0, and a map c : U0 → V0 such that c(0) = 0 and

Ĝ(r, c(r)) = G(r + c(r)) = 0. Hence all the solutions (v, e) ∈ C ⊕ E of

f̂(v, e) = 0 near the origin are of the form

β(r) = τ(r + c(r), δ(r + c(r))
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with r ∈ U0 ⊂ RI ∩ C. Since the zero set of the filler f̂ coincides with
the zero set of f we see that

f(β(r)) = 0

for all r ∈ U . Now the linearization Dβ(0) : RI → C⊕E is clearly injec-

tive, and maps RI onto the kernel N of the linearization Df̂(0). Hence
Dβ(0) : RI → N is an isomorphism. In addition, if p : Rk×Rn−k⊕E →
Rk is the canonical projection, then p(Dβ(0)C0) = [0,∞)k. Hence set-
ting U1 = Dβ(0)U0 ⊂ N we see that p(U1) is an open neighborhood of
0 in [0,∞)k. Then we introduce the map α : U1 → C ⊕ E by

α(n) = β(Dβ(0)−1n).

So that the zero set of f is parametrized by α(n) for n ∈ U1.
In view of the neatness assumption there is a neat complementary

subspace R ∈ Rn⊕K0,0 so that N⊕R = Rn⊕K0,0. With the canonical
projection Q : N ⊕ R → N we have Q ◦ α(n) = n for n ∈ U1 and
D(Q ◦ α)(0) = Id. Hence there is an open neighborhood U of 0 in
C ⊕K0,0 and map γ : U ∩N → U1 such that (Q ◦ α)(γ(n)) = n for all
n ∈ U ∩ N . The map A : N → R takes the form

A(n) = (I − Q)(α ◦ γ)(n)

defined for n ∈ U ∩ N . The solution of f = 0 near the corner 0 are of
the form n + A(n) so that

f(n + A(n)) = 0

for n ∈ U ∩ N . Clearly, A(0) = 0 and DA(0) = 0. Moreover, the map
A has the following smoothness property. For every integers j and m
there is an open neigborhood O (depending on j and m) of 0 in C⊕K0,0

such that A ∈ Cj(O∩N, Rm). In particular, A is smooth at the corner
0. Summing up, we have shown that the solution set (v, e) ∈ C ⊕K0,0

of f = 0 near the corner 0 is represented as a graph of a map A defined
on an open set in U2∩N and taking values in R. The set U2 is an open
neighborhood of 0 in C ⊕ K0,0. Moreover, the map A is smooth at 0.

To finish the proof it remains to show that the map A is smooth at
any other point of U ∩ N which is close to 0. Fix a level m. Without
loss of generality we may assume that A is of class C1 on U2 ∩ N . If
q ∈ C ⊕ E is close to the origin and f(q) = 0, then q = n + A(n)
for the unique n ∈ U2 ∩ N . There is a ∈ C0 so that q = τ(a, δ(a)).
Abbreviate by K(a) be the kernel of DG(a) and let N(a) be the kernel

of Df̂(q) where q = n + A(n) = τ(a, δ(a)). We already know that the
map h �→ Dτ(a)[h, δ′(0)h] is an isomorphism between K(a) and N(a).
We will show that if a ∈ C is close to 0, then N ⊕ R = N(a) ⊕ R and
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Rk ×{0} ⊂ p(N(a)) where p : Rk ×Rn−k ⊕K0,0 → Rk ×Rn−k. Indeed,
the columns j1 < · · · < jN with k < j1 of the matrix DG(0) are
linearly independent. So the matrix M(0) formed by these columns
has non zero determinant. In view of the continuity of DG(a) with
respect to a, the matrix M(a) formed by the same columns of the
matrix DG(a) has non-zero determinant for a in C0 and close to 0.
Hence the linearlization DG(a) : Rn → RN is surjective for a ∈ C and
close to 0. Moreover, if c1, . . . , cm−N is a basis for K = K(0), then
using the implicit function theorem we find a basis c1(a), . . . , cn−N(a)
for K(a) depending continuously on a and such that ci = ci(0) for
1 ≤ i ≤ m − N . The corresponding basis n1(a), . . . , nm−N (a) for N(a)
depends continuously on a. Arguing now as in the proof of Lemma
1.22, we obtain that N ⊕R = N(a)⊕R for a ∈ C and close to 0. From
this and our neatness assumptions we deduce that Rk ×{0} ⊂ p(N(a))
where p : Rn ⊕K0,0 → Rn is the canonical projection. In addition, the
fact that N ⊕ R = N(a) ⊕ R implies that if p : N ⊕ R → N is the
canonical projection, then p|N(a) : N(a) → N is an isomorphism.

Fix a point n0 ∈ U2∩N and let q0 = n0 +A(n0). We will show that
A is smooth at n0. There is a point a0 ∈ C satisfying q0 = τ(a0, δ(a0)).
We start with the case that some of the k first coordinates of p(q0)
are equal to 0 where p : Rn ⊕ K0,0 = N ⊕ R → Rn is the canonical
projection. Without loss of generality we may assume that the first
j coordinates of p(q0) are equal to 0. Then the first j coordinates of
p(n0) are also equal to 0 in view of the neatness assumption. Hence
q∈[0,∞)j⊕Rn−j⊕E and q0 = τ(a0, δ(a0)). Since τ is a diffeomorphism,
the first j coordinates of a0 are equal to 0 so that a0 ∈ [0,∞)j ×Rm−j.
Abbreviate by K ′ = K(a0) the kernel of Dg(a0) and by the N ′ = N(a0)

the kernel of Df̂(q0) which is the same as the kernel of Df(q0)|R
n⊕K0,0.

The above discussion shows that Rk × {0} ⊂ p(N ′) and since j ≤ k,
we see that the polyfold Fredholm germ [f, q0] is neat and there exists
a complementary neat subspace R′ so that N ′ ⊕ R′ = Rn ⊕ K0,0.

Thus, we may apply the previous arguments and show the existence
of an open neighborhood U ′ of 0 in C⊕K0,0 and a map A′ : U ′∩N ′ → R′

such that all solution q of f(q) = 0 near q0 are of the form

q = q0 + n′ + A′(n′).

Moreover, the map A′ satisfies A′(0) = 0, DA′(0) = 0, and is smooth
at the point n′ = 0.

Making U ′ smaller if necessary and recalling that the restriction of
the projection p : N ⊕ R → N to N ′, p : N ′ → N , is an isomorphism,
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we define the map α : U ′ ∩ N ′ → U ∩ N by setting

α(n′) = p[q0 + n′ + A′(n′)].

We have α(0) = n0 and conclude that

(5.39) α(n′) + A(α(n′)) = q0 + n′ + A′(n′)

for all n′ ∈ U ′ ∩ N ′. The linearization Dα(0) : N ′ → N is well-defined
and is an isomorphism. This implies that α is a local diffeomorphism
between some open neighborhood of 0 in U ′∩N ′ and an open neighbor-
hood of n0 in U ∩ N . We may assume that these open neighborhoods
are equal to U ′ ∩N ′ and U ∩N . The map α has the following smooth-
ness property. For every integer j there exists an open neighborhood
O of 0 in U ′ ∩ N ′ is of class Cj on O. Since

n + A(n) = p[q0 + α−1(n) + A′(α−1(n))]

for n ∈ U ∩ N , we conclude that for given integers m and j there
exists an open neighborhood of O = Oj,m ⊂ U ∩ N of n0 such that
n �→ n + A(n) from O into Rn ⊕ (K0,0)m on which is of class Cj . In
particular, the map n �→ A(n) for n ∈ U ∩ N and is smooth at 0 as
claimed.

Finally, if none of the the first coordinate of p(q0) is equal to 0, then
q0 is an interior point of C ⊕ E. Then q0 = τ(a0, δ(a0)) with a0 being
an interior point of C0. Moreover, if N ′ is the kernel of Df(q0), then,
in view of Theorem 5.17, there is a map A′ : N ′ → R′ defined on an
open neighborhood of 0 in N ′ such the solutions of f = 0 near q0 are
of the form n′ + A′(n′). Again we we have Rk × {0} ⊂ p(N ′) if q0 is
close to 0 and so the map α in (5.39) is well-defined. The rest of the
proof is the same as above. The proof of the theorem is complete. �

5.4.3. Stability of local Fredholm sections. We shall demon-
strate the useful fact that Fredholm sections are stable under appro-
priate perturbations. As before we consider the local polyfold bundle

b : KS�|O → O

where O ⊂ K0 is open. The bundle

b1 : (KS�|O)1 → O

is defined over the level 1 open set O1 ⊂ O, and the set

KS� = {(v, e, f) ∈ (V ⊕ E) � F |πv(e) = e and σv(f) = f}

has the double filtration

(V ⊕ E)m+1 ⊕ Fk+1
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for all m ≥ 0 and 0 ≤ k ≤ m+1. If q is a smooth point, then a section
[f, q] of the bundle [b, q] induces a germ [f, q]1 of the bundle [b1, q]. From
Definition 4.4 we recall that an sc1-section [s, q] of the bundle [b, q] has
the property that the principal part is an sc-smooth map O → F 1.
Hence, for all m ≥ 0 we have s(v, e) ∈ Fm+1 if (v, e) ∈ (V ⊕ E)m. The
stability result is now as follows.

Proposition 5.21. Suppose the section [f, q] is a polyfold Fredholm
germ of the bundle [b, q] in the sense of Definition 5.13. If [s, q] is an
sc1-section of [b, q], then [f + s, q] is a polyfold Fredholm section germ
of the bundle [b1, q].

Proof. Denote by [f̂ , q] the filler of [f, q] at the smooth point q.

We shall show that [f̂ + s, q] is a filler for the germ [f + s, q] of the

bundle [b1, q]. We have to verify for f̂ + s the two properties of an sc-

Fredholm germ in Definition 5.8. We first observe that f̂ + s possesses
the regularizing property because the section s is sc+-smooth. In order

to verify the contraction property for f̂ + s we use the fact that f̂ is a
filler. Hence there exists a partial cone V in Rn, an sc-smooth Banach
space W and a germ of a strong vector bundle isomorphism

Ψ : O(U � F, q) → O((V ⊕ W ) � (RN ⊕ W ), 0)

which covers the sc-diffeomorphism germ σ : O(U, q) → (V ⊕ W, 0)

satisfying σ(q) = 0 and which has the property that the map Ψ(f̂) :
O(V ⊕ W, 0) → (W, 0) defined by

Ψ(f̂)(a, w) = P ◦ pr2 ◦ [Ψ ◦ f̂ ◦ σ−1(a, w) − Ψ(f̂(q))],

is an sc0-contraction germ in the sense of Definition 5.1. Abbreviate

g(a, w) = Ψ(f̂)(a, w)

we have the contraction representation

g(a, w) = w − B(a, w).

Replacing f̂ by the section s we define

S(a, w) = Ψ(s)(a, w).

Then S is an sc+-section. Abbreviating the linearization

Aŵ = D2S(0, 0)ŵ,

ŵ ∈ W , at the point (a, w) = (0, 0) in the direction of the second
argument. Then A : W → W is, on every level m ≥ 0, a compact
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operator. Therefore, Id+A : W → W is a linear sc-Fredholm operator
of index 0. The associated splitting of W ,

Id + A : W = C ⊕ X → W = R ⊕ Z

with C = ker (Id + A) and R = range (Id + A) satisfies dim C =
dim Z < ∞. Since S is of class C1 on every level m ≥ 1 we have the
representation

S(a, w) = Aw + G(a, w)

where D2G(0, 0) = 0. Hence G is a contraction with respect to the
second variable on every level m ≥ 1 if only a and w are small enough
(depending on the level m). Consider the sum

g(a, w) + S(a, w) = w − B(a, w) + Aw − G(a, w)

= (Id + A)w − B(a, w),

where

B(a, w) = B(a, w) + G(a, w).

The map B is a contraction in the second variable on every level m ≥ 1
as long as a and w are sufficiently small. Define the canonical projec-
tions

Q : W = C ⊕ X → X

E : W = R ⊕ Z → R,

and introduce

Φ(a, w) := E ◦ P ◦ pr2 ◦ [Ψ(f̂ + s) ◦ σ−1(a, w) − Ψ((f̂ + s)(q))]

= E ◦ [(id + A)w − B(a, w)]

= E ◦ (id + A) ◦ Q(Qw) − E ◦ B(a, (Id − Q)w + Qw).

Using the sc-isomorphism L := (Id + A)|X : X → R we obtain

L−1 ◦Φ(a, (Id −Q)w + Qw) = Qw + L−1 ◦E ◦ B(v, (Id−Q)w + Qw).

We shall view the set (a, (Id − Q)w) as the new parameter set and
define

B̂((a, (Id − Q)w), Qw) := L−1 ◦ E ◦ B(a, (Id − Q)w + Qw).

Then B̂ possesses the required contraction property with respect to the
variable Qw on all levels m ≥ 1 provided a and w are small enough. It
remains to identify the above expression as obtained from an admissible
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coordinate change. For this we take any linear isomorphism τ : Z → Z
and define the fiber transformation

Ψ̂ = [(L−1 ◦ E) ⊕ τ ◦ (Id − E) ◦ Ψ.

With the projection

P : Rn ⊕ W = Rn ⊕ C ⊕ X → X

P (a, w) = Qw

we finally obtain, setting (a, (Id − Q)w + Qw) = (a, (Id − Q)w, Qw),
the formula

P ◦ pr2 ◦ [Ψ̂ ◦ (f̂ + s) ◦ σ−1(a, (Id − Q)w, Qw) − Ψ̂ ◦ (f̂ + s)(σ−1(q))]

= Qw − B̂(a, (Id − Q)w, Qw).

We have proved that [f̂+s, q] is a polyfold Fredholm germ of the bundle
[b1, q] in the sense of Definition 5.13. The proof of Proposition 5.21 is
complete. �



CHAPTER 6

Global sc-Fredholm Theory

This chapter is devoted to the Fredholm theory in M-polyfold bun-
dles.

6.1. Fredholm sections

Given the M-polyfold bundle

b : Y → X

according to Definition 4.7 we denote by Γ(b) the space of sc-smooth
sections and by Γ+(b) the space of sc+-sections.

Definition 6.1. Fredholm section. A section f ∈ Γ(b) of the
M-polyfold bundle b : Y → X is called Fredholm, if at every smooth
point q ∈ X there exists an M-polyfold bundle chart

Φ : b−1(U) → KS�|O

around q ∈ U ⊂ X in the sense of Definition 4.7 in which the section
germ [f, q] is a local polyfold Fredholm germ according to Definition
5.13. The collection of all Fredholm sections is denoted by F(b).

Recall that Definition 5.13 requires that [f, q] possesses a filler f̂
which is an sc-Fredholm germ in the sense of Definition 5.8, and so
possesses the regularizing property and the contraction property.

From the local stability result in Proposition 5.21 one deduces im-
mediately the following global version.

Proposition 6.2. The map

Γ(b) × Γ+(b) → Γ(b)

(f, s) �→ f + s

induces a map
F(b) × Γ+(b) → F(b1).

For the deeper study of Fredholm operators it is useful to introduce
first some auxiliary concepts.

163
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6.2. Mixed convergence and auxiliary norms

We begin with a notion of convergence in the bundle b : Y → X
called mixed convergence, referring to a mixture of strong convergence
in the base space X and weak convergence in the level 1 fibers Y 1,
assuming the fibers are reflexive sc-Banach spaces.

6.2.1. Mixed Convergence. We start with the local definition
in an M-polyfold bundle chart and consider the M-polyfold bundle

KS�|O → O

where O is an open subset of the splicing core

K0 := KS0 = {(v, e) ∈ V ⊕ E| πv(e) = e}

and where

KS� = {(v, e, y) ∈ O ⊕ F | σv(y) = y} = O � K1.

Abbreviating the elements in O by x = (v, e) we consider a sequence

(xk, yk) ∈ O � (K1)1,

where (K1)1 refers to F1, the level 1 space of the sc-Banach space F .

Definition 6.3. Mixed convergence. The sequence (xk, yk) ∈
O � (K1)1 is called m-convergent to (x, y) ∈ O ⊕ F1 if

(1) xk → x in O

(2) yk ⇀ y in F1.

Symbolically,

(xk, yk)
m
−→ (x, y).

Lemma 6.4. If (xk, yk) ∈ O � (K1)1 and (xk, yk)
m
−→ (x, y), then

(x, y) ∈ O � (K1)1.

Proof. By assumption, xk = (vk, ek) and πvk
(ek) = ek. Moreover,

σvk
(yk) = yk. Since the inclusion map I : F1 → F0 is a compact map,

one concludes from the weak convergence of yk ⇀ y in F1 that yk → y
in F0. With x = (v, e) it follows from the continuity of the projections
(v, y) �→ σv(y) in F that σv(y) = y in F0. Since y ∈ F1 one concludes
σv(y) = y in F1 so that (x, y) ∈ O � (K1)1 as claimed in the lemma.

�

We must demonstrate that the concept of m-convergence is compat-
ible with M-polybundle maps provided the fibers are reflexive spaces
according to the following definition.
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Definition 6.5. An sc-Banach space F is called reflexive if all
the spaces Fm, m ≥ 0, of its filtration are reflexive Banach spaces.

We consider now an sc-smooth polybundle map

Ψ : O � K → O′ � K ′

assuming that the underlying sc-Banach spaces F and F ′ are reflexive.
With x = (v, e) the map ψ is of the form

Ψ(x, y) = (σ(x), ψ(x, y)).

The maps σ : O → O′ and ψ are sc-smooth and linear in y. Consider
a sequence (xk, yk) ∈ O � (K1)1. If (xk, yk)

m
−→ (x, y), then (x, y) ∈ O �

(K1)1 in view of Lemma 6.4, and σ(xk) → σ(x). From (xk, yk) → (x, y)
in O � (K1)0 it follows that ψ(xk, yk) → ψ(x, y) in O′ � (K ′

1)0, so that

Ψ(xk, yk) → Ψ(x, y) in O′ � (K1)
′
0.

By Definition 4.2 of sc-smooth bundle maps, the map Ψ : O � (K1)1 →
O′�(K ′

1)1 is continuous. From the continuity limk→∞ ψ(xk, y) = ψ(x, y)
in (F ′)1 for all y ∈ F1, we deduce by means of the uniform boundedness
principle that the sequence of bounded linear maps ψ(xk) ∈ L(F1, F

′
1)

defined by ψ(xk) · y = ψ(xk, y) has uniformly bounded operator norms,
|||ψ(xk)||| ≤ C for all k. Consequently, ‖ψ(xk, yk)‖1 ≤ C · ‖yk‖1. From
the weak convergence yk ⇀ y in F ′

1 we know that ‖yk‖1 is also a
bounded sequence. Hence ‖ψ(xk, yk)‖1 is a bounded sequence. Be-
cause F ′

1 is a reflexive Banach space, every subsequence of the bounded
sequence ψ(xk, yk) in F ′

1 possesses a subsequence having a weak limit
in F ′

1. The limit is necessarily equal to ψ(x, y).
Summarizing we have proved that

σ(xk) → σ(x) in O′

and

pr2 ◦ Ψ(xk, yk) ⇀ pr2 ◦ Ψ(x, y) in (K ′
1)1

i.e., on level 1. The discussion shows that the mixed convergence is in-
variant under M-polyfold chart transformations and hence an intrinsic
concept for M-polyfold bundles having reflexive fibers so that we can
introduce the following definition.

Definition 6.6. If b : Y → X is an M-polyfold bundle with reflex-
ive fibers, then a sequence yk ∈ Y 1 is said to converge in the m-sense
to y ∈ Y 1, symbolically

yk
m
−→ y in Y 1,



166 6. GLOBAL SC-FREDHOLM THEORY

if the underlying sequence xk = b(yk) ∈ X converges in X to an element
x and if there exists an M-polyfold bundle chart Ψ around the point
x ∈ X satisfying

pr2 ◦ Ψ(xk, yk) ⇀ pr2 ◦ Ψ(x, y)

weakly in (K ′
1)1, i.e., on level 1.

As shown above, the definition does not depend on the choice of
the local M-polyfold bundle chart.

6.2.2. Auxiliary Norms. For the general perturbation theory we
introduce some auxiliary concepts to estimate the size of perturbations.

Definition 6.7. An auxiliary norm N for the M-polyfold bundle
b : Y → X consists of a continuous map N : Y 1 → [0,∞) having the
following properties.

• For every x ∈ X the induced map N |Y 1
x → [0,∞) on the fiber

Y 1
x = b−1(x) is a complete norm.

• For every m-convergent sequence yk
m
−→ y we have

N(y) ≤ liminfk→∞N(yk).

• If N(yk) is a bounded sequence and the underlying sequence xk

converges to x ∈ X then yk has a m-convergent subsequence.

In view of the open mapping theorem the complete norm N |Y 1 is
equivalent to the original 1-norm. Using the paracompactness of X we
can easily construct auxiliary norms.

Proposition 6.8. Let b : Y → X be a M-polyfold bundle with
reflexive fiber. Then there exists an auxiliary norm.

Proof. Construct for every x ∈ X via local coordinates a norm
NU(x) for Y 1|U(x) where U(x) is a small open neighborhood of x ∈ X.
This is defined by NU(x)(y) =‖ pr2 ◦ Ψ(y) ‖1, where Ψ is a local m-
polybundle chart and pr2 is the projection onto the fiber part. Observe
that m-convergence of yk to some y in Y 1|U(x) implies weak conver-
gence of pr2 ◦ Ψ(yk). Using the convexity of the norm and standard
properties of weak convergence we see that

NU(x)(y) ≤ liminfk→∞NU(x)(yk).

We have at this point local expressions for auxiliary norms which cover
X. Using the paracompactness of X we can find a subordinate partition
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of unity (χλ)λ∈Λ and define

N =
∑

χλNU(xλ).

If N(yk) is bounded and the underlying sequence xk converges to some
x ∈ X it follows in local coordinates that the representative of yk is
bounded on level 1. In view of the reflexivity, the sequence yk possesses
a m-convergent subsequence. �

The following result will be useful in compactness investigations.

Theorem 6.9 (Local Compactness). Consider the M-polyfold bun-
dle b : Y → X having reflexive fibers and let f be a Fredholm section
of b . Assume that an auxiliary norm N : Y 1 → [0,∞) is given. Then
there exists at every smooth point q ∈ X an open neighborhood U(q) in
X so that the following holds.

• The set Z defined by

Z = {x ∈ U(q)| f(x) ∈ Y 1 and N(f(x)) ≤ 1}

is a compact subset of X.
• Every sequence (xk) in U(x) satisfying

lim inf
k→∞

N(f(xk)) ≤ 1

possesses a convergent subsequence.

Proof. The statement is local and, using in local coordinates the
translation u �→ u− q which is sc-smooth since q is a smooth point, we

may assume that the filler f̂ of the section f is defined near 0. Moreover,
after a change of coordinates as in the definition of a contraction germ.
we may assume that

f̂ : V ⊕ W → RN ⊕ W

is defined near 0, where V ⊂ Rn is a partial cone. Denoting by P :
RN ⊕ W → W the canonical projection, the contraction germ is given
by

P [f(a, w)− f(0)] = w − B(a, w).

It is defined on a sufficiently small closed neighborhood U0 of the origin
on the level 0 on which it has the contraction property. The auxiliary
norm N is defined on U 0⊕ (RN ⊕W )1 and, possibly choosing a smaller
neighborhood, we may assume that it is equal to the 1-norm so that
N(x, h) = ‖h‖1. We now consider the set of (a, w) ∈ U 0 satisfying
f(a, w) ∈ (RN ⊕ W )1 and

‖f(a, w)‖1 ≤ 1.
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The section f splits according to the splitting of the tangent space into

f(a, w) =

[
(Id−P )f(a, w)

Pf(a, w)

]
=

[
(Id−P )f(a, w)

w − B(a, w) + Pf(0)

]
.

Using the contraction property one finds for given u ∈ W close to
Pf(0) and given a ∈ V close to 0 a unique w(a, u) ∈ W solving the
equation Pf(a, w(a, u)) = u. Moreover, the map (a, u) �→ w(a, u) is
continuous on the 0-level. Now, given a sequence (ak, uk) ∈ U0 such
that

f(ak, wk) =: (bk, uk)

belongs to (RN ⊕ W )1 and satisfies ‖f(ak, wk)‖1 ≤ 1, we have the
equations

Pf(ak, wk) = uk

(Id−P )f(ak, wk) = bk

wk = w(ak, uk).

We shall show that (ak, wk) possesses a convergent subsequence in U 0.
By assumption, (RN ⊕ W )1 is a reflexive Banach space so that going
over to a subsequence,

(bk, uk) ⇀ (b′, u′) in (RN ⊕ W )1

(bk, uk) → (b′, u′) in (RN ⊕ W )0,

and ‖(b′, u′)‖ ≤ 1. In RN we may assume ak → a′ ∈ V . Conse-
quently, wk = w(ak, uk) → w′ := w(a′, u′). Hence f(a′, w′) = (b′, u′)
and ‖f(a′, w′)‖1 ≤ 1. The proof of Theorem 6.9 is complete. �

6.3. Proper Fredholm Sections

In this section we introduce the important class of proper Fredholm
sections.

Definition 6.10. A Fredholm section f of b : Y → X is called
proper provided f−1(0) is compact in X.

The first observation is the following.

Theorem 6.11 (∞-Properness). Assume that f is a proper Fred-
holm section of the M-polyfold bundle b : Y → X. Then f−1(0) is
compact in X∞.

Proof. Properness implies by definition that f−1(0) is compact
on level 0. Of course, f−1(0) is a subset of X∞ since f is regularizing.
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Assume that xk is a sequence of solutions of f(x) = 0. We have to
show that it possesses a subsequence converging to some solution x0

in X∞. After taking a subsequence we may assume that xk → x0 on
level 0. We choose a contraction germ representation for [f, x0]. After
a suitable change of coordinates the sequence (ak, wk) corresponds to
xk and the point (0, 0) to x0, and

wk = B(ak, wk),

with (ak, wk) → (0, 0) on level 0. Consequently,

wk = δ(ak)

for the map a → δ(a) constructed in Section 5.1 using Banach’s fixed
point theorem on level 0. We know from Section 5.1 that for every level
m there is an open neighborhood Om of 0 so that δm : Om → W m is
continuous and given by Banach’s fixed point theorem on the m-level.
We may assume that Om+1 ⊂ Om. Fix a level m. For k large enough,
we have ak ∈ Om. Then δm(ak) is the same as δ(ak) = wk. Hence
ak → 0 implies wk → 0 on level m. Consequently, (ak, wk) → 0 on
every level, implying convergence on the ∞-level. Hence xk → x0 in
X∞ as claimed. �

As a consequence of the local Theorem 6.9 we obtain the following
result for proper Fredholm sections.

Theorem 6.12. Let b : Y → X be an M-polyfold bundle with re-
flexive fibers and assume that f is a proper Fredholm section. Assume
that N is a given auxiliary norm. Then there exists an open neigh-
borhood U of the compact set S = f−1(0) so that the following holds
true.

• For every section s ∈ Γ+(b) having its support in U and sat-
isfying N(s(x)) ≤ 1, the section f + s is a proper Fredholm
section.

• Every sequence (xk) in U satisfying f(xk) ∈ Y 1 and

lim inf
k→∞

N(f(xk)) ≤ 1

possesses a convergent subsequence.

Proof. We know from the local Fredholm theory that f + s is
Fredholm if s is a sc+-section s. For every q ∈ S = f−1(0) there exists
an open neighborhood U(q) having properties as in Theorem 6.9. Since
S is a compact set we find finitely many qi so that the open sets U(qi)
cover S. We denote their union by U . Next assume that the support of
s ∈ Γ+(b) is contained in U . If f(x)+ s(x) = 0, then necessarily x ∈ U
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because otherwise s(x) = 0 implying f(x) = 0 and hence x ∈ S ⊂ U ,
a contradiction. Consequently, the set of solutions of f(x) + s(x) = 0
belongs to {x ∈ U | f(x) ∈ Y 1 and N(f(x)) ≤ 1} which by construction
is contained in a finite union of compact sets. The proof of Theorem
6.12 is complete. �

6.4. Transversality and Solution Set

From our local considerations in the previous chapter we shall de-
duce the main result about the solution set of Fredholm sections.

Theorem 6.13. Consider a proper Fredholm section f of the M-
polyfold bundle b : Y → X. Assume that for every point q ∈ f−1(0) the
linearization Df(q) is neat and surjective. Then the solution set f−1(0)
carries in a natural way the structure of a smooth compact manifold
with boundary with corners.

Proof. Choose a point q ∈ X satisfying f(q) = 0. Then q is a
smooth point, and there is a special M-polybundle chart (U0, Φ, KS�|O)
as in Definition 4.7, where U0 is an open neighborhood around q in X
and Φ a homeomorphism

Φ : p−1(U0) → KS�|O

which is linear on the fibers and which covers a homeomorphism

ϕ : U0 → O ⊂ KS0 ,

so that pr1 ◦ Φ = ϕ ◦ b. Here O is an open subset of the splicing core
KS0 = {(v, e) ∈ V0 ⊕ E| πv(e) = e} where V0 = [0,∞)k × Rn−k is a
partial cone, and E is an sc-Banach space. We may assume ϕ(q) = 0.
Let g be the push-forward of the section f under Φ and let ĝ be its
filler. Then the linearization Dg(0) is by assumption surjective and
neat. Denote by N the kernel of Dg(0). In view of Theorem 5.20,
dim N < ∞ and N ⊂ Rn ⊕ E∞. Moreover, there exists a neat sc-
complement R such that

N ⊕ R = Rn ⊕ K0,0.

In addition, there exists an open neighborhood V of zero in a partial
cone of N and an sc-smooth map A : V → R satisfying A(0) = 0 and
DA(0) = 0 such that the map

γ : V → N ⊕ R, γ(n) = n + A(n)

parametrizes all the solutions of g = 0 near the origin,

g(n + A(n)) = 0.
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Further, n + A(n) ∈ N ⊕ R∞ ∩ K0. Composing the map γ with the
coordinate map ϕ we define the map β−1 : V → X by

β−1(n) = ϕ−1(n + A(n)) = ϕ−1 ◦ γ(n).

It parametrizes all solutions of f(x) = 0 near the point q. Denote by
U ⊂ X the image of β−1, so that

U = β−1(V ).

The pair (U, β) will be a coordinate chart for the solution set f−1(0)
and we shall show that all coordinate charts constructed this way are
smoothly compatible. Assume that (U ′, β ′) is a second such chart so
that U ∩ U ′ �= ∅ and consider

β ′ ◦ β−1 : β(U ∩ U ′) → β ′(U ∩ U ′).

By construction β ′ maps U ′ onto an open set V ′ of a partial cone in
the kernel N ′ which has neat sc-complement R′ and

(β ′)−1(n′) = (ϕ′)−1(n′ + A′(n′)).

Take p ∈ U ∩ U ′. Then β(p) = P ◦ ϕ(p) = P (n + A(n)) = n and
β ′(p) = P ′ ◦ϕ′(p) = P ′(n′ +A′(n′)) = n′ with the canonical projections
P : N ⊕ R → N and P ′ : N ′ ⊕ R′ → N ′. Consequently,

n′ = β ′ ◦ β−1(n)

= P ′ ◦ ϕ′ ◦ β−1(n)

= P ′ ◦ ϕ′ ◦ ϕ−1(n + A(n))

= P ′ ◦ (ϕ′ ◦ ϕ−1) ◦ γ(n).

Since, by Theorem 5.20, the map γ is sc-smooth, and since the transi-
tion map ϕ′ ◦ϕ−1 is, by definition, an sc-smooth map, the composition
β ′ ◦ β−1 is sc-smooth and hence is a smooth map between open sets
of partial cones in Euclidean spaces. The proof of Theorem 6.13 is
complete. �

6.5. Perturbations

Let us next prove some perturbation results.

Theorem 6.14. Assume that f is a proper Fredholm section of the
M-polyfold bundle b : Y → X. Let us assume that ∂X = ∅. Let N and
α be auxiliary norm and bounds, respectively. Assume that U is the
open neighborhood of f−1(0) so that for every s ∈ Γ+(b) with support
in U and N(s(x)) ≤ α(x) the section f + s is proper. Denote the
space of all sections in Γ+ as just described by O. Then there exists for
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t ∈ 1
2
O and ε ∈ (0, 1

2
) a section s ∈ O with s − t ∈ εO so that f + s

has for every solution of f(q) + s(q) = 0 a surjective linearization.

Proof. The set Ξ of all x ∈ X with N(f(x)) ≤ α(x) and x ∈ U is
compact in X. Clearly Ξ ⊂ X1 by the regularizing property. Consider
for given t the solution set S of f + t = 0. This set is compact in
X∞. For every x ∈ S consider the linearisation (f + t)′(x) which is
sc-Fredholm. We find finitely many sections s1, .., sk in Γ+(b) with
support in U so that

(λ1, .., λk, h) → (f + t)′(x)h +

k∑
i=1

λisi(x)

is onto. The same is true for all y close to x in X∞. By a finite
covering argument we can find finitely many section so that for every x
with (f + t)(x) = 0 the linearization (f + t)′(x) has a cokernel spanned
by the s1(x), ..., sk(x). We may view Y as a M-polyfold bundle over
Rk ⊕ X. Then the map

(λ1, .., λk, x) → (f + t +
k∑

i=1

λisi)(x)

gives a Fredholm section of Y 1 → Rk × X1 which has the property
that along S the linearization is surjective. Let L be the solution set
near {0}×S. This is a smooth manifold and the projection L → Rk is
smooth. Take a small regular value near 0. Then the associated section
s∗ has the property that f + s∗ is transversal to the zero-section. �

6.6. An Example of a Fredholm Operator

We begin by proving some estimates which will be useful in showing
that the operator [u] → [du

dt
+ f ′(u)] induces a Fredholm section of the

bundle p : Y → X.

6.6.1. An a priori estimate. We start by recalling the definition
of the Sobolev weighted spaces Hm,δ(S, Rn). If δ is a real number and
I is an interval in R, then Hm,δ(I, Rn) consists of functions w whose
weak derivatives Djw up to order m belong to L2(I) if weighted by
eδ|s|. The Hm,δ(I)-norm is defined by

‖w‖2
Hm,δ(I) =

∑
k≤m

∫
I

|Dkw|2e2δ|s|ds.

In the following A : Rn → Rn is a symmetric linear isomorphism
having the eigenvalues λi, 1 ≤ i ≤ n. As in Section 2.2 we work with
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the sc-smooth Banach spaces E = E+ ⊕ E− consisting of pairs (u, v)
of maps

(u, v) ∈ E+ ⊕ E− = H2([0,∞), Rn) ⊕ H2((−∞, 0], Rn).

The sc-structure is defined by the weighted Sobolev spaces E±
m =

Hm+2,δm(R±) for all m ≥ 0, having the norms

‖w±‖2
m =

∑
j≤m+2

∫
R±

|Djw±(s)|2e2δm|s|ds.

The norm on Em is defined as

‖(u, v)‖m = ‖u‖m + ‖v‖m.

Here δm, m ≥ 0 is a strictly increasing sequence starting at δ0 = 0
but this time restricted by the condition

(6.1) δm < min{|λi|, 1 ≤ i ≤ n}.

Similarly, F = F+ ⊕ F− is the sc-smooth space consisting of pairs
(h, k) of maps

(h, k) ∈ F+ ⊕ F− = H1(R+) ⊕ H1(R−)

with an sc-structure defined by the Sobolev spaces F±
m = Hm+1,δm(R±).

We also recall from Section 2.2 the total gluing operation �r asso-
ciating with (u, v) the pair of functions

(6.2) �r(u, v) = (⊕r(u, v),�r(u, v)).

If r > 0, it is explicitly given by

(6.3) �r(u, v) =

[
τR(s) 1 − τR(s)

τR(s) − 1 τR(s)

]
·

[
u(s)

v(s − R)

]
for 0 ≤ s ≤ R. Here τR(s) = β(s− R

2
) with the cut-off function β from

(2.5) and

R = ϕ(r)

with the gluing profile ϕ from (2.6). We next introduce the 1-parameter
family of sc-continuous linear operators

(6.4) Lr : E → F

defined, if r = 0, by

(6.5) L0(u, v) = (u̇ + Au, v̇ + Av)
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and if r ∈ (0, 1), by

(6.6) Lr(u, v) = �
−1
r

[(
d

ds
+ A

)(
⊕r(u, v),�r(u, v)

)]
.

Explicitly, taking the derivative in s in the definition (6.2), a cal-
culation shows that

(6.7) Lr(u, v) = L0(u, v) + FR(u, v)

where FR(u, v) = (F+
R (u, v), F−

R (u, v)) is defined by the formulae

F+
R (u, v)(s) =

τ̇ (s)

α(s)
· [(2τ(s) − 1) · u(s) − v(s − R)]

for all s ≥ 0, and

F−
R (u, v)(s′) =

τ̇ (−s′)

α(−s′)
· [u(s′ + R) + (1 − 2τ(−s′)) · v(s′)]

for all s′ ≤ 0. We have abbreviated τ(s) = τR(s) and τ̇ (s) = d
ds

τ(s).
Moreover, α(s) = τ(s)2 + (1 − τ(s))2. Due to the definition of τ , the
support of the function F+

R (u, v) is contained in the interval [R
2
−1, R

2
+

1] ⊂ R+ while the support of F+
R (u, v) is contained in [−R

2
−1,−R

2
+1] ⊂

R−. By Rellich’s compactness theorem, the linear operator FR : E → F
is compact. In view of Theorem 2.17, the maps (r, u, v) �→ F+

R (u, v)
resp. (r, u, v) �→ F−

R (u, v) from [0, 1
2
)⊕E → F+ resp. from [0, 1

2
)⊕E →

F− are sc-smooth. We formulate this fact as a proposition.

Proposition 6.15. The map

L : [0, 1) ⊕ E → F

is sc-smooth.

We shall need in the following the well-known Fredholm properties
of the linear operator L0 defined in (6.6).

Lemma 6.16. The operator L0 is sc-Fredholm with index 0 and with
n-dimensional kernel and cokernel.

We denote by Ê the Sobolev space H2(R, Rn) of maps defined on

all of R. The sc-structure is given by the spaces Hm+2,δm(R). By F̂
we denote the sc-smooth space Hm+1,δm(R) whose sc-structure is given
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by the spaces Hm+1,δm(R). On these spaces we introduce the sc-linear
continuous operator

L̂ : Ê → F̂

L̂w = ẇ + Aw.

We will also need the sc-smooth space E = H2(R, Rn) with the sc-
structure given by Em = Hm+2,−δm(R), and the space F = H1(R) with
the sc-structure defined by Fm = Hm+1,−δm(R). On these spaces we
have the sc-linear continuous operator L : E → F defined by Lw =
ẇ+Aw. In view of restriction (6.1) one verifies the following statement.

Lemma 6.17. The sc-linear operators L̂ and L are sc-isomorphisms.

The above lemmata 6.16 and 6.17 are well-known and we refer, for
example to [19] and [26]. The aim of this subsection is the proof of
the following a priori estimate.

Theorem 6.18. For every m ≥ 0 there exists a constant cm > 0 so
that

‖Lr(u, v)‖m + |u(0)| + |v(0)| ≥ cm · ‖(u, v)‖m

for all r ∈ [0, 1
2
] and (u, v) ∈ Em.

Proof. Arguing indirectly we assume that on some level m there
are sequences rk → r0 and (uk, vk) ∈ Em satisfying ‖(uk, vk)‖m = 1
and

(6.8) ‖(L0 + FRk
)(uk, vk)‖m + |uk(0)| + |vk(0)| → 0

as k → ∞, where Rk = ϕ(rk).
We consider two cases depending on whether the limit r0 is equal

to 0 or different from 0. We start with the case r0 > 0. In this
case Rk → R0. The operator L0 is Fredholm with index 0 and FR0 is a
compact operator, hence L0+FR0 is Fredholm with index 0. Denote by
X the finite dimensional kernel of L0+FR0 and by Y the complementary
subspace in Em so that Em = X ⊕ Y . The restriction (L0 + FR0)|Y →
Fm is injective. We split the sequence (uk, vk) accordingly into the
sum (uk, vk) = (uk, vk) + (ûk, v̂k) with (uk, vk) ∈ X and (ûk, v̂k) ∈ Y .
It follows from the definition of the operator FR that ‖FRk

(uk, vk) −
FR0(uk, vk)‖m → 0 and since (L0 + FR0)(uk, vk) = 0 we conclude from
(6.8) that

(6.9) ‖(L0 + FR0)(ûk, v̂k)‖m → 0.
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The injectivity of (L0 + Fr0)|Y → Fm implies (ûk, v̂k) → 0 in Em.
Since the kernel X of L0 + Fr0 is finite dimensional and the sequence
(uk, vk) bounded, we may assume without loss of generality that (uk, vk)
converges in Em to (u, v) ∈ X. Consequently,

L0(u, v) + FR0(u, v) = 0.

This together with (u, v)(0) = 0 imply, in view of the uniqueness of
initial value problem for differential equations, that (u, v) = 0. Hence
we have proved (uk, vk) → 0 in Em contradicting ‖(u, v)‖m = 1.

We next turn to the case r0 = 0. Again we shall reach a contra-
diction by proving (uk, vk) → 0. We first show that we may assume
uk ≡ 0 and vk ≡ 0 on the intervals [0, 1] and [−1, 0] respectively. In-
deed, the sequence uk considered over the interval [0, 2] is bounded in
Hm+2([0, 2]). Thus, in view of Rellich’s compact embedding theorem,
we may assume without loss of generality that uk converges to u in
Hm+1([0, 2]). In particular, ‖uk − u‖H1([0,2]) → 0. From (6.8) we con-
clude that ‖u̇k + Auk‖H0([0,2]) → 0 so that u̇ + Au = 0 on [0, 2]. This
together with u(0) = 0 imply u = 0. Thus, ‖uk‖Hm+1([0,2]) → 0, hence

‖u̇k‖Hm+1([0,2]) ≤ ‖u̇k + Auk‖Hm+1([0,2]) + ‖Auk‖Hm+1([0,2]) → 0,

showing ‖uk‖Hm+2([0,2]) → 0. By the same argument, ‖vk‖H2+m([−2,0]) →
0. Set λ(s) = β(s − 2) where β is the cut-off function introduced in
(2.5). Then, ‖λuk‖Hm+2([0,2]) → 0 so that ‖(1−λ)uk, vk)‖m ≥ 3

4
for large

k. Because the support of F+
Rk

(uk, vk) is contained in [Rk

2
−1, Rk

2
+1]×

[−Rk

2
− 1,−Rk

2
+ 1] we have F+

Rk
((1 − λ)uk, vk) = F+

Rk
(uk, vk) so that

‖ d
ds

((1 − λ)uk)+A(1 − λ)uk + F+
Rk

((1 − λ)uk, vk)‖m

= ‖(1 − λ)[u̇k + Auk + F+
Rk

(uk, vk)] − λ̇uk‖m

≤ C ·
[
‖L+

Rk
(uk, vk)‖m + ‖λ̇uk‖Hm+2([0,2])

]
→ 0.

Similar reasoning applies for the sequence vk so that indeed we may
assume that (uk, vk) satisfies ‖(uk, vk)‖m ≥ 1

2
and that the supports of

uk and vk are contained in [1,∞) and (−∞,−1].
To proceed further we need some preparation. For the rest of the

proof we only consider pairs (u, v) ∈ E of functions for which there
exists s0 > 0 such that u(s) = 0 if s ∈ [0, s0] and v(s) = 0 if s ∈ [−s0, 0].
Setting u(s) = 0 for s ≤ s0 and v(s) = 0 for s ≥ −s0 we consider these
functions as defined on all of R. Hence also the glued and anti-glued
functions are defined on all of R. We shall abbreviate them by

(6.10) (q, p) = (⊕r(u, v),�r(u, v))
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and introduce the shifted functions

(6.11) (qR(s), pR(s)) = (q(s + R
2
), p(s + R

2
))

defined for all s ∈ R. Equation (6.11) becomes

(6.12)

[
qR

pR

]
=

[
β 1 − β

β − 1 β

]
·

[
u(s + R

2
)

v(s − R
2
)

]
where qR, pR and β are evaluated at s. For convenience we introduce
the following abbreviations for the components of the map Lr : E → F
defined in (6.7).

(6.13)
L+

R(u, v) = u̇ + Au + F+
R (u, v)

L−
R(u, v) = v̇ + Au + F−

R (u, v).

By an easy calculations one verifies the formula

(6.14)

[
q̇R + AqR

ṗR + ApR

]
=

[
β 1 − β

β − 1 β

]
·

[
L+

R(u, v)(s + R
2
)

L−
R(u, v)(s − R

2
)

]
where qR, pR and β are evaluated at s. In the following we abbreviate
δ = δm and write ‖w‖I for the L2-norm of a function w over the interval
I ⊂ R.

Lemma 6.19. There exists a constant Cm depending only on the
cut-off function β such that

‖q̇R + AqR‖
2
Hm+2,−δ(R) ≤ Ce−δR

[
‖L+

R(u, v)‖2
m + ‖L−

R(u, v)‖2
m

]
‖ṗR + ApR‖

2
Hm+2,δ(R) ≤ Ce−δR

[
‖L+

R(u, v)‖2
m + ‖L−

R(u, v)‖2
m

]
.

Proof. We only consider the first estimate since the proof of the
second is similar. To simplify the notation we drop the functions u
and v together the index R in L+

R(u, v)(s) and L−
R(u, v)(s), writing

L+(s) and L−(s) instead. Using (6.14) we have the following pointwise
inequality for 0 ≤ j ≤ m + 2,

|Dj(q̇R + AqR)|2

≤ C · [ |Dj(β · L+(s + R
2
))|2 + |Dj((1 − β) · L−(s − R

2
))|2 ].

In view of the properties of β, and since L+(s + R
2
) = 0 if s ≤ −R

2

and L−(s− R
2
) = 0 if s ≥ R

2
, the first summand on the right hand side

above is supported in the interval [−R
2
, 1] and the second in the interval
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[−1, R
2
]. After multiplying both sides above by e−2δ|s| and integrating

over R we find

‖[Dj(q̇R + AqR)]e−δ|s|‖2
R

≤ C ·
[
‖[DjL+(s + R

2
)]eδs‖2

[−R
2

,0]
+ ‖[DjL+(s + R

2
)]e−δs‖2

[0,1]

+ ‖[DjL−(s − R
2
)]eδs‖2

[−1,0] + ‖[DjL−(s − R
2
)]e−δs‖2

[0, R
2

]

]
.

We estimate each of the terms on the right hand side.

‖[DjL+(s + R
2
)]eδs‖[−R

2
,0] = e−δ R

2 ‖[DjL+(s + R
2
)]eδ(s+ R

2
)‖[−R

2
,0]

≤ e−δ R
2 ‖[DjL+(s)]eδs‖R+ ,

and

‖[DjL+(s + R
2
)]e−δs‖[0,1] = e−δ R

2 · ‖[DjL+(s + R
2
)]eδ(s+ R

2
)e−2δs‖[0,1]

≤ e−δ R
2 · ‖L+(s + R

2
)eδ(s+ R

2
)‖[0,1] ≤ e−δ R

2 · ‖L+(s)eδs‖R+ .

Similarly

‖[DjL−(s − R
2
)]eδs‖[−1,0] ≤ e−δ R

2 ‖[DjL−(s)]e−δs‖R−

‖[DjL−(s − R
2
)]e−δs‖[0, R

2
] ≤ e−δ R

2 · ‖[DjL−(s)]e−δs‖R−.

Summing from j = 0 to j = m + 1 we obtain

‖q̇R + AqR‖
2
Hm+2,−δ(R) ≤ Ce−δR

[
‖L+‖2

m + ‖L−‖2
m

]
.

as claimed. The proof of the lemma is complete. �

Multiplying the matrix equation (6.12) by the inverse matrix one
obtains the formula

(6.15)

[
u(s + R

2
)

v(s − R
2
)

]
=

1

α
·

[
β β − 1

1 − β β

]
·

[
qR

pR

]
where β, qR and pR are evaluated at s and where α = β2 + (1 −

β)2. Proceeding as in the proof of Lemma 6.19, using (6.15) and the
properties of β as well as the facts that qR(s) = 0 for s ≤ −R

2
and

pR(s) = 0 for s ≥ R
2
, one proves the following lemma.

Lemma 6.20. There exists a constant Cm > 0 depending only on
the cut-off function β such that

‖u‖2
m ≤ CeδR

[
‖qR‖

2
Hm+2,−δ(R) + ‖pR‖

2
Hm+2,δ(R)

]
‖v‖2

m ≤ CeδR
[
‖qR‖

2
Hm+2,−δ(R) + ‖pR‖

2
Hm+2,δ(R)

]
.
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Having Lemma 6.19 and Lemma 6.20 at hand we can finish the
proof of Theorem 6.18. We set

qRk
(s) = ⊕Rk

(uk, vk)(s + Rk

2
) and pRk

(s) = �Rk
(uk, vk)(s + Rk

2
).

Recalling the operators L : Em → Fm and L̂ : Êm → F̂m from Lemma
6.17, we conclude from Lemma 6.19

‖L(eδ
Rk
2 qRk

)‖Hm+2,−δ(R) → 0 and ‖L̂(eδ
Rk
2 pRk

)‖Hm+2,δ(R) → 0.

as k → ∞. The operators L and L̂ are isomorphisms, hence

‖eδ
Rk
2 qRk

‖Hm+2,−δ(R) → 0 and ‖eδ
Rk
2 pRk

‖Hm+2,δ(R) → 0.

Applying Lemma 6.20,

‖uk‖m → 0 and ‖vk‖m → 0.

Recalling δ = δm this means that (uk, vk) → 0 in Em in contradiction
to ‖(uk, vk)‖m ≥ 1

2
. This finishes the proof of Theorem 6.18.

�
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