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1 Introduction

In this paper we are concerned with a sufficient condition for a Riemannian
metric on a compact simply–connected manifold to have infinitely many
geometrically distinct closed geodesics.

1969 Gromoll–Meyer proved in [GM] that for every Riemannian metric
on a compact simply–connected manifold M there are infinitely many ge-
ometrically distinct closed geodesics if the sequence (bi(ΛM ;F ))i of Betti
numbers of the free loop space ΛM is unbounded for some field F . Using the
theory of minimal models Vigué-Poirrier/Sullivan proved that the rational
cohomology algebra H∗(M ; IQ) of M is generated by a single element if and
only if the sequence (bi(ΛM ; IQ))i of Betti numbers of the free loop space
ΛM of M is bounded. It is a conjecture that the same statement holds for
all fields of prime characteristic, partial results are due to McCleary–Ziller
[MZ] and Halperin/Vigué-Poirrier [HV].

Now we turn to the manifolds for which the hypothesis of Gromoll–
Meyer’s theorem does not hold, for example spheres and projective spaces.
Then stability properties of the closed geodesics become important. A closed
geodesic is hyperbolic if the linearized Poincaré map has no eigenvalue of
norm 1. From the bumpy metrics theorem due to Abraham [Ab] and Anosov
[An2] and from a pertubation result due to Klingenberg–Takens [KT] one
can conclude: A C4–generic metric on a compact manifold has either a
non–hyperbolic closed geodesic of twist type or all closed geodesics are hy-
perbolic. In the first case there are infinitely many geometrically distinct
closed geodesics in every tubular neighborhood of the closed geodesic of
twist type due to a theorem by Moser [Mo]. In the second case there are
infinitely many closed geodesics if M is simply–connected due to results by
Hingston [Hi] and the author [Ra1]. Hence it follows from these results that
a C4–generic metric on a compact simply–connected manifold has infinitely
many geometrically distinct closed geodesics.

We remark that it is an open question whether there is a Riemannian
metric on a simply–connected compact manifold all of whose closed geodesics
are hyperbolic. In [Ra2] we show that the examples of metrics on the 2–
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sphere with ergodic geodesic flow given by Donnay and Burns–Gerber pro-
vide examples of metrics all of whose homologically visible closed geodesics
are hyperbolic.

A closed geodesic c is prime if it is not the iterate of a shorter closed
geodesic. The linearized Poincaré map Pc of c is a linear symplectic map. If c
is not hyperbolic we denote by zj = ± exp(2πiλj) , λj ∈ [0, 1/2] , j = 1, . . . , l
the eigenvalues of Pc of norm 1. We call the numbers 0 ≤ λ1 < . . . < λl ≤
1/2 the Poincaré exponents of c. We say that a Riemannian metric is strongly
bumpy if all eigenvalues of the linearized Poincaré maps of every prime closed
geodesic are simple and if any finite set of the disjoint union of the Poincaré
exponents of the prime closed geodesics is algebraically independent.

For a metric with only finitely many geometrically distinct closed geodesics
the author proved in [Ra1] a relation between the average indices of these
closed geodesics. With the help of the normal form of a linear symplec-
tic map which we discuss in section 3 we show in section 5 that for a
strongly bumpy Riemannian metric the average indices depend linearly on
the Poincaré exponents. Therefore the relation between the average indices
implies that the Poincaré exponents are algebraically dependent. Hence we
obtain in 5.7:

Theorem 1.1 A strongly bumpy Riemannian metric on a compact simply–
connected manifold carries infinitely many geometrically distinct closed geo-
desics.

In section 4 we use a pertubation result from the theory of dynamical
systems due to Klingenberg–Takens [KT] to show:

Theorem 1.2 The subset of strongly bumpy metrics on a compact manifold
is a residual subset of the set of Riemannian metrics with the strong Cr–
topology, where 2 ≤ r ≤ ∞.

Combining both theorems we finally obtain

Theorem 1.3 A Cr–generic Riemannian metric on a compact simply–con-
nected manifold carries infinitely many geometrically distinct closed geodesics,
where 2 ≤ r ≤ ∞.

Using ideas of Birkhoff it was recently proved that every Riemannian
metric on the 2–sphere carries infinitely many geometrically distinct closed
geodesics, cf. Franks [Fr] and Bangert [Ba2]. The methods of the proof are
restricted to surfaces.

In contrast to the Riemannian case there are examples of non–symmetric
Finsler metrics on spheres and projective spaces due to Katok. Ziller studies
the geometry of this examples in [Zi]. We remark that theorem 1.1 also holds
for Finsler metrics. In these examples the average indices and the Poincaré
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exponents are algebraically dependent. It follows from results of the author
[Ra4] that for dimensions > 2 in these examples there are always two closed
geodesics whose mean average indices αc := αc/ length (c) coincide. This
can be interpreted as a resonance relation.

Grove introduced the concept of isometry–invariant geodesics, cf. [Gr].
There are rotations on the standard sphere in any dimension with only
finitely many geometrically distinct invariant geodesics. Using results from
[Ra3] one can obtain results analogous to the above stated theorems on
the existence of infinitely many geometrically distinct isometry–invariant
geodesics on a simply–connected Riemannian manifold with an isometry of
finite order under some assumptions on the fixed point set of the isometry.

The results of this paper are contained in the author’s Habilitationsschrift
[Ra2].

Acknowledgement: I am grateful to the referee for his comments and
suggestions. æ

2 Local pertubation of the Poincaré map

Througout the paper M is an n–dimensional compact C∞– manifold with
tangent bundle TM . For a point p ∈ M we denote by TpM the tangent
space at p. Gr = Gr(M) is the set of Cr–differentiable Riemannian metrics
on M with the strong Cr–topology. For 2 ≤ r <∞ Gr carries the structure
of an open subset of a Banach space after choosing a metric. For r = ∞ it
carries the structure of an open subset of a Fréchet space. In particular a
residual subset of Gr is dense in Gr by Baire’s theorem. We call a property
of a metric Cr–generic if the set of metrics satisfying this property contains
a residual subset.

For a Riemannian metric g on M the geodesic flow Φt
g : TM → TM on

the tangent bundle is defined by Φt
g(v) = ċv(t) where cv : IR → M is the

uniquely determined geodesic with ċv(0) = v.
Using the Levi–Civita connection on M the double tangent bundle TTM

has a splitting

TXTM = T vXTM ⊕ T hXTM , Z = Zv + Zh

into the vertical and the horizontal subspaces. If τ : TM →M is the canon-
ical projection then the vertical subspace T vXTM is generated by double
tangent vectors v̇(0) where t ∈ (−ε, ε) 7→ v(t) ∈ TM is a curve in TM with
v(0) = X and τ(v(t)) = τ(X) for all t. The horizontal subspace T hXTM is
generated by double tangent vectors v̇(0) where t ∈ (−ε, ε) 7→ v(t) ∈ TM is
a parallel field along the curve t ∈ (−ε, ε) 7→ τ(v(t)) ∈M .

Both these subspaces can be identified with the tangent space Tτ(X)M

at τ(X). Then for Y = Y h + Y v;Z = Zh + Zv

2ω(Y, Z) = g(Y h, Zv)− g(Y v, Zh)
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defines a symplectic form on TM . Together with the Hamiltonian H :
TM → IR , H(X) = g(X,X)/2 the symplectic form ω makes TM into a
Hamiltonian system. The geodesic flow is the corresponding Hamiltonian
flow.

The geodesic flow preserves the metric, hence we can restrict ourselves
to the geodesic flow φtg : T 1

gM → T 1
gM on the unit tangent bundle T 1

gM :=
{X ∈ TM | g(X,X) = 1}. Non–trivial closed geodesics on M are in one–
to–one correspondance to the periodic flow lines of φtg : T 1

gM → T 1
gM : If

γ = {φtg(v) | t ∈ [0, a]} , v ∈ T 1
gM is a periodic flow line of period a > 0 , i.e.

v = φag(v), then the projection c(t) = τ(φtg(v)), t ∈ [0, a] is a closed geodesic
on M of length a.

For a periodic flow line γ = {φtg(v) | t ∈ [0, a]} of period a > 0 we
can define the Poincaré map Pg(Σ, γ) as follows: One can choose a local
hypersurface Σ in T 1

gM through v transversal to γ such that there are open
neighborhoods Σ0 , Σa of v in Σ and a differentiable mapping δ : Σ0 → IR
with δ(v) = a such that

Pg(Σ, γ) : Σ0 → Σa ; X 7→ φδ(X)
g (X)

is a diffeomorphism. ω induces a symplectic form on Σ and Pg(Σ, γ) be-
comes a symplectic diffeomorphism. Fixed points of Pg(Σ, γ) correspond to
periodic flow lines nearby γ. Let V be the ortogonal complement of v in
Tτ(v)M , i.e. V is a (n − 1)–dimensional vector space. On V ⊕ V we have
the canonical symplectic form

η((x1, x2), (y1, y2)) := g(x1, y2)− g(x2, y1) .

One can choose Σ such that the linearized Poincaré map Pg(γ) := dPg(Σ, γ)(v)
is a linear symplectic map of V ⊕ V and

Pg(γ)(J(0),∇J(0)) = (J(a),∇J(a)) .

Here J(t) is a normal Jacobi field along the geodesic c = τ ◦ γ and ∇J(t)
is the covariant derivative along c. After choosing a symplectic basis for
V ⊕ V we can identify the group of symplectic linear maps of V ⊕ V with
the symplectic group Sp(n− 1) of IRn−1 ⊕ IRn−1.

With a closed geodesic c : S1 = IR/ZZ → M all iterates cm : S1 →
M ; c(t) = c(mt) for m ∈ IN are closed geodesics, too. We call a closed
geodesic c prime if it is not the iterate of a shorter curve. Analogously we
call a periodic flow line γ = {φtg(v) | t ∈ [0, a]} prime, if a is the minimal
period, i.e. c(t) = τ ◦ γ(at) is a prime closed geodesic. We call the closed
geodesic c : S1 → M resp. the periodic flow line γ = {φtg(v) | t ∈ [0, a]}
non–degenerate if 1 is not an eigenvalue of the linearized Poincaré map
Pc := Pg(γ). Then γ resp. c is an isolated periodic flow line resp. an
isolated closed geodesic.
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A Riemannian manifold is called bumpy if all periodic flow lines of the
geodesic flow resp. all closed geodesics are non–degenerate. Since Pcm =
(Pc)m this is equivalent to the following assumption: All Poincaré exponents
of every closed geodesic are irrational, i.e. if z = exp(2πiλ) is an eigenvalue
of Pc, then λ ∈ IR− IQ.

We will use the following local pertubation argument due to Klingenberg–
Takens:

Theorem 2.1 [KT, thm.2] Let γ = {φtg0(v)} be a periodic flow line of period
a of the geodesic flow (φtg0) of the metric g0 ∈ Gr , r ≥ 2. Let W be an open
neighborhood of the point τ(v) ∈ M on M . Denote by Gr(γ, g0,W ) the set
of metrics g ∈ Gr, for which γ is a periodic flow line of period a > 0 and
such that the support of g − g0 lies in W .

If Q is an open and dense invariant subset of the symplectic group
Sp(n − 1) then there is for every neighborhood V of g0 in Gr a metric g ∈
V ∪ Gr(γ, g0,W ) such that Pg(γ) ∈ Q.

Let Grb ⊂ Gr be the subset of bumpy metrics. For t > 0 let Grb (t) be the
subset of metrics such that every periodic flow line of period ≤ t is non–
degenerate. Hence this is equivalent to the following assumption: If γ is a
prime periodic flow line of period a and if λ is a Poincaré exponent of γ then
λk 6= 1 for all k ∈ IN , k ≤ t/a. In particular there are only finitely many
periodic flow lines of period ≤ t.

Abraham formulated the bumpy metrics theorem in [Ab], a complete
proof was given by Anosov in [An2]. It follows from the

Lemma 2.2 [An2, §4] a) Grb (t) is an open subset of Gr.
b) Grb (t) is a dense subset of Gr.

For the proof of part b) one uses the local pertubation theorem 2.1 by
Klingenberg–Takens and a transversality theorem due to Abraham. Since

Grb =
∞⋂
k=1

Grb (k)

the lemma implies the

Theorem 2.3 (bumpy metrics theorem) [Ab] [An2] For 2 ≤ r ≤ ∞ the set
Grb of bumpy metrics is a residual subset of the set Gr of metrics with the
strong Cr–topology on a compact manifold.

One also says for short: For 2 ≤ r ≤ ∞ a Cr–generic metric on a compact
manifold is bumpy.

In the proof of part b) of lemma 2.2 the following lemma is used. We
formulate it here since we will use it in the sequel:
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Lemma 2.4 [An2, §4] Let g0 ∈ Grb (t) , 2 ≤ r ≤ ∞ and let {φtg0(v1)}, . . . ,
{φtg0(vN )} be the prime periodic flow lines of the geodesic flow with periods
a1, . . . , aN ∈ (0, t]. Then there is an open neighborhood U of g0 in Gr and
there are continuous maps vk : U → TM , ak : U → IR+ , k = 1, . . . , N
such that vk(g0) = vk , ak(g0) = ak with the following property: For every
g ∈ U {φtg(v1(g))}, . . . , {φtg(vN (g))} are the prime periodic flow lines of φtg :
T 1
gM → T 1

gM with periods {a1(g), . . . , aN (g))} and there are no other prime
periodic flow lines of φtg with period ≤ t.

æ

3 Normal form of symplectic maps

Normal forms for symplectic linear mappings were discussed by several au-
thors. We use the notation introduced by Ballmann–Thorbergsson–Ziller
[BTZ]. We consider a finite–dimensional real vector space E with symplec-
tic form ω. Let k = 2n be the even dimension of E. A linear endomorphism
P of E is called symplectic, if it preserves ω. ω induces a non–degenerate
Hermitian form ωh on the complexification EIC of E:

ωh(X1 + iY1, X2 + iY2) = ω(X1, Y2)−ω(Y1, X2) + i (ω(X1, X2) + ω(Y1, Y2)) .

We also denote by P the canonical linear extension of P onto EIC. Then P
also preserves ωh. For an eigenvalue z ∈ IC of P we denote by V (z) := kerNk

z

the generalized eigenspace, here Nz = Pz−1 − id. Let d(P, z) := dimNk
z .

We denote by Spec(P ) the set of eigenvalues, if z is an eigenvalue then also
z−1, z̄, z̄−1.

EIC =
⊕

z∈Spec , |z|=1

V (z)⊕
⊕

z∈Spec , |z|>1

(
V (z)⊕ V (z−1)

)
is a decomposition of EIC in P–invariant pairwise orthogonal non–degenerate
subspaces. For m ∈ IN we denote by J(z,m) a P– invariant non–degenerate
subspace of EIC with the following property: There is a vector X ∈ J(z,m)
such that Nm

z (X) = 0 , ωh(Nm−1
z (X), X) = 0 and X,Nz(X), . . . , Nm−1

z (X)
is a basis of J(z,m). Then there is a splitting of V (z) in pairwise orthogonal
non–degenerate P–invariant subspaces: If |z| = 1 then

V (z) =
j(z)⊕
j=1

J(z,mj) ,

if |z| > 1 then

V (z) =
j(z)⊕
j=1

(
J(z,mj)⊕ J(z̄−1,mj)

)
.
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One can also define corresponding real Jordan blocks. A real Jordan block
JIR(z,mj) is a minimal P–invariant non–degenerate subspace of E. There is
a further symplectic invariant for a Jordan block J(z,mj) resp. JIR(z,mj).
This symplectic invariant σj ∈ {0,±1} is called the sign, we denote the
corresponding Jordan space by J(z,mj , σj) resp. JIR(z,mj , σj). We set σj =
0 if |z| > 1. The sign of J(z,mj) is non–zero if |z| = 1. If |z| = 1 and mj =
2l − 1 (resp. mj = 2l) and if X ∈ J(z,mj) satisfies Nmj−1

z X 6= 0 then σj ∈
{±1} is defined by −σjωh(N l−1

z X,N l−1
z X) > 0( resp. iσj(N l

zX,N
l−1
z X) >

0). If Imz > 0 then the sign of JIR(z,mj) equals the sign of J(z,mj). If
z = ±1 then the sign of JIR(z,mj) equals the sign of J(z,mj) if mj is even,
otherwise the sign is 0. So finally we obtain a splitting

E =
⊕

Imz≥0 , |z|≥1

j(z)⊕
j=1

JIR(z,mj , σj)

of E into pairwise orthogonal minimal P–invariant non–degenerate sub-
spaces. The sequence (z,mj , σj) , z ∈ Spec(P ) , |z| ≥ 1 , Imz ≥ 0 deter-
mines – up to order – uniquely the conjugacy class of P in the group of
symplectic linear maps of E.

æ After choosing a symplectic basis for E we obtain a symplectic iso-
morphism of E with IRn ⊕ IRn with its canonical symplectic form

ω((x1, x2), (y1, y2)) = 〈x1, y2〉 − 〈x2, y1〉 .

Hence we can identify the symplectic group of E with the symplectic group

Sp(n) = {P ∈ Gl(2n; IR) |ω(Px, Py) = ω(x, y) ∀x, y ∈ IR2n}

of linear symplectic maps of IR2n. Again we also denote by P the canonical
complex linear extension P : ICn ⊕ ICn → ICn ⊕ ICn. For z ∈ IC let d(P, z) =
dim(P − zid)2n, i.e. d(P, z) is the dimension of the generalized eigenspace
of z.

Definition 3.1 We denote by

S̃p(n) := {P ∈ Sp(n) | d(P, 1) = d(P,−1) = 0}

the subset of symplectic matrices P for which neither 1 nor −1 is an eigen-
value. Let

Sp∗(n) :=
{
P ∈ S̃p | ∀z ∈ IC : d(P, z) ≤ 1

}
,

i.e. P ∈ Sp∗(n) has only simple eigenvalues.

Proposition 3.2 The subset Sp∗(n) is an open and dense subset of Sp(n).
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Proof. A symplectic map P ∈ Sp(n) lies in Sp∗(n) iff the discrimi-
nant D(χ(P )) of the characteristic polynomial χ(P ) does not vanish. Hence
Sp∗(n) is an open subset of Sp(n). Now assume that Sp∗(n) is not dense
in Sp(n). Then there is a non–empty open subset U ⊂ Sp(n) such that
U ∩ Sp∗(n) = ∅. The function F : P ∈ Sp(n) 7→ D(χ(P )) ∈ IR is analytic.
By assumption F vanishes on the open non–empty subset U ⊂ Sp(n). Hence
it vanishes identically on Sp(n), which is a contradiction. 2

For l ∈ {0, 1, . . . , n} we define the invariant subset

Sp(l;n) :=

P ∈ Sp∗(n)

∣∣∣∣∣∣
∑

|z|=1,Imz>0

d(P, z) = l

 .

Since for all P ∈ Sp∗(n) we have d(P, z) ≤ 1 and since for z 6∈ IR, |z| 6= 1
with z also z−1, z̄, z̄−1 are pairwise distinct eigenvalues of P we obtain:

Sp(l;n) is an open subset of Sp∗(n) and

Sp∗(n) =
n⋃
l=0

Sp(l;n).

The possible normal forms of P ∈ Sp(l;n) are as follows: Let zj = exp(2πiλj),
j = 1, . . . , l; 0 < λ1 < . . . < λl < 1/2 be the eigenvalues of P with
|zj | = 1. We call the numbers λj ∈ (0, 1/2) the Poincaré exponents of
P . Let zj : j = l+ 1, . . . , n be the eigenvalues with Im(zj) ≥ 0 and |zj | > 1.
Then only Jordan blocks with mj = 1 can occur since all eigenvalues are
simple. Hence there is a splitting

IR2n =
m⊕
j=1

JIR(zj , 1, σj)

with σj ∈ {1,−1} for j ≤ l and σj = 0 for j ≥ l + 1. With respect to a
symplectic basis P |JIR(zj , 1, σj) has the following matrix representation:

a) If zj = exp(2πiλj), i.e. j ∈ {1, . . . , l}, σj ∈ {1,−1}:

P |JIR(zj , 1, σj) =

 cos(2πλj) −σj sin(2πλj)

σj sin(2πλj) cos(2πλj)

 .

b) If |zj | > 1 and Im(zj) = 0, then

P |JIR(zj , 1, 0) =

(
zj 0
0 z−1

j

)
.

c) If |zj | > 1 and Im(zj) > 0, then

P |JIR(zj , 1, 0) =


zj 0 0 0
0 z−1

j 0 0
0 0 z̄j 0
0 0 0 z̄−1

j

 .
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In the following lemma we show how one can define open and dense
subsets of Sp(l;n) by polynomial relations between the Poincaré exponents.
We introduce the analytic mapping

f : Sp(l;n)→
(

0,
1
2

)l
, f(P ) = (λ1(P ), . . . , λl(P )) .

Here λ1(P ) < . . . < λl(P ) < 1/2 are the Poincaré exponents of P .

Lemma 3.3 Let p be a non–trivial polynomial in l variables with real coef-
ficients. Then

Q(p) := {(x1, . . . , xl) ∈ IRl | p(x1, . . . , xl) 6= 0}

is open and dense in IRl and its preimage

f−1(Q(p)) := {P ∈ Sp(l;n) | p(λ1(P ), . . . , λl(P )) 6= 0}

under f is an open and dense invariant subset of Sp(l;n).

Proof. Q(p) is the complement of an algebraic set, hence it is open
and dense in IRl and f−1(Q(p)) is open in Sp(l;n). Let A be a connected
component of Sp(l;n), hence it is an open and non–empty subset of Sp(l;n).
Then f−1(Q(p))∩A is a non–empty open subset of A since p is non–trivial.
If f−1(Q(p))∩A is not a dense subset of A then there is an open non–empty
subset U ⊂ A with p(f(U)) = {0}. But since f is analytic this would imply
that p ◦ f vanishes on A, which is a contradiction. 2

æ

4 A generic metric is strongly bumpy

In section 3 we defined the invariant subset Sp∗(n− 1) of linear symplectic
maps with only simple eigenvalues. Let G∗(t) be the subset of all metrics
in Gr such that for every periodic flow line of period ≤ t we have Pg(λ) ∈
Sp∗(n − 1). Then by theorem 2.1 the set G∗(t) is open and dense and the
set G∗ := G∗(∞) is a residual subset of G.

If the linearized Poincaré mapping Pg(γ) does not have any eigenvalue z
with |z| = 1 then we call γ resp. the corresponding closed geodesic c = τ ◦γ
hyperbolic. If g ∈ G∗(t) and if the period of γ is ≤ t then γ is hyperbolic iff
Pg(γ) ∈ Sp(0;n− 1).

For t > 0 and for a metric g ∈ G∗(t) we define the sequence Λg(t) :=
(λi(g))i=1,...,n(g;t) of Poincaré exponents as follows: If all periodic flow lines of
period ≤ t are hyperbolic, then n(g; t) = 0. Otherwise let (γk)k=1,...,m(g;t) be
the non–hyperbolic prime periodic flow lines with periods (ak)k+1,...,m(g;t) ,
0 < ak ≤ t. Let Pk := Pg(γk) be the linearized Poincaré map of γk, since g ∈
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G∗(t) we have Pk ∈ Sp∗(n−1). Hence there is a number l(k) ∈ {1, . . . , n−1}
with Pk ∈ Sp∗(l(k);n− 1). Let for any k ∈ {1, . . . ,m(g; t)}

0 < λk,1 < . . . < λk,l(k) <
1
2

be the Poincaré exponents of Pk, i.e.

zk,1 = ± exp(2πiλk,1), . . . , zk,l(k) = ± exp(2πiλk,l(k))

are the eigenvalues of Pk with norm 1. Then we define the sequence Λg(t) =
(λ1(g), . . . , λn(g;t)(g)) as follows: Let L(k) :=

∑k−1
r=1 l(r) i.e. n(g; t) =

L(m(g; t)+1). Then λL(k)+l(g) = λk,l , 1 ≤ l ≤ l(k) for all k ∈ 1, . . . ,m(g; t)}.
Hence

Λg(t) =
(
λ1(g), . . . , λn(g;t)(g)

)
=

(
λ1,1, . . . , λ1,l(1), λ2,1, . . . , λm(g;t),l(m(g;t))

)
If g ∈ G∗ =

⋂∞
n=1 G∗(n), then Λg = (λi)i=1,...,n(g) is the sequence of Poincaré

exponents of g. Here n(g) = 0 resp. Λg = ∅, if all periodic flow lines
are hyperbolic and n(g) = ∞ if there are infinitely many non–hyperbolic
periodic flow lines.

Let ZZ[x1, . . . , xd]∗ be the set of polynomials p 6= 0 with d variables and
with integer coefficients, i.e.

p = p(x1, . . . , xd) =
∑

0≤i1,...,id

ai1,...,idx
i1
1 · . . . · x

id
d ,

ai1,...,id ∈ ZZ.

Definition 4.1 A metric g ∈ G∗ on a compact manifold with sequence
Λg = (λi(g))i=1,...,n(g) , n(g) ∈ IN0 ∪ {∞} of Poincaré exponents is called
strongly bumpy if the following holds: Either all periodic flow lines (i.e.
all closed geodesics) are hyperbolic (i.e. n(g) = 0) or for all d ∈ IN with
1 ≤ d ≤ n(g) and for all polynomials p ∈ ZZ[x1, . . . , xd]∗ we have

p(λ1(g), . . . , λd(g)) 6= 0 .

This means that the Poincaré exponents of g are algebraically indepen-
dent. Let Gs = Grs be the set of strongly bumpy metrics in G = Gr.

Now we want to show that the set Gs is residual in Gr. We define for
d ∈ IN, L > 0 the polynomial

p(d, L) = p(d, L)(x1, . . . , xd) ∈ ZZ[x1, . . . , xd]∗

as the product of all polynomials in ZZ[x1, . . . , xd]∗ whose degree is at most
L and whose coefficients have absolute value at most L. This polynomial is
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symmetric in x1, . . . , xd. Then we define the set Gs(t) of metrics g ∈ G∗(t)
for which

p(n(g; t), t)(λ1(g), . . . , λn(g;t)(g)) 6= 0

if n(g; t) ≥ 1.

Lemma 4.2 For 2 ≤ r ≤ ∞ the set Gs(t) is an open and dense subset of
Gr.

Proof. a) We first show that Gs(t) is an open subset. If n(g0; t) = 0,
i.e. if all prime periodic flow lines with period ≤ t are hyperbolic, then
there is an open subset U of g0 in Gr with n(g; t) = 0 for all g ∈ U , i.e.
U ⊂ Gs(t). Now assume n(g0; t) ≥ 1, let {φtg0(vk)}, k = 1, . . . ,m(g0; t) be
the prime non–hyperbolic periodic flow lines of periods 0 < ak ≤ t. By
lemma 2.4 there is an open neighborhood U of g0 and there are continuous
maps vk : U → TM , ak : U → IR+ , k = 1, . . . ,m(g0; t), such that γk(g) =
{φtg(vk(g))} are prime periodic flow lines of (φtg) with periods ak(g) and
γk(g0) = γk , ak(g0) = ak , vk(g0) = vk. And there are no further prime
periodic flow lines of g ∈ U with period ≤ t. The mapping

Pk : U −→ Sp(n− 1) , g 7→ Pg(γk)

is continuous for every k ∈ {1, . . . ,m(g0; t)} since r ≥ 2. By definition of
l(k) we have Pk(g0) ∈ Sp(l(k);n − 1). Sp(l(k);n − 1) is an open subset of
Sp∗(n − 1), cf. section 3, hence there is an open subset U1 ⊂ U of g0 with
Pg(γk(g)) ∈ Sp(l(k);n−1) for all g ∈ U1. Let λj(g), j = 1, . . . , n(g0; t) be the
Poincaré exponents of the prime periodic flow lines γk(g), k = 1, . . . ,m(g0; t).
Here we note that m(g0; t) ≥ m(g; t). The map

Ft : U1 → (0, 1/2)n(g0;t) , Ft(g) = (λ1(g), . . . , λn(g0;t)(g))

is continuous. g0 ∈ Gs(t) means that p(n(g0, t); t)(Ft(g0)) 6= 0. Hence there
is an open neighborhood U2 ⊂ U1 of g0 in Gr with p(n(g0; t), t)(Ft(g)) 6= 0
for all g ∈ U2. The polynomial p(n(g; t), t) is a factor of the polynomial
p(n(g0; t), t) since n(g0; t) ≥ n(g; t), hence U2 ⊂ Gs(t).

b) We show that Gs(t) is a dense subset of G∗(t). This is sufficient since
G∗(t) is a dense subset of G = Gr. We start with a metric g0 ∈ G∗(t).
If n(g0; t) = 0 then by definition g0 ∈ Gs(t). So we assume n(g0; t) ≥
1, let (γk)k=1,...,m(t) be the prime periodic flow lines of φtg0 with periods
(ak)k=1,...,m(t) , 0 < ak ≤ t. Let Pk = Pg0(γk) ∈ Sp(l(k);n − 1) be the
linearized Poincaré maps and ck the corresponding closed geodesics on M .
Let L(k) :=

∑k−1
r=1 l(r), i.e. λ1(g0), . . . , λL(k)(g0) are the Poincaré exponents

of the prime periodic flow lines γ1, . . . , γk − 1. As in lemma 2.4 choose an
open neighborhood U of g0 in G∗(t), hence U is also open in G.
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We prove by induction over k ∈ {1, . . . ,m(t)} that U ∩ Gs(t) 6= ∅. This
means we perturb in every step a single periodic flow line to obtain a metric
in Gs(t).

We choose pairwise disjoint open neighborhoods Wk on the manifold
M of points pk = τ

(
φtkg0(vk)

)
= ck(tk) on the closed geodesics ck , k =

1, . . . ,m(t) such that the geodesics cj , j 6= k do not meet Wk. For an
element P ∈ Sp(l;n− 1) we denote by

0 < λ1(P ) < · · · < λl(P ) <
1
2

the Poincaré exponents, i.e. zj = exp(2πiλj(P )) are the eigenvalues of P on
the unit circle. We conclude from lemma 3.3 that the invariant subset

Q1 : = {P ∈ Sp(n− 1) |P ∈ Sp(l(1);n− 1)⇒
p(l(1), t)(λ1(P ), . . . , λl(1)(P )) 6= 0

}
of Sp(n−1) is an open and dense subset. It follows from the local pertubation
theorem 2.1 that there is a metric g1 ∈ U ∩ G(γ1, g0,W1) with Pg1(γ1) ∈
Sp(l(1);n−1)∩Q1. Hence g1 has the same periodic flow lines {γk}k=1,...,m(t)

with the same periods {ak}k=1,...,m(t) as g0. The support of the pertubation
g1 − g0 lies in W1, i.e. the metrics g0, g1 coincide in neighborhoods of the
other closed geodesics c2, . . . , cm(t).

Now assume that there is a metric gk−1 ∈ G∗(t) ∩ U for k ≥ 2 with the
following properties: the periodic flow lines of g0 and gk−1 with periods ≤ t
coincide and have the same periods. In addition the Poincaré exponents
(λj(gk−1))j=1,...,L(k) satisfy

p(L(k), t)(λ1(gk−1), . . . , λL(k)(gk−1)) 6= 0 .

Now we consider the polynomial

pk(x1, . . . , xl(k)) = p(L(k + 1), t)(λ1(gk−1), . . . , λL(k)(gk−1), x1, . . . , xl(k))

in the variables x1, . . . , xl(k). By definition of the polynomial p(L(k + 1), t)
we can factorize p:

pk(x1, . . . , xl(k)) = p(L(k), t)(λ1(gk−1), . . . , λL(k)(gk−1)) · p1(x1, . . . , xl(k))

where p1 is a polynomial in ZZ[x1, . . . , xl(k)]∗. The first factor does not vanish
by the induction hypothesis. The second factor p1 is a product of non–trivial
polynomials q of the form:

q(x1, . . . , xl(k)) =
∑

0≤i1,...,il(k)

pi1,...,il(k)
(λ1(gk−1), . . . , λL(k)(gk−1))xi11 · · ·x

il(k)

l(k) .

12



Here pi1...il(k)
is a polynomial with L(k) variables with degree ≤ t and with

integer coefficients, whose absolute values are bounded by t. Since q does
not vanish identically there is a tuple (j1, . . . , jl(k)) with pj1...jl(k)

6= 0. Hence
pj1...jl(k)

is a factor of p(L(k), t), so

pj1,...,jl(k)
(λ1(gk−1), . . . , λL(k)(gk−1)) 6= 0

by induction hypothesis. Therefore the polynomial p1 is a non–trivial poly-
nomial in the variables x1, . . . , xl(k). We conclude from lemma 3.3 that the
invariant set

Qk := {P ∈ Sp(n− 1) |P ∈ Sp(l(k);n− 1)⇒
p(L(k + 1), t)(λ1(gk), . . . , λL(k)(gk), λ1(P ), . . . , λl(k)(P )) 6= 0

}
is an open and dense subset of Sp(n − 1). We conclude from the local
pertubation theorem 2.1 and from part a) of this proof: There is a metric
gk ∈ U ∩ Gr(γk, gk−1,Wk) with

Pgk
(γk) ∈ Qk ∩ Sp(l(k);n− 1) .

Hence the periodic flow lines of period ≤ t of gk and g0 and their periods
coincide. In addition for j 6= k the linearized Poincaré maps Pgk−1

(γj) and
Pgk

(γj) coincide.
After m(t) steps we obtain a metric g = gm(t). The periodic flow lines of

period ≤ t and their periods of φtg0 and φtg coincide. The sequence Λg(t) =
(λ1(g), . . . , λn(t)(g)) of Poincaré exponents satisfy the inequality

p(n(t), t)(λ1(g), . . . , λn(t)(g)) 6= 0 ,

which implies g ∈ Gs(t) 2

Now

Gs =
∞⋂
n=1

Gs(n) ,

hence it follows from the preceding lemma:

Theorem 4.3 For a compact manifold M and 2 ≤ r ≤ ∞ the set of strongly
bumpy metrics is a residual subset of Gr.

For short one can also say: For a Cr–generic metric on a compact man-
ifold any finite set of Poincaré exponents is algebraically independent. æ

5 A strongly bumpy metric has infinitely many
closed geodesics

If γ = {φtg(v)} is a periodic flow line ot φtg of period a we define the under-
lying closed geodesic c = c(γ) : S1 = IR/ZZ → M by c(t) = τ(φatg (v)). We
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can characterize closed geodesics as critical points of the energy functional
as follows: We introduce the free loop space

Λ = ΛM =
{
σ : S1 →M |σ absolutely continuous ,

∫ 1

0
g(σ̇, σ̇) <∞

}
of M . This is a Hilbert manifold carrying a canonical IO(2)–action. The
energy functional

E : ΛM → IR , E(σ) =
1
2

∫ 1

0
g(σ̇, σ̇)

is differentiable and IO(2)–invariant. The metric g induces a metric g1 on
ΛM , then the energy functional satisfies the Palais–Smale condition.

The index ind(c) of a closed geodesic c is the index of the Hessian d2E(c)
of E at c , which is also called the index form. Hence the index is the
dimension of a maximal subspace of TcΛM on which the hessian is negative
definite. For differentiable vector fields X,Y along c one has the following
formula for the Hessian:

d2E(c)(X,Y ) =
∫ 1

0
{g(∇X,∇Y )− g(R(X, ċ)ċ, Y )} dt .

Here ∇ denotes the covariant derivative along c and R denotes the Rie-
mannian curvature tensor. The nullity null(c) of a closed geodesic c is the
dimension of the null space of d2E(c) minus 1. The nullity equals the dimen-
sion of the space of normal periodic Jacobi fields along c. The selfadjoint
operator associated to d2E(c) via g1 is of the form identity + compact op-
erator, hence the index and the nullity are finite.

If c is a closed geodesic, the iterates cm,m ≥ 1, cm(t) = c(mt) are closed
geodesics, too. Two closed geodesics c1, c2 are geometrically equal resp.
geometrically distinct if c1(S1) = c2(S1) resp. c1(S1) 6= c2(S1). c is prime
if it is not the iterate of a shorter closed curve. Hence if c is a prime
closed geodesic, the set of geometrically equal closed geodesics is given by
IO(2) · cm , m ≥ 1.

For the Morse theory of the energy functional the sequence (ind(cm))m≥1

is important. Bott introduced the following concept: Denote by TcΛMIC the
complexified vector space of H1–vector fields along c. Extend the Rieman-
nian metric g to a Hermitian form which we also denote by g and extend the
Riemannian curvature tensor to a complex linear tensor. Fix z ∈ IC , |z| = 1
and let

æ
T zc ΛM := {X ∈ TcΛM IC |X(1) = zX(0)}.

The z–index form

H(z)(X,Y ) =
∫ 1

0
{〈∇X,∇Y 〉 − 〈R(X, ċ)ċ, Y 〉} dt

14



is defined on T zc ΛM × T zc ΛM . Since the corresponding selfadjoint operator
Ac(z) is again of the form identity + compact operator we can define the z–
index Ic(z) and the z–nullity Nc(z). Here Ic(z) is the sum of the dimension
of eigenspaces of negative eigenvalues of Ac(z) and Nc(z) := dim kerAc(z) if
|z| 6= 1 and Nc(1) = null(c) = dim kerAc(z)− 1. Then Bott shows in [Bo]:

Theorem 5.1 (Bott [Bo, thm. A,C]) Let c be a closed geodesic with lin-
earized Poincaré map Pc. Ic, Nc : S1 = {z ∈ IC | |z| = 1} → IN0 are the
z–index resp. z–nullity. Then:

a)
ind(cm) =

∑
zm=1

Ic(z) , null(cm) =
∑
zm=1

Nc(z)

b)
Nc(z) = dim ker(Pc − zid)

c) Ic is constant in a neighborhood of points z with Nz(c) = 0. The
splitting numbers

S±c (z); = lim
φ→±0

Ic(z exp(iφ))− Ic(z)

of Ic satisfy
0 ≤ S±c (z) ≤ Nc(z)

d)
Ic(z) = Ic(z̄), Nc(z) = Nc(z̄)

Let zj = ± exp(2πiλj) , 1 ≤ j ≤ l − 1 , l ≤ n , 0 ≤ λj ≤ 1/2 be the
eigenvalues of Pc on S1 resp. λ1 < λ2 < . . . < λl be the Poincaré exponents
of Pc. Let λ0 = 0, λl+1 = 1/2 and Ij = I(exp(2πiλ)) for λ ∈ (λj−1, λj), 0 <
j ≤ l + 1. Let I1 = I2 if λ1 = 0 and Il = Il+1 if λl = 1/2.

We define the difference of the splitting numbers:

ε(z) := S−(z)− S+(z) .

and let εj := ε(zj) for j = 1, . . . , l − 1.

Corollary 5.2 [Bo, cor.1] The average index

αc = lim
m→∞

ind(cm)
m

=
∫ 1

0
I(exp(2πit))dt

exists and satisfies the following properties:

a)

αc = ind(c2)− indc+ 2
l∑

j=1

εjλj (1)
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b) If αc = 0 then ind(cm) = 0 for all m ≥ 1.

c) If c is hyperbolic, then

ind(cm) = m · ind(c) .

If all iterates of cm are non–degenerate i.e. if null(cm) = 0 for all m ≥ 1
then c is hyperbolic or all Poincaré exponents of Pc are irrational. Now we
want to study the equation ( 1) for a closed geodesic c with Pc ∈ Sp(l;n)
and l ≥ 1.

Bott proves in [Bo, thm. C] that the splitting numbers S±(z) depend
only on the conjugacy class of Pc in Sp(n− 1). We describe how the differ-
ence of the splitting numbers depends on the normal form of Pc, which we
discussed in section 3. æ

Theorem 5.3 [BTZ, 2.13] If the linearized Poincaré map Pc has the nor-
mal form ⊕

z

j(z)⊕
j=1

JIR(z,mj , σj) .

then the difference ε(z) = S−(z)−S+(z) for z 6= ±1 of the splitting numbers
is given as follows:

ε(z) = # {JIR(z,m, σ) |m odd and σ = −1}
− # {JIR(z,m, σ) |m odd and σ = +1}

As an immediate consequence we obtain the

Corollary 5.4 If the linearized Poincaré map Pc lies in Sp(l;n) with l ≥ 1
and if 0 < λ1 < . . . < λl < 1/2 are the Poincaré exponents of Pc then the
differences of the splitting numbers εj := ε(zj) = ε(exp(2πiλj)) , j = 1, . . . , l
satisfy:

εj ∈ {±1} .

Now we will show that a strongly bumpy metric on a simply–connected
compact manifold M has infinitely many geometrically distinct closed geode-
sics. We use a relation between the average indices of the closed geodesics
of a metric with only finitely many geometrically distinct closed geodesics.
The author derived this relation in [Ra1], cf. theorem 5.5 b).

If M is simply–connected and compact and carries a metric with only
finitely many geometrically distinct closed geodesics then the sequence
(bi(ΛM,F ))i≥1 of Betti numbers of the free loop space with respect to any
field F is bounded. This is due to a theorem by Gromoll–Meyer [GM]. Using
the theory of minimal models Vigué-Poirrier/Sullivan prove in [VS] that then
the rational cohomolgy algebra H∗(M ; IQ) is generated by a single element.
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Related results for the homology of M with coefficient field of prime char-
acteristic are proved by McCleary–Ziller [MZ] and Halperin/Vigué-Poirrier
[HV].

We use the following notation: Let Td,m+1(x) be the truncated polyno-
mial algebra generated by the element x of degree d and with the relation
xm+1 = 0. If d is odd then m = 1, i.e. M is rationally homotopy equivalent
to a d–dimensional sphere.

Let

B(d,m) =


− m(m+1)

2d(m+1)−4 ; d even

d+1
2d−2 ; d odd

.

For a closed geodesic c we define the following metric invariant γc ∈
{±1/2,±1}: γc ∈ {±1} iff ind(c2) ≡ ind(c) (mod 2) and γc > 0 iff ind(c)
is even.

Then we have the following

Theorem 5.5 Let M be a compact simply–connected manifold with a bumpy
metric with only finitely many geometrically distinct closed geodesics c1, . . . , cr.
Then there are numbers d ≥ 2, m ≥ 1 with H∗(M ; IQ) ∼= Td,m+1(x). Let
αi := αci be the average indices and γi := γci ∈ {±1/2,±1} the metric
invariant defined above. Then:

a) [Hi, (6.2)], [Ra1, thm.1] There is a non–hyperbolic closed geodesic.

b) [Ra1, thm.3] The average indices αi are positive and satisfy:

B(d,m) = 2
r∑
i=1

γi
αi
.

Now we show that a metric g ∈ G∗(M) with only finitely many geomet-
rically distinct closed geodesics is not strongly bumpy: æ

Lemma 5.6 Let g ∈ G∗(M) be a metric on a compact simply–connected
manifold M with only finitely many geometrically distinct closed geodesics
(ck)k=1,...,r. Let (ck)k=1...,m∗ be the non–hyperbolic closed geodesics with the
sequence Λg = (λi)i=1...,n∗ of Poincaré exponents.

Then there is a non–hyperbolic closed geodesic, i.e. m∗, n∗ ≥ 1, and
there is a non–trivial polynomial p ∈ ZZ[x1, . . . , xn∗ ]∗ of degree m∗ or m∗−1
with

p(λ1(g), . . . , λn∗(g)) = 0 .

Proof. By theorem 5.5 a) there is a non–hyperbolic closed geodesic,
i.e. m∗, n∗ ≥ 1. Let αk be the average index of ck which is positive by
theorem 5.5 b). Let Ik = ind(c2k)− ind(ck) , k = 1, . . . ,m∗. Since g ∈ G∗(M)
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it follows from corollary 5.2 and corollary 5.4 that there are numbers εk ∈
{±1} , k = 1, . . . ,m∗ with

αk = Ik + 2
l(k)∑
j=1

εL(k)+jλL(k)+j . (2)

Here Pck ∈ Sp(l(k);n − 1) and L(k) :=
∑k−1
j=1 l(j). Let b = d(m + 1) − 2

then the topological invariant B(d,m) satisfies b ·B(d,m) ∈ ZZ−{0}. From
theorem 5.5 we have

B(d,m) =
r∑

k=1

γk
αk

. (3)

Let

B := b

B(d,m)−
r∑

i=m∗+1

γi
αi


This is a rational number since for a hyperbolic closed geodesic the average
index is an integer, see corollary 5.2 c). It follows from the equations ( 2)
and ( 3) that the polynomial

p(x1, . . . , xn∗) = B
m∗∏
k=1

Ik + 2
l(k)∑
j=1

εL(k)+jxL(k)+j


−b

m∗∑
k=1

γk

m∗∏
s=1 , s 6=k

Is + 2
l(s)∑
j=1

εL(s)+jxL(s)+j


satisfies

p(λ1, . . . , λn∗) = 0 .

If B 6= 0 then p has degree m∗, in particular 2m
∗
B is the coefficient of

x1 · xL(2)+1 · . . . · xL(m∗)+1. If B = 0 then m∗ ≥ 2 and p has degree m∗ − 1,
in particular −2m

∗−1 · b · γ1 · ε1 · εL(2)+1 · . . . · εL(m∗−1)+1 is the coefficient of
x1 · xL(2)+1 · . . . · xL(m∗−1)+1 2

From the definition 4.1 of a strongly bumpy metric and from the preced-
ing lemma we conclude:

Theorem 5.7 A strongly bumpy metric on a compact simply–connected
manifold has infinitely many geometrically distinct closed geodesics.

Using theorem 4.3 we obtain:

Theorem 5.8 For 2 ≥ r ≥ ∞ the set of Riemannian metrics on a compact
simply–connected manifold with infinitely many geometrically distinct closed
geodesics contains a residual subset of the set GrM of all Riemannian Cr–
metrics.

For short one can say: For 2 ≤ r ≤ ∞ a Cr–generic metric on a compact
simply–connected manifold has infinitely many geometrically distinct closed
geodesics. æ
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